Last modified by Artur on 2025/08/19 10:43

From version 11.1
edited by Helena
on 2025/05/21 23:08
Change comment: There is no comment for this version
To version 5.1
edited by Helena
on 2025/05/21 21:35
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -69,15 +69,13 @@
69 69  
70 70  To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
71 71  
72 -(% class="wikigeneratedid" id="HStructureDefinition" %)
73 -**//Structure Definition//**
72 +=== //Structure Definition// ===
74 74  
75 75  The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax.
76 76  
77 77  The SDMX-ML Structure Message allows for the structures on which a Data Structure Definition depends – that is, codelists and concepts – to be either included in the message or to be referenced by the message containing the data structure definition. XML syntax is designed to leverage URIs and other Internet-based referencing mechanisms, and these are used in the SDMX-ML message. This option is not available to those using the SDMX-EDI structure message.
78 78  
79 -(% class="wikigeneratedid" id="HValidation" %)
80 -**//Validation//**
78 +=== //Validation// ===
81 81  
82 82  SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.)
83 83  
... ... @@ -85,22 +85,19 @@
85 85  
86 86  The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool.
87 87  
88 -(% class="wikigeneratedid" id="HUpdateandDeleteMessagesandDocumentationMessages" %)
89 -//Update and Delete Messages and Documentation Messages//
86 +=== //Update and Delete Messages and Documentation Messages// ===
90 90  
91 91  All SDMX data messages allow for both delete messages and messages consisting of only data or only documentation.
92 92  
93 -(% class="wikigeneratedid" id="HCharacterEncodings" %)
94 -**//Character Encodings//**
90 +=== //Character Encodings// ===
95 95  
96 96  All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
97 97  
98 -(% class="wikigeneratedid" id="HDataTyping" %)
99 -**//Data Typing//**
94 +=== //Data Typing// ===
100 100  
101 101  The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below.
102 102  
103 -=== 3.3.2 Data Types ===
98 +==== 3.3.2 Data Types ====
104 104  
105 105  The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them.
106 106  
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 3.4.1 Reporting and Dissemination Guidelines ===
150 150  
151 -==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
146 +==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
152 152  
153 153  Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
154 154  
... ... @@ -252,21 +252,21 @@
252 252  * If the “observation status” changes and the observation remains unchanged, both components would have to be reported.
253 253  * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation.
254 254  
255 -=== 3.4.2 Best Practices for Batch Data Exchange ===
250 +==== 3.4.2 Best Practices for Batch Data Exchange ====
256 256  
257 -==== 3.4.2.1 Introduction ====
252 +**3.4.2.1 Introduction**
258 258  
259 259  Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats.
260 260  
261 -==== 3.4.2.2 Positioning of the Dimension "Frequency" ====
256 +**3.4.2.2 Positioning of the Dimension "Frequency"**
262 262  
263 263  The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level.
264 264  
265 -==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ====
260 +**3.4.2.3 Identification of Data Structure Definitions (DSDs)**
266 266  
267 267  In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc.
268 268  
269 -==== 3.4.2.4 Identification of the Data Flows ====
264 +**3.4.2.4 Identification of the Data Flows**
270 270  
271 271  In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//.
272 272  
... ... @@ -274,7 +274,7 @@
274 274  
275 275  Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data.
276 276  
277 -==== 3.4.2.5 Special Issues ====
272 +**3.4.2.5 Special Issues**
278 278  
279 279  ===== 3.4.2.5.1 "Frequency" related issues =====
280 280  
... ... @@ -285,6 +285,7 @@
285 285  
286 286  **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp.
287 287  
283 +
288 288  = 4 General Notes for Implementers =
289 289  
290 290  This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing.
... ... @@ -295,31 +295,39 @@
295 295  
296 296  There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents.
297 297  
298 -(% style="width:912.294px" %)
299 -|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)(((
300 -**Java Data Type **
294 +|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
295 +**Java Data Type**
296 +
297 +**~ **
301 301  )))
302 -|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String
303 -|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er
304 -|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int
305 -|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long
306 -|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short
307 -|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al
308 -|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float
309 -|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double
310 -|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean
311 -|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String
312 -|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
313 -|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
314 -|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
315 -|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
316 -|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
317 -|(% style="width:172px" %)(((
318 -Day, MonthDay, Month
319 -)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
320 -|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype
321 -|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration
299 +|String|xsd:string|System.String|java.lang.String
300 +|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er
301 +|Integer|xsd:int|System.Int32|int
302 +|Long|xsd.long|System.Int64|long
303 +|Short|xsd:short|System.Int16|short
304 +|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al
305 +|Float|xsd:float|System.Single|float
306 +|Double|xsd:double|System.Double|double
307 +|Boolean|xsd:boolean|System.Boolean|boolean
308 +|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String
309 +|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
310 +|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
311 +|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
312 +|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
313 +|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
314 +|(((
315 +Day,
322 322  
317 +MonthDay, Month
318 +)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
319 +|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype
320 +|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
321 +**Java Data Type**
322 +
323 +**~ **
324 +)))
325 +| | |n|.Duration
326 +
323 323  There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary:
324 324  
325 325  * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9)
... ... @@ -345,8 +345,10 @@
345 345  * KeyValues (common:DataKeyType)
346 346  * IdentifiableReference (types for each identifiable object)
347 347  * DataSetReference (common:DataSetReferenceType)
348 -* AttachmentConstraintReference (common:AttachmentConstraintReferenceType)
352 +* AttachmentConstraintReference
349 349  
354 +(common:AttachmentConstraintReferenceType)
355 +
350 350  Data types also have a set of facets:
351 351  
352 352  * isSequence = true | false (indicates a sequentially increasing value)
... ... @@ -368,7 +368,7 @@
368 368  
369 369  == 4.2 Time and Time Format ==
370 370  
371 -=== 4.2.1 Introduction ===
377 +==== 4.2.1 Introduction ====
372 372  
373 373  First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled.
374 374  
... ... @@ -376,47 +376,50 @@
376 376  
377 377  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
378 378  
379 -* **Observational Time Period**
380 -** **Standard Time Period**
381 -*** **Basic Time Period**
382 -**** **Gregorian Time Period**
383 -**** //Date Time//
384 -*** **Reporting Time Period**
385 -** //Time Range//
385 +* **Observational Time Period **o **Standard Time Period**
386 386  
387 + § **Basic Time Period**
388 +
389 +* **Gregorian Time Period**
390 +* //Date Time//
391 +
392 +§ **Reporting Time Period **o //Time Range//
393 +
387 387  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
388 388  
389 -=== 4.2.2 Observational Time Period ===
396 +==== 4.2.2 Observational Time Period ====
390 390  
391 391  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
392 392  
393 -=== 4.2.3 Standard Time Period ===
400 +==== 4.2.3 Standard Time Period ====
394 394  
395 395  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
396 396  
397 -=== 4.2.4 Gregorian Time Period ===
404 +==== 4.2.4 Gregorian Time Period ====
398 398  
399 399  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
400 400  
401 -**Gregorian Year:**
408 +**Gregorian Year:**
409 +
402 402  Representation: xs:gYear (YYYY)
403 -Period: the start of January 1 to the end of December 31
404 404  
405 -**Gregorian Year Month**:
412 +Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
413 +
406 406  Representation: xs:gYearMonth (YYYY-MM)
407 -Period: the start of the first day of the month to end of the last day of the month
408 408  
409 -**Gregorian Day**:
416 +Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
417 +
410 410  Representation: xs:date (YYYY-MM-DD)
419 +
411 411  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
412 412  
413 -=== 4.2.5 Date Time ===
422 +==== 4.2.5 Date Time ====
414 414  
415 415  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
416 416  
417 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
426 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
418 418  
419 -=== 4.2.6 Standard Reporting Period ===
428 +==== 4.2.6 Standard Reporting Period ====
420 420  
421 421  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
422 422  
... ... @@ -423,52 +423,75 @@
423 423  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
424 424  
425 425  Where:
435 +
426 426  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
437 +
427 427  PERIOD_VALUE indicates the actual period within the year
428 428  
429 429  The following section details each of the standard reporting periods defined in SDMX:
430 430  
431 -**Reporting Year**:
432 -Period Indicator: A
442 +**Reporting Year**:
443 +
444 + Period Indicator: A
445 +
433 433  Period Duration: P1Y (one year)
447 +
434 434  Limit per year: 1
435 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
436 436  
437 -**Reporting Semester:**
438 -Period Indicator: S
450 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
451 +
452 + Period Indicator: S
453 +
439 439  Period Duration: P6M (six months)
455 +
440 440  Limit per year: 2
441 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
442 442  
443 -**Reporting Trimester:**
444 -Period Indicator: T
458 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
459 +
460 + Period Indicator: T
461 +
445 445  Period Duration: P4M (four months)
463 +
446 446  Limit per year: 3
447 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
448 448  
449 -**Reporting Quarter:**
450 -Period Indicator: Q
466 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
467 +
468 + Period Indicator: Q
469 +
451 451  Period Duration: P3M (three months)
471 +
452 452  Limit per year: 4
453 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
454 454  
455 -**Reporting Month**:
474 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
475 +
456 456  Period Indicator: M
477 +
457 457  Period Duration: P1M (one month)
479 +
458 458  Limit per year: 1
481 +
459 459  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
460 460  
461 461  **Reporting Week**:
485 +
462 462  Period Indicator: W
487 +
463 463  Period Duration: P7D (seven days)
489 +
464 464  Limit per year: 53
491 +
465 465  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
466 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
467 467  
494 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
495 +
468 468  **Reporting Day**:
497 +
469 469  Period Indicator: D
499 +
470 470  Period Duration: P1D (one day)
501 +
471 471  Limit per year: 366
503 +
472 472  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
473 473  
474 474  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -479,109 +479,143 @@
479 479  
480 480  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
481 481  
482 -**~1. Determine [REPORTING_YEAR_BASE]:**
514 +1. **Determine [REPORTING_YEAR_BASE]:**
515 +
483 483  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
517 +
484 484  This is the [REPORTING_YEAR_START_DATE]
485 -**a) If the [PERIOD_INDICATOR] is W:
486 -~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
519 +
520 +**a) If the [PERIOD_INDICATOR] is W:**
521 +
522 +1.
523 +11.
524 +111.
525 +1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
526 +
487 487  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
488 488  
489 -2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
529 +1.
530 +11.
531 +111.
532 +1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
533 +
490 490  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
491 -b) **Else:** 
492 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
493 493  
494 -**2. Determine [PERIOD_DURATION]:**
536 +b) **Else:**
495 495  
496 -a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
497 -b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
498 -c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
499 -d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
500 -e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
501 -f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
502 -g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
538 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
503 503  
504 -**3. Determine [PERIOD_START]:**
505 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
540 +1. **Determine [PERIOD_DURATION]:**
541 +11.
542 +111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
543 +111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
544 +111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
545 +111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
546 +111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
547 +111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
548 +111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
549 +1. **Determine [PERIOD_START]:**
506 506  
507 -**4. Determine the [PERIOD_END]:**
551 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
552 +
553 +1. **Determine the [PERIOD_END]:**
554 +
508 508  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
509 509  
510 510  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
511 511  
512 -**Examples:**
559 +**Examples: **
513 513  
514 514  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
562 +
515 515  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
564 +
516 516  b) [REPORTING_YEAR_BASE] = 2010-07-01
517 -[PERIOD_DURATION] = P3M
518 -(2-1) * P3M = P3M
566 +
567 +1. [PERIOD_DURATION] = P3M
568 +1. (2-1) * P3M = P3M
569 +
519 519  2010-07-01 + P3M = 2010-10-01
571 +
520 520  [PERIOD_START] = 2010-10-01
573 +
521 521  4. 2 * P3M = P6M
575 +
522 522  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
577 +
523 523  2011-01-01 + -P1D = 2010-12-31
579 +
524 524  [PERIOD_END] = 2011-12-31
525 525  
526 526  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
527 527  
528 528  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
585 +
529 529  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
587 +
530 530  a) 2011-07-01 = Friday
589 +
531 531  2011-07-01 + P3D = 2011-07-04
591 +
532 532  [REPORTING_YEAR_BASE] = 2011-07-04
533 -2. [PERIOD_DURATION] = P7D
534 -3. (36-1) * P7D = P245D
593 +
594 +1. [PERIOD_DURATION] = P7D
595 +1. (36-1) * P7D = P245D
596 +
535 535  2011-07-04 + P245D = 2012-03-05
598 +
536 536  [PERIOD_START] = 2012-03-05
600 +
537 537  4. 36 * P7D = P252D
602 +
538 538  2011-07-04 + P252D =2012-03-12
604 +
539 539  2012-03-12 + -P1D = 2012-03-11
606 +
540 540  [PERIOD_END] = 2012-03-11
541 541  
542 542  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
543 543  
544 -=== 4.2.7 Distinct Range ===
611 +==== 4.2.7 Distinct Range ====
545 545  
546 546  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
547 547  
548 -=== 4.2.8 Time Format ===
615 +==== 4.2.8 Time Format ====
549 549  
550 550  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
551 551  
552 -(% style="width:1049.29px" %)
553 -|**Code**|(% style="width:926px" %)**Format**
554 -|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
555 -|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
556 -|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
557 -|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
558 -|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
559 -|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
560 -|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
561 -|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
562 -|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
563 -|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
564 -|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
565 -|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
566 -|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
567 -|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
568 -|**Code**|(% style="width:926px" %)**Format**
569 -|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
570 -|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
619 +|**Code**|**Format**
620 +|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
621 +|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
622 +|**GTP**|Superset of all Gregorian Time Periods and date-time
623 +|**RTP**|Superset of all Reporting Time Periods
624 +|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
625 +|**GY**|Gregorian Year (YYYY)
626 +|**GTM**|Gregorian Year Month (YYYY-MM)
627 +|**GD**|Gregorian Day (YYYY-MM-DD)
628 +|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
629 +|**RY**|Reporting Year (YYYY-A1)
630 +|**RS**|Reporting Semester (YYYY-Ss)
631 +|**RT**|Reporting Trimester (YYYY-Tt)
632 +|**RQ**|Reporting Quarter (YYYY-Qq)
633 +|**RM**|Reporting Month (YYYY-Mmm)
634 +|**Code**|**Format**
635 +|**RW**|Reporting Week (YYYY-Www)
636 +|**RD**|Reporting Day (YYYY-Dddd)
571 571  
572 -**Table 1: SDMX-ML Time Format Codes**
638 + **Table 1: SDMX-ML Time Format Codes**
573 573  
574 -=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
640 +==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
575 575  
576 576  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
577 577  
578 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
644 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
579 579  
580 580  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
581 581  
582 582  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
583 583  
584 -=== 4.2.10 Time Zones ===
650 +==== 4.2.10 Time Zones ====
585 585  
586 586  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
587 587  
... ... @@ -602,7 +602,7 @@
602 602  
603 603  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
604 604  
605 -=== 4.2.11 Representing Time Spans Elsewhere ===
671 +==== 4.2.11 Representing Time Spans Elsewhere ====
606 606  
607 607  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
608 608  
... ... @@ -612,29 +612,30 @@
612 612  
613 613  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
614 614  
615 -=== 4.2.12 Notes on Formats ===
681 +==== 4.2.12 Notes on Formats ====
616 616  
617 617  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
618 618  
619 -=== 4.2.13 Effect on Time Ranges ===
685 +==== 4.2.13 Effect on Time Ranges ====
620 620  
621 621  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
622 622  
623 -=== 4.2.14 Time in Query Messages ===
689 +==== 4.2.14 Time in Query Messages ====
624 624  
625 625  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
626 626  
627 627  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
628 628  
629 -(% style="width:1024.29px" %)
630 -|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
631 -|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
632 -|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
633 -|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
634 -Any data on or after the first moment of the period
695 +|**Operator**|**Rule**
696 +|Greater Than|Any data after the last moment of the period
697 +|Less Than|Any data before the first moment of the period
698 +|Greater Than or Equal To|(((
699 +Any data on or after the first moment of
700 +
701 +the period
635 635  )))
636 -|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
637 -|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
703 +|Less Than or Equal To|Any data on or before the last moment of the period
704 +|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
638 638  
639 639  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
640 640  
... ... @@ -647,7 +647,9 @@
647 647  **Examples:**
648 648  
649 649  **Gregorian Period**
717 +
650 650  Query Parameter: Greater than 2010
719 +
651 651  Literal Interpretation: Any data where the start period occurs after 2010-1231T23:59:59.
652 652  
653 653  Example Matches:
... ... @@ -665,11 +665,15 @@
665 665  * 2010-D185 or later (reporting year start day ~-~-07-01 or later)
666 666  
667 667  **Reporting Period with explicit start day**
737 +
668 668  Query Parameter: Greater than or equal to 2009-Q3, reporting year start day = "-07-01"
739 +
669 669  Literal Interpretation: Any data where the start period occurs on after 2010-0101T00:00:00 (Note that in this case 2009-Q3 is converted to the explicit date range of 2010-01-01/2010-03-31 because of the reporting year start day value). Example Matches: Same as previous example
670 670  
671 671  **Reporting Period with "Any" start day**
743 +
672 672  Query Parameter: Greater than or equal to 2010-Q3, reporting year start day = "Any"
745 +
673 673  Literal Interpretation: Any data with a reporting period where the start period is on or after the start period of 2010-Q3 for the same reporting year start day, or and data where the start period is on or after 2010-07-01. Example Matches:
674 674  
675 675  * 2011 or later
... ... @@ -681,10 +681,13 @@
681 681  * 2010-T3 (any reporting year start day)
682 682  * 2010-Q3 or later (any reporting year start day)
683 683  * 2010-M07 or later (any reporting year start day)
684 -* 2010-W27 or later (reporting year start day ~-~-01-01){{footnote}}2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.{{/footnote}}  2010-D182 or later (reporting year start day ~-~-01-01)
685 -* 2010-W28 or later (reporting year start day ~-~-07-01){{footnote}}2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.{{/footnote}}
686 -* 2010-D185 or later (reporting year start day ~-~-07-01)
757 +* 2010-W27 or later (reporting year start day ~-~-01-01)^^4^^  2010-D182 or later (reporting year start day ~-~-01-01)
758 +* 2010-W28 or later (reporting year start day ~-~-07-01)^^5^^
687 687  
760 +^^4^^ 2010-Q3 (with a reporting year start day of ~-~-01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.
761 +
762 + 2010-D185 or later (reporting year start day ~-~-07-01)
763 +
688 688  == 4.3 Structural Metadata Querying Best Practices ==
689 689  
690 690  When querying for structural metadata, the ability to state how references should be resolved is quite powerful. However, this mechanism is not always necessary and can create an undue burden on the systems processing the queries if it is not used properly.
... ... @@ -701,6 +701,8 @@
701 701  
702 702  This mechanism is an “early binding” one – everything with a versioned identity is a known quantity, and will not change. It is worth pointing out that in some cases relationships are essentially one-way references: an illustrative case is that of Categories. While a Category may be referenced by many dataflows and metadata flows, the addition of more references from flow objects does not version the Category. This is because the flows are not properties of the Categories – they merely make references to it. If the name of a Category changed, or its subCategories changed, then versioning would be necessary.
703 703  
780 +^^5^^ 2010-Q3 (with a reporting year start day of ~-~-07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.
781 +
704 704  Versioning operates at the level of versionable and maintainable objects in the SDMX information model. If any of the children of objects at these levels change, then the objects themselves are versioned.
705 705  
706 706  One area which is much impacted by this versioning scheme is the ability to reference external objects. With the many dependencies within the various structural objects in SDMX, it is useful to have a scheme for external referencing. This is done at the level of maintainable objects (DSDs, code lists, concept schemes, etc.) In an SDMX-ML Structure Message, whenever an “isExternalReference” attribute is set to true, then the application must resolve the address provided in the associated “uri” attribute and use the SDMX-ML Structure Message stored at that location for the full definition of the object in question. Alternately, if a registry “urn” attribute has been provided, the registry can be used to supply the full details of the object.
... ... @@ -723,13 +723,13 @@
723 723  
724 724  [[image:1747836776649-282.jpeg]]
725 725  
726 -**Figure 1: Schematic of the Metadata Structure Definition**
804 +1. **1: Schematic of the Metadata Structure Definition**
727 727  
728 728  The MSD comprises the specification of the object types to which metadata can be reported in a Metadata Set (Metadata Target(s)), and the Report Structure(s) comprising the Metadata Attributes that identify the Concept for which metadata may be reported in the Metadata Set. Importantly, one Report Structure references the Metadata Target for which it is relevant. One Report Structure can reference many Metadata Target i.e. the same Report Structure can be used for different target objects.
729 729  
730 730  [[image:1747836776655-364.jpeg]]
731 731  
732 -**Figure 2: Example MSD showing Metadata Targets**
810 +1. **2: Example MSD showing Metadata Targets**
733 733  
734 734  Note that the SDMX-ML schemas have explicit XML elements for each identifiable object type because identifying, for instance, a Maintainable Object has different properties from an Identifiable Object which must also include the agencyId, version, and id of the Maintainable Object in which it resides.
735 735  
... ... @@ -739,10 +739,8 @@
739 739  
740 740  [[image:1747836776658-510.jpeg]]
741 741  
742 -**Figure 3: Example MSD showing specification of three Metadata Attributes**
820 +**Figure 3: Example MSD showing specification of three Metadata Attributes **This example shows the following hierarchy of Metadata Attributes:
743 743  
744 -This example shows the following hierarchy of Metadata Attributes:
745 -
746 746  Source – this is presentational and no metadata is expected to be reported at this level
747 747  
748 748  * Source Type
... ... @@ -756,7 +756,10 @@
756 756  
757 757   **Figure 4: Example Metadata Set **This example shows:
758 758  
759 -1. The reference to the MSD, Metadata Report, and Metadata Target (MetadataTargetValue)
835 +1. The reference to the MSD, Metadata Report, and Metadata Target
836 +
837 +(MetadataTargetValue)
838 +
760 760  1. The reported metadata attributes (AttributeValueSet)
761 761  
762 762  = 6 Maintenance Agencies =
... ... @@ -813,9 +813,8 @@
813 813  
814 814  The Information Model for this is shown below:
815 815  
816 -[[image:1747855024745-946.png]]
817 817  
818 -**Figure 8: Information Model Extract for Concept Role**
896 + **Figure 8: Information Model Extract for Concept Role**
819 819  
820 820  It is possible to specify zero or more concept roles for a Dimension, Measure Dimension and Data Attribute (but not the ReportingYearStartDay). The Time Dimension, Primary Measure, and the  Attribute ReportingYearStartDay have explicitly defined roles and cannot be further specified with additional concept roles.
821 821  
... ... @@ -835,14 +835,13 @@
835 835  
836 836  The Cross-Domain Concept Scheme maintained by SDMX contains concept role concepts (FREQ chosen as an example).
837 837  
838 -[[image:1747855054559-410.png]]
916 +[[image:1747836776691-440.jpeg]]
839 839  
840 -
841 841  Whether this is a role or not depends upon the application understanding that FREQ in the Cross-Domain Concept Scheme is a role of Frequency.
842 842  
843 843  Using a Concept Scheme that is not the Cross-Domain Concept Scheme where it is required to assign a role using the Cross-Domain Concept Scheme. Again FREQ is chosen as the example.
844 844  
845 -[[image:1747855075263-887.png]]
922 +[[image:1747836776693-898.jpeg]]
846 846  
847 847  
848 848  This explicitly states that this Dimension is playing a role identified by the FREQ concept in the Cross-Domain Concept Scheme. Again the application needs to understand what FREQ in the Cross-Domain Concept Scheme implies in terms of a role.
... ... @@ -892,7 +892,7 @@
892 892  
893 893  == 8.3 Rules for a Content Constraint ==
894 894  
895 -=== 8.3.1 (% style="color:inherit; font-family:inherit; font-size:max(21px, min(23px, 17.4444px + 0.462963vw))" %)Scope of a Content Constraint(%%) ===
972 +=== 8.3.1 Scope of a Content Constraint ===
896 896  
897 897  A Content Constraint is used specify the content of a data or metadata source in terms of the component values or the keys.
898 898  
... ... @@ -931,54 +931,54 @@
931 931  
932 932  In view of the flexibility of constraints attachment, clear rules on their usage are required. These are elaborated below.
933 933  
934 -=== 8.3.2 Multiple Content Constraints ===
1011 +=== 8.3.2 Multiple Content Constraints ===
935 935  
936 936  There can be many Content Constraints for any Constrainable Artefact (e.g. DSD), subject to the following restrictions:
937 937  
938 -==== 8.3.2.1 Cube Region ====
1015 +**8.3.2.1 Cube Region**
939 939  
940 940  1. The constraint can contain multiple Member Selections (e.g. Dimension) but:
941 941  1. A specific  Member Selection (e.g. Dimension FREQ)  can only be contained in one Content Constraint for any one attached object (e.g. a specific DSD or specific Dataflow)
942 942  
943 -==== 8.3.2.2 Key Set ====
1020 +**8.3.2.2 Key Set**
944 944  
945 945  Key Sets will be processed in the order they appear in the Constraint and wildcards can be used (e.g. any key position not reference explicitly is deemed to be “all values”). As the Key Sets can be “included” or “excluded” it is recommended that Key Sets with wildcards are declared before KeySets with specific series keys. This will minimize the risk that keys are inadvertently included or excluded.  
946 946  
947 -=== 8.3.3 Inheritance of a Content Constraint ===
1024 +=== 8.3.3 Inheritance of a Content Constraint ===
948 948  
949 -==== 8.3.3.1 Attachment levels of a Content Constraint ====
1026 +**8.3.3.1 Attachment levels of a Content Constraint**
950 950  
951 951  There are three levels of constraint attachment for which these inheritance rules apply:
952 952  
953 -* DSD/MSD – top level
954 -** Dataflow/Metadataflow – second level
955 -*** Provision Agreement – third level
1030 + DSD/MSD – top level o Dataflow/Metadataflow – second level
956 956  
1032 +§ Provision Agreement – third level
1033 +
957 957  Note that these rules do not apply to the Simple Datasoucre or Queryable Datasource: the Content Constraint(s) attached to these artefacts are resolved for this artefact only and do not take into account Constraints attached to other artefacts (e.g. Provision Agreement. Dataflow, DSD).
958 958  
959 959  It is not necessary for a Content Constraint to be attached to higher level artifact. e.g. it is valid to have a Content Constraint for a Provision Agreement where there are no constraints attached the relevant dataflow or DSD.
960 960  
961 -==== 8.3.3.2 Cascade rules for processing Constraints ====
1038 +**8.3.3.2 Cascade rules for processing Constraints**
962 962  
963 963  The processing of the constraints on either Dataflow/Metadataflow or Provision Agreement must take into account the constraints declared at higher levels. The rules for the lower level constraints (attached to Dataflow/ Metadataflow and Provision Agreement) are detailed below.
964 964  
965 965  Note that there can be a situation where a constraint is specified at a lower level before a constraint is specified at a higher level. Therefore, it is possible that a higher level constraint makes a lower level constraint invalid. SDMX makes no rules on how such a conflict should be handled when processing the constraint for attachment. However, the cascade rules on evaluating constraints for usage are clear - the higher level constraint takes precedence in any conflicts that result in a less restrictive specification at the lower level.
966 966  
967 -==== 8.3.3.3 Cube Region ====
1044 +**8.3.3.3 Cube Region**
968 968  
969 969  1. It is not necessary to have a constraint on the higher level artifact (e.g. DSD referenced by the Dataflow) but if there is such a constraint at the higher level(s) then:
970 -a. The lower level constraint cannot be less restrictive than the constraint specified for the same Member Selection (e.g. Dimension) at the next higher level which constraints that Member Selection (e.g. if the Dimension FREQ is constrained to A, Q in a DSD then the constraint at the Dataflow or Provision Agreement cannot be A, Q, M or even just M – it can only further constrain A,Q).
971 -b. The constraint at the lower level for any one Member Selection further constrains the content for the same Member Selection at the higher level(s).
1047 +11. The lower level constraint cannot be less restrictive than the constraint specified for the same Member Selection (e.g. Dimension) at the next higher level which constraints that Member Selection (e.g. if the Dimension FREQ is constrained to A, Q in a DSD then the constraint at the Dataflow or Provision Agreement cannot be A, Q, M or even just M – it can only further constrain A,Q).
1048 +11. The constraint at the lower level for any one Member Selection further constrains the content for the same Member Selection at the higher level(s).
972 972  1. Any Member Selection which is not referenced in a Content Constraint is deemed to be constrained according to the Content Constraint specified at the next higher level which constraints that Member Selection.
973 973  1. If there is a conflict when resolving the constraint in terms of a lower-level constraint being less restrictive than a higher-level constraint then the constraint at the higher-level is used.
974 974  
975 975  Note that it is possible for a Content Constraint at a higher level to constrain, say, four Dimensions in a single constraint, and a Content Constraint at a lower level to constrain the same four in two, three, or four Content Constraints.
976 976  
977 -==== 8.3.3.4 Key Set ====
1054 +**8.3.3.4 Key Set**
978 978  
979 979  1. It is not necessary to have a constraint on the higher level artefact (e.g. DSD referenced by the Dataflow) but if there is such a constraint at the higher level(s) then:
980 -a. The lower level constraint cannot be less restrictive than the constraint specified at the higher level.
981 -b. The constraint at the lower level for any one Member Selection further constrains the keys specified at the higher level(s).
1057 +11. The lower level constraint cannot be less restrictive than the constraint specified at the higher level.
1058 +11. The constraint at the lower level for any one Member Selection further constrains the keys specified at the higher level(s).
982 982  1. Any Member Selection which is not referenced in a Content Constraint is deemed to be constrained according to the Content Constraint specified at the next higher level which constraints that Member Selection.
983 983  1. If there is a conflict when resolving the keys in the constraint at two levels, in terms of a lower-level constraint being less restrictive than a higher-level constraint, then the offending keys specified at the lower level are not deemed part of the constraint.
984 984  
... ... @@ -992,11 +992,11 @@
992 992  1. At the lower level inherit all keys that match with the higher level constraint.
993 993  1. If there are keys in the lower level constraint that are not inherited then the key is invalid (i.e. it is less restrictive).
994 994  
995 -=== 8.3.4 Constraints Examples ===
1072 +**8.3.4 Constraints Examples**
996 996  
997 997  The following scenario is used.
998 998  
999 -__DSD__
1076 +=== DSD ===
1000 1000  
1001 1001  This contains the following Dimensions:
1002 1002  
... ... @@ -1008,43 +1008,111 @@
1008 1008  In the DSD common code lists are used and the requirement is to restrict these at various levels to specify the actual code that are valid for the object to which the Content Constraint is attached.
1009 1009  
1010 1010  
1011 -[[image:1747855493531-357.png]]
1088 +|(((
1089 +
1090 +)))
1012 1012  
1013 -**Figure 10: Example Scenario for Constraints**
1092 +|(((
1093 +
1094 +)))
1014 1014  
1096 +|(((
1097 +
1098 +)))
1099 +
1100 +|(((
1101 +**Figure**
1102 +)))
1103 +
1104 +|(((
1105 +**10**
1106 +)))
1107 +
1108 +|(((
1109 +**:**
1110 +)))
1111 +
1112 +|(((
1113 +**~ Example Sce**
1114 +)))
1115 +
1116 +|(((
1117 +**nario for Constraints**
1118 +)))
1119 +
1120 +|(((
1121 +**~ **
1122 +)))
1123 +
1124 +
1125 +
1015 1015  Constraints are declared as follows:
1016 1016  
1017 -[[image:1747855462293-368.png]]
1018 1018  
1019 -**Figure 11: Example Content Constraints**
1129 +|(((
1130 +
1131 +)))
1020 1020  
1133 +|(((
1134 +
1135 +)))
1136 +
1137 +|(((
1138 +
1139 +)))
1140 +
1141 +|(((
1142 +**Figure**
1143 +)))
1144 +
1145 +|(((
1146 +**11**
1147 +)))
1148 +
1149 +|(((
1150 +**:**
1151 +)))
1152 +
1153 +|(((
1154 +**~ Example Content Constraints**
1155 +)))
1156 +
1157 +|(((
1158 +**~ **
1159 +)))
1160 +
1161 +
1162 +
1021 1021  **Notes:**
1022 1022  
1023 -1. AGE is constrained for the DSD and is further restricted for the Dataflow CENSUS_CUBE1.
1165 +1. AGE is constrained for the DSD and is further restricted for the Dataflow
1166 +
1167 +CENSUS_CUBE1.
1168 +
1024 1024  1. The same Constraint applies to both Provision Agreements.
1025 1025  
1026 1026  The cascade rules elaborated above result as follows:
1027 1027  
1028 -__DSD__
1173 +DSD
1029 1029  
1030 1030  ~1. Constrained by eliminating code 001 from the code list for the AGE Dimension.
1031 1031  
1032 -__Dataflow CENSUS_CUBE1__
1177 +=== Dataflow CENSUS_CUBE1 ===
1033 1033  
1034 1034  1. Constrained by restricting the code list for the AGE Dimension to codes 002 and 003(note that this is a more restrictive constraint than that declared for the DSD which specifies all codes except code 001).
1035 1035  1. Restricts the CAS codes to 003 and 004.
1036 1036  
1037 -__Dataflow CENSUS_CUBE2__
1182 +=== Dataflow CENSUS_CUBE2 ===
1038 1038  
1039 1039  1. Restricts the code list for the CAS Dimension to codes TOT and NAP.
1040 1040  1. Inherits the AGE constraint applied at the level of the DSD.
1041 1041  
1042 -__Provision Agreements CENSUS_CUBE1_IT__
1187 +=== Provision Agreements CENSUS_CUBE1_IT ===
1043 1043  
1044 1044  1. Restricts the codes for the GEO Dimension to IT and its children.
1045 1045  1. Inherits the constraints from Dataflow CENSUS_CUBE1  for the AGE and CAS Dimensions.
1046 1046  
1047 -__Provision Agreements CENSUS_CUBE2_IT__
1192 +=== Provision Agreements CENSUS_CUBE2_IT ===
1048 1048  
1049 1049  1. Restricts the codes for the GEO Dimension to IT and its children.
1050 1050  1. Inherits the constraints from Dataflow CENSUS_CUBE2 for the CAS Dimension.
... ... @@ -1052,17 +1052,17 @@
1052 1052  
1053 1053  The constraints are defined as follows:
1054 1054  
1055 -__DSD Constraint__
1200 +=== DSD Constraint ===
1056 1056  
1057 1057  [[image:1747836776698-720.jpeg]]
1058 1058  
1059 -__Dataflow Constraints__
1204 +=== Dataflow Constraints ===
1060 1060  
1061 1061  [[image:1747836776701-360.jpeg]]
1062 1062  
1063 1063  === [[image:1747836776707-834.jpeg]] ===
1064 1064  
1065 -__Provision Agreement Constraint__
1210 +=== Provision Agreement Constraint ===
1066 1066  
1067 1067  [[image:1747836776710-262.jpeg]]
1068 1068  
... ... @@ -1074,7 +1074,7 @@
1074 1074  
1075 1075  == 9.2 Groups and Dimension Groups ==
1076 1076  
1077 -=== 9.2.1 Issue ===
1222 +=== 9.2.1 Issue ===
1078 1078  
1079 1079  Version 2.1 introduces a more granular mechanism for specifying the relationship between a Data Attribute and the Dimensions to which the attribute applies. The technical construct for this is the Dimension Group. This Dimension Group has no direct equivalent in versions 2.0 and 1.0 and so the application transforming data from a version 2.1 data set to a version 2.0 or version 1.0 data set must decide to which construct the attribute value, whose Attribute is declared in a Dimension Group, should be attached. The closest construct is the “Series” attachment level and in many cases this is the correct construct to use.
1080 1080  
... ... @@ -1087,7 +1087,7 @@
1087 1087  
1088 1088  If the conditions defined in 9.2.1are true then on conversion to a version 2.0 or 1.0 DSD (Key Family) the Component/Attribute.attachmentLevel must be set to “Group” and the Component/Attribute/AttachmentGroup” is used to identify the Group. Note that under rule(1) in 1.2.1 this group will have been defined in the V 2.1 DSD and so will be present in the V 2.0 transformation.
1089 1089  
1090 -=== 9.2.3 Data ===
1235 +=== 9.2.3 Data ===
1091 1091  
1092 1092  If the conditions defined in 9.2.1are true then, on conversion from a 2.1 data set to a 2.0 or 1.0 dataset the attribute value will be placed in the relevant <Group>. If these conditions are not true then the attribute value will be placed in the <Series>.
1093 1093  
... ... @@ -1099,7 +1099,7 @@
1099 1099  
1100 1100  == 10.1 Introduction ==
1101 1101  
1102 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1247 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1103 1103  
1104 1104  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1105 1105  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1121,8 +1121,10 @@
1121 1121  
1122 1122  The alias of a SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
1123 1123  
1124 -In any case, the aliases used in the VTL transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1269 +In any case, the aliases used in the VTL transformations have to be mapped to the
1125 1125  
1271 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1272 +
1126 1126  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1127 1127  
1128 1128  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -1131,7 +1131,7 @@
1131 1131  
1132 1132  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1133 1133  
1134 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1281 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1135 1135  
1136 1136  * SDMXprefix                                                                                   
1137 1137  * SDMX-IM-package-name             
... ... @@ -1139,7 +1139,7 @@
1139 1139  * agency-id                                                                          
1140 1140  * maintainedobject-id
1141 1141  * maintainedobject-version
1142 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1289 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1143 1143  * object-id
1144 1144  
1145 1145  The generic structure of the URN is the following:
... ... @@ -1158,13 +1158,13 @@
1158 1158  
1159 1159  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1160 1160  
1161 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1308 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1162 1162  
1163 -* if the artefact is a Dataflow, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1164 -* if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
1165 -* if the artefact is a Concept, which is not maintainable and belongs to the ConceptScheme maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id) which the artefact belongs to;
1166 -* if the artefact is a ConceptScheme, which is a maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id);
1167 -* if the artefact is a Codelist, which is a maintainable class,  the maintainedobject-id is the Codelist name (codelist-id).
1310 +* if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1311 +* if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
1312 +* if the artefact is a ,,Concept,,, which is not maintainable and belongs to the ConceptScheme maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id) which the artefact belongs to;
1313 +* if the artefact is a ,,ConceptScheme,,, which is a maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id);
1314 +* if the artefact is a ,,Codelist, ,,which is a maintainable class,  the maintainedobject-id is the Codelist name (codelist-id).
1168 1168  
1169 1169  The **maintainedobject-version** is the version of the maintained object which the artefact belongs to (for example, possible versions are 1.0, 2.1, 3.1.2).
1170 1170  
... ... @@ -1172,13 +1172,18 @@
1172 1172  
1173 1173  The **object-id** is the name of the non-maintainable artefact (when the artefact is maintainable its name is already specified as the maintainedobject-id, see above), in particular it has to be specified:
1174 1174  
1175 -* if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute  (the object-id is the name of one of the artefacts above, which are data structure components)
1176 -* if the artefact is a Concept (the object-id is the name of the Concept)
1322 +* if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute  (the object-id is the name of one of
1177 1177  
1178 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1324 +the artefacts above, which are data structure components)
1179 1179  
1326 +* if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1327 +
1328 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1329 +
1180 1180  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1331 +
1181 1181  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0)’   +
1333 +
1182 1182  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0)’
1183 1183  
1184 1184  === 10.2.3 Abbreviation of the URN ===
... ... @@ -1191,20 +1191,22 @@
1191 1191  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1192 1192  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1193 1193  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1194 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1195 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).
1196 -* As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1197 -** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the
1346 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1347 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1348 +* As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1349 +** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1198 1198  
1199 -SDMX structural definitions;  o if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted;
1351 +SDMX structural definitions;  o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted;
1200 1200  
1201 -*
1202 -** if the referenced artefact is a ConceptScheme, which is a,, ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and obviously cannot be omitted;
1203 -** if the referenced artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the codelist-id and obviously cannot be omitted.
1353 +*
1354 +** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted;
1355 +** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted.
1204 1204  * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,,
1205 1205  * As said, the **container-object-id** does not apply to the classes that can be referenced in VTL transformations, therefore is not present in their URN
1206 -* The **object-id** does not exist for the artefacts belonging to the Dataflow, ConceptScheme and Codelist classes, while it exists and cannot be omitted for the artefacts belonging to the classes Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute and Concept, as for them the object-id is the main identifier of the artefact
1358 +* The **object-id** does not exist for the artefacts belonging to the ,,Dataflow, ConceptScheme,, and ,,Codelist,, classes, while it exists and cannot be omitted for the artefacts belonging to the classes Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute and Concept, as for
1207 1207  
1360 +them the object-id is the main identifier of the artefact
1361 +
1208 1208  The simplified object identifier is obtained by omitting all the first part of the URN, including the special characters, till the first part not omitted.
1209 1209  
1210 1210  For example, the full formulation that uses the complete URN shown at the end of the previous paragraph:
... ... @@ -1217,11 +1217,11 @@
1217 1217  
1218 1218  DFR  :=  DF1 + DF2
1219 1219  
1220 -The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1374 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1221 1221  
1222 1222  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1223 1223  
1224 -if the Codelist is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1378 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1225 1225  
1226 1226  CL_FREQ
1227 1227  
... ... @@ -1231,7 +1231,7 @@
1231 1231  
1232 1232  SECTOR
1233 1233  
1234 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1388 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1235 1235  
1236 1236  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1237 1237  
... ... @@ -1265,9 +1265,9 @@
1265 1265  
1266 1266  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1267 1267  
1268 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1422 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1269 1269  
1270 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1424 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1271 1271  
1272 1272  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1273 1273  
... ... @@ -1281,15 +1281,15 @@
1281 1281  
1282 1282  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1283 1283  
1284 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1438 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1285 1285  
1286 1286  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1287 1287  
1288 1288  === 10.3.2 General mapping of VTL and SDMX data structures ===
1289 1289  
1290 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1444 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1291 1291  
1292 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1446 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1293 1293  
1294 1294  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1295 1295  
... ... @@ -1299,7 +1299,7 @@
1299 1299  
1300 1300  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1301 1301  
1302 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1456 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1303 1303  
1304 1304  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1305 1305  
... ... @@ -1309,25 +1309,28 @@
1309 1309  
1310 1310  === 10.3.3 Mapping from SDMX to VTL data structures ===
1311 1311  
1312 -==== 10.3.3.1 Basic Mapping** ** ====
1466 +**10.3.3.1 Basic Mapping **
1313 1313  
1314 1314  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. 1842 When transforming **from SDMX to VTL**, this method consists in leaving the 1843 components unchanged and maintaining their names and roles, according to the 1844 following table:
1315 1315  
1316 -(% style="width:636.294px" %)
1317 -|(% style="width:286px" %)**SDMX**|(% style="width:347px" %)**VTL**
1318 -|(% style="width:286px" %)Dimension|(% style="width:347px" %)(Simple) Identifier
1319 -|(% style="width:286px" %)Time Dimension|(% style="width:347px" %)(Time) Identifier
1320 -|(% style="width:286px" %)Measure Dimension|(% style="width:347px" %)(Measure) Identifier
1321 -|(% style="width:286px" %)Primary Measure|(% style="width:347px" %)Measure
1322 -|(% style="width:286px" %)Data Attribute|(% style="width:347px" %)Attribute
1470 +|SDMX|VTL
1471 +|Dimension|(Simple) Identifier
1472 +|Time Dimension|(Time) Identifier
1473 +|Measure Dimension|(Measure) Identifier
1474 +|Primary Measure|Measure
1475 +|Data Attribute|Attribute
1323 1323  
1324 -According to this method, the resulting VTL structures are always mono-measure (i.e., they have just one measure component) and their Measure is the SDMX PrimaryMeasure. Nevertheless, if the SDMX data structure has a MeasureDimension, which can convey the name of one or more measure concepts, such unique measure component can contain the value of more (conceptual) measures (one for each observation).
1477 +According to this method, the resulting VTL structures are always mono-measure
1325 1325  
1479 +(i.e., they have just one measure component) and their Measure is the SDMX
1480 +
1481 +PrimaryMeasure. Nevertheless, if the SDMX data structure has a MeasureDimension, which can convey the name of one or more measure concepts, such unique measure component can contain the value of more (conceptual) measures (one for each observation).
1482 +
1326 1326  As for the SDMX DataAttributes, in VTL they are all considered “at data point / observation level” (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
1327 1327  
1328 1328  With the Basic mapping, one SDMX observation generates one VTL data point.
1329 1329  
1330 -==== 10.3.3.2 Pivot Mapping ====
1487 +**10.3.3.2 Pivot Mapping **
1331 1331  
1332 1332  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which is different from the Basic method only for the SDMX data structures that contain a MeasureDimension, which are mapped to multi-measure VTL data structures.  
1333 1333  
... ... @@ -1347,27 +1347,29 @@
1347 1347  
1348 1348  The summary mapping table of the “pivot” mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
1349 1349  
1350 -(% style="width:941.294px" %)
1351 -|(% style="width:441px" %)**SDMX**|(% style="width:497px" %)**VTL**
1352 -|(% style="width:441px" %)Dimension|(% style="width:497px" %)(Simple) Identifier
1353 -|(% style="width:441px" %)TimeDimension|(% style="width:497px" %)(Time) Identifier
1354 -|(% style="width:441px" %)MeasureDimension & PrimaryMeasure|(% style="width:497px" %)One Measure for each Concept of the SDMX Measure Dimension
1355 -|(% style="width:441px" %)DataAttribute not depending on the MeasureDimension|(% style="width:497px" %)Attribute
1356 -|(% style="width:441px" %)DataAttribute depending on the MeasureDimension|(% style="width:497px" %)One Attribute for each Concept of the SDMX Measure Dimension
1507 +|SDMX|VTL
1508 +|Dimension|(Simple) Identifier
1509 +|TimeDimension|(Time) Identifier
1510 +|MeasureDimension & PrimaryMeasure|One Measure for each Concept of the SDMX Measure Dimension
1511 +|DataAttribute not depending on the MeasureDimension|Attribute
1512 +|DataAttribute depending on the MeasureDimension|One Attribute for each Concept of the SDMX Measure Dimension
1357 1357  
1358 -Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure.
1514 +Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL 1908 statements can reference only the components of the resulting VTL data structure.
1359 1359  
1360 -At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Concept of the MeasureDimension:
1516 +At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Concept of the 1911 MeasureDimension:
1361 1361  
1362 -* The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension;
1363 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
1364 -* The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
1365 -* For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
1518 + The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension;
1366 1366  
1367 -==== 10.3.3.3 From SDMX DataAttributes to VTL Measures ====
1520 +*
1521 +** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
1522 +** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
1523 +** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
1368 1368  
1369 -* In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the  two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
1525 +**10.3.3.3 From SDMX DataAttributes to VTL Measures **
1370 1370  
1527 +*
1528 +** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the  two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
1529 +
1371 1371  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
1372 1372  
1373 1373  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
... ... @@ -1374,7 +1374,7 @@
1374 1374  
1375 1375  === 10.3.4 Mapping from VTL to SDMX data structures ===
1376 1376  
1377 -==== 10.3.4.1 Basic Mapping** ** ====
1536 +**10.3.4.1 Basic Mapping **
1378 1378  
1379 1379  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
1380 1380  
... ... @@ -1382,19 +1382,20 @@
1382 1382  
1383 1383  The method consists in leaving the components unchanged and maintaining their names and roles in SDMX, according to the following mapping table, which is the same as the basic mapping from SDMX to VTL, only seen in the opposite direction.
1384 1384  
1385 -This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the PrimaryMeasure). In this case it becomes mandatory to specify a different mapping method through the VtlMappingScheme and VtlDataflowMapping classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1544 +This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1386 1386  
1387 -Please note that the VTL measures can have any name while in SDMX 2.1 the MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1546 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1388 1388  
1548 +1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1549 +
1389 1389  Mapping table:
1390 1390  
1391 -(% style="width:592.294px" %)
1392 -|(% style="width:253px" %)**VTL**|(% style="width:336px" %)**SDMX**
1393 -|(% style="width:253px" %)(Simple) Identifier|(% style="width:336px" %)Dimension
1394 -|(% style="width:253px" %)(Time) Identifier|(% style="width:336px" %)TimeDimension
1395 -|(% style="width:253px" %)(Measure) Identifier|(% style="width:336px" %)MeasureDimension
1396 -|(% style="width:253px" %)Measure|(% style="width:336px" %)PrimaryMeasure
1397 -|(% style="width:253px" %)Attribute|(% style="width:336px" %)DataAttribute
1552 +|VTL|SDMX
1553 +|(Simple) Identifier|Dimension
1554 +|(Time) Identifier|TimeDimension
1555 +|(Measure) Identifier|MeasureDimension
1556 +|Measure|PrimaryMeasure
1557 +|Attribute|DataAttribute
1398 1398  
1399 1399  If the distinction between simple identifier, time identifier and measure identifier is not maintained in the VTL environment, the classification between Dimension, TimeDimension and MeasureDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
1400 1400  
... ... @@ -1404,12 +1404,14 @@
1404 1404  
1405 1405  As  said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the assignmentStatus,  which does not exist in VTL, the AttributeRelationship for the DataAttributes and so on.
1406 1406  
1407 -==== 10.3.4.2 Unpivot Mapping ====
1567 +**10.3.4.2 Unpivot Mapping **
1408 1408  
1409 1409  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.  
1410 1410  
1411 -Although this mapping method can be used in any case, it makes major sense in case the VTL data structure has more than one measure component (multi-measures VTL structure). For such VTL structures, in fact, the basic method cannot be applied, given that by maintaining the data structure unchanged the resulting SDMX data structure would have more than one measure component, which is not allowed by SDMX 2.1 (it allows just one measure component, the PrimaryMeasure, called “obs_value”).
1571 +Although this mapping method can be used in any case, it makes major sense in case the VTL data structure has more than one measure component (multi-measures VTL structure). For such VTL structures, in fact, the basic method cannot be applied, given that by maintaining the data structure unchanged the resulting SDMX data structure would have more than one measure component, which is not allowed by SDMX 2.1 (it allows just one measure component, the PrimaryMeasure, called
1412 1412  
1573 +“obs_value”).
1574 +
1413 1413  The multi-measures VTL structures have not a Measure Identifier (because the Measures are separate components) and need to be converted to SDMX dataflows having an added MeasureDimension which disambiguates the multiple measures, and an added PrimaryMeasure, in which the measures’ values are maintained.
1414 1414  
1415 1415  The **unpivot** mapping behaves like follows:
... ... @@ -1425,25 +1425,34 @@
1425 1425  
1426 1426  The summary mapping table of the **unpivot** mapping method is the following:
1427 1427  
1428 -(% style="width:904.294px" %)
1429 -|(% style="width:368px" %)**VTL**|(% style="width:533px" %)**SDMX**
1430 -|(% style="width:368px" %)(Simple) Identifier|(% style="width:533px" %)Dimension
1431 -|(% style="width:368px" %)(Time) Identifier|(% style="width:533px" %)TimeDimension
1432 -|(% style="width:368px" %)All Measure Components|(% style="width:533px" %)(((
1433 -MeasureDimension (having one Measure Concept for each VTL measure component) & PrimaryMeasure
1590 +
1591 +|VTL|SDMX
1592 +|(Simple) Identifier|Dimension
1593 +|(Time) Identifier|TimeDimension
1594 +|All Measure Components|(((
1595 +MeasureDimension (having one Measure Concept for each VTL measure component) &
1596 +
1597 +PrimaryMeasure
1434 1434  )))
1435 -|(% style="width:368px" %)Attribute |(% style="width:533px" %)(((
1436 -DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
1599 +|Attribute |(((
1600 +DataAttribute depending on all
1601 +
1602 +SDMX Dimensions including the
1603 +
1604 +TimeDimension and except the MeasureDimension
1437 1437  )))
1438 1438  
1439 1439  At observation / data point level:
1440 1440  
1441 -* a multi-measure VTL Data Point becomes a set of SDMX observations, one for each VTL measure
1442 -* the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above
1443 -* the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj)
1444 -* the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set
1445 -* the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above)
1609 + a multi-measure VTL Data Point becomes a set of SDMX observations, one for each VTL measure
1446 1446  
1611 + the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above
1612 +
1613 +*
1614 +** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj)
1615 +** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set
1616 +** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above)
1617 +
1447 1447  If desired, this method can be applied also to mono-measure VTL structures, provided that none of the VTL components has already the role of measure identifier.
1448 1448  
1449 1449  Like in the general case, a MeasureDimension component called “measure_name” would be added to the SDMX DataStructure and would have just one possible measure concept, corresponding to the unique VTL measure. The original VTL measure component would not become a Component in the SDMX data structure. The value of the VTL measure would be assigned to the SDMX PrimaryMeasure called “obs_value”.
... ... @@ -1450,31 +1450,29 @@
1450 1450  
1451 1451  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Concepts of the SDMX MeasureDimension need to be listed in a SDMX ConceptScheme, with proper id, agency and version; moreover, the SDMX DSD must have the assignmentStatus, which does not exist in VTL, the attributeRelationship for the DataAttributes and so on.
1452 1452  
1453 -==== 10.3.4.3 From VTL Measures to SDMX Data Attributes** ** ====
1624 +**10.3.4.3 From VTL Measures to SDMX Data Attributes **
1454 1454  
1455 1455  For the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore a third mapping method consists in transforming one VTL measure in the SDMX primaryMeasure and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
1456 1456  
1457 1457  When applied to mono-measure VTL structures (having one Measure component), the M2A method behaves like the Basic mapping (the VTL Measure component becomes the SDMX primary measure “obs_value”, there is no additional VTL measure to be converted to SDMX DataAttribute). Therefore the mapping table is the same as for the Basic method:
1458 1458  
1459 -(% style="width:591.294px" %)
1460 -|(% style="width:252px" %)**VTL**|(% style="width:336px" %)**SDMX**
1461 -|(% style="width:252px" %)(Simple) Identifier|(% style="width:336px" %)Dimension
1462 -|(% style="width:252px" %)(Time) Identifier|(% style="width:336px" %)TimeDimension
1463 -|(% style="width:252px" %)(Measure) Identifier (if any)|(% style="width:336px" %)MeasureDimension
1464 -|(% style="width:252px" %)Measure|(% style="width:336px" %)PrimaryMeasure
1465 -|(% style="width:252px" %)Attribute|(% style="width:336px" %)DataAttribute
1630 +|VTL|SDMX
1631 +|(Simple) Identifier|Dimension
1632 +|(Time) Identifier|TimeDimension
1633 +|(Measure) Identifier (if any)|MeasureDimension
1634 +|Measure|PrimaryMeasure
1635 +|Attribute|DataAttribute
1466 1466  
1467 1467  For multi-measure VTL structures (having more than one Measure component), one VTL Measure becomes the SDMX PrimaryMeasure while the other VTL Measures maintain their names and values but assume the role of DataAttribute in SDMX. The choice of the VTL Measure that correspond to the SDMX PrimaryMeasure is left to the definer of the SDMX data structure definition.
1468 1468  
1469 -Taking into account that the multi-measure VTL structures do not have a measure identifier, the mapping table is the following:
1639 +2Taking into account that the multi-measure VTL structures do not have a measure 2073 identifier, the mapping table is the following:
1470 1470  
1471 -(% style="width:588.294px" %)
1472 -|(% style="width:259px" %)**VTL**|(% style="width:326px" %)**SDMX**
1473 -|(% style="width:259px" %)(Simple) Identifier|(% style="width:326px" %)Dimension
1474 -|(% style="width:259px" %)(Time) Identifier|(% style="width:326px" %)TimeDimension
1475 -|(% style="width:259px" %)One of the Measures|(% style="width:326px" %)PrimaryMeasure
1476 -|(% style="width:259px" %)Other Measures|(% style="width:326px" %)DataAttribute
1477 -|(% style="width:259px" %)Attribute|(% style="width:326px" %)DataAttribute
1641 +|VTL|SDMX
1642 +|(Simple) Identifier|Dimension
1643 +|(Time) Identifier|TimeDimension
1644 +|One of the Measures|PrimaryMeasure
1645 +|Other Measures|DataAttribute
1646 +|Attribute|DataAttribute
1478 1478  
1479 1479  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the assignmentStatus,  which does not exist in VTL, the attributeRelationship for the DataAttributes and so on. In particular, the primaryMeasure of the SDMX 2.1 DSD must be called “obs_value” and must be one of the VTL Measures, chosen by the DSD definer.
1480 1480  
... ... @@ -1482,6 +1482,7 @@
1482 1482  
1483 1483  In order to define and understand properly VTL transformations, the applied mapping methods must be specified in the SDMX structural metadata. If the default mapping method (Basic) is applied, no specification is needed.
1484 1484  
1654 +
1485 1485  A customized mapping can be defined through the VtlMappingScheme and VtlDataflowMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlDataflowMapping allows specifying the mapping methods to be used for a specific dataflow, both in the direction from SDMX to VTL (toVtlMappingMethod) and from VTL to SDMX (fromVtlMappingMethod); in fact a VtlDataflowMapping associates the structured URN that identifies a SDMX dataflow to its VTL alias and its mapping methods.
1486 1486  
1487 1487  It is possible to specify the toVtlMappingMethod and fromVtlMappingMethod also for the conventional dataflow called “generic_dataflow”: in this case the specified mapping methods are intended to become the default ones, overriding the
... ... @@ -1490,64 +1490,83 @@
1490 1490  
1491 1491   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1492 1492  
1493 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1663 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1494 1494  
1495 1495  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1496 1496  
1497 1497  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1498 1498  
1499 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1669 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1500 1500  
1501 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1671 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1502 1502  
1503 -Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets.
1673 + Given a SDMX Dataflow and some predefined Dimensions of its
1504 1504  
1505 -For example, assuming that the SDMX dataflow DF1(1.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions):  the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa).
1675 +DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets.
1506 1506  
1677 +For example, assuming that the SDMX dataflow DF1(1.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the
1678 +
1679 +Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions):  the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa).
1680 +
1507 1507  In practice, this kind mapping is obtained like follows:
1508 1508  
1509 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1683 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1510 1510  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1511 -** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0);
1512 -** a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1513 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1685 +** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1514 1514  
1687 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1688 +
1689 +*
1690 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1691 +
1515 1515  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1516 1516  
1517 1517  Therefore, the generic name of this kind of VTL datasets would be:
1518 1518  
1519 -> ‘DF(1.0)///INDICATORvalue//.//COUNTRYvalue//’
1696 +‘DF(1.0)///INDICATORvalue//.//COUNTRYvalue//’
1520 1520  
1521 1521  Where DF(1.0) is the Dataflow and //INDICATORvalue// and //COUNTRYvalue //are placeholders for one value of the INDICATOR and // //COUNTRY dimensions.
1522 1522  
1523 1523  Instead the specific name of one of these VTL datasets would be:
1524 1524  
1525 -> ‘DF(1.0)/POPULATION.USA’
1702 +‘DF(1.0)/POPULATION.USA’
1526 1526  
1527 1527  In particular, this is the VTL dataset that contains all the observations of the dataflow DF(1.0) for which  //INDICATOR// = POPULATION and //COUNTRY// = USA.
1528 1528  
1529 1529  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1530 1530  
1531 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1708 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1532 1532  
1533 -First, let us see what happens in the__ mapping direction from SDMX to VTL__, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1710 +First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1534 1534  
1535 -As already said, each VTL dataset is assumed to contain all the observations of the SDMX dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=//COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1712 +As already said, each VTL dataset is assumed to contain all the observations of the
1536 1536  
1537 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1714 +SDMX dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=
1538 1538  
1539 -In the example above, for all the datasets of the kind ‘DF1(1.0)///INDICATORvalue//.//COUNTRYvalue//, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL data sets would have the identifier TIME_PERIOD only.
1716 +//COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1540 1540  
1718 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1719 +
1720 +In the example above, for all the datasets of the kind
1721 +
1722 +‘DF1(1.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL data sets would have the identifier TIME_PERIOD only.
1723 +
1541 1541  It should be noted that the desired VTL datasets (i.e. of the kind ‘DF1(1.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the dataflow DF1(1.0), like in the following VTL expression:
1542 1542  
1543 -> ‘DF1(1.0)/POPULATION.USA’ :=
1544 -> DF1(1.0) [ sub  INDICATOR=“POPULATION”, COUNTRY=“USA” ];
1545 -> ‘DF1(1.0)/POPULATION.CANADA’ :=
1546 -> DF1(1.0) [ sub  INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
1547 -> …   …   …
1726 +‘DF1(1.0)/POPULATION.USA’ := 
1548 1548  
1549 -In fact the VTL operator “sub has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator **sub**on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1728 +DF1(1.0) [ sub  INDICATOR=“POPULATION”, COUNTRY=USA” ];
1550 1550  
1730 +
1731 +‘DF1(1.0)/POPULATION.CANADA’ := 
1732 +
1733 +DF1(1.0) [ sub  INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
1734 +
1735 +
1736 +…   …   …
1737 +
1738 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1739 +
1551 1551  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1552 1552  
1553 1553  For example, ‘DF(1.0)/POPULATION.’ (note the dot in the end of the name) is the VTL dataset that contains all the observations of the dataflow DF(1.0) for which  //INDICATOR// = POPULATION and COUNTRY = any value.
... ... @@ -1554,25 +1554,27 @@
1554 1554  
1555 1555  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
1556 1556  
1557 -> ‘DF1(1.0)/POPULATION.’ := 
1558 -> DF1(1.0) [ sub  INDICATOR=“POPULATION” ];
1746 +‘DF1(1.0)/POPULATION.’ := 
1559 1559  
1748 +DF1(1.0) [ sub  INDICATOR=“POPULATION” ];
1749 +
1750 +
1560 1560  Therefore the VTL dataset ‘DF1(1.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
1561 1561  
1562 1562  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different Dimensions in different invocations.
1563 1563  
1564 -Let us now analyse the __mapping direction from VTL to SDMX__.
1755 +Let us now analyse the mapping direction from VTL to SDMX.
1565 1565  
1566 1566  In this situation, distinct parts of a SDMX dataflow are calculated as distinct VTL datasets, under the constraint that they must have the same VTL data structure.
1567 1567  
1568 1568  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1569 1569  
1570 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1571 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1761 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1762 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1572 1572  
1573 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1764 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1574 1574  
1575 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1766 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1576 1576  
1577 1577  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1578 1578  
... ... @@ -1639,9 +1639,9 @@
1639 1639  
1640 1640  …);
1641 1641  
1642 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1833 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1643 1643  
1644 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1835 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1645 1645  
1646 1646  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1647 1647  
... ... @@ -1690,7 +1690,7 @@
1690 1690  
1691 1691  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1692 1692  
1693 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1884 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1694 1694  
1695 1695  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1696 1696  
... ... @@ -1979,12 +1979,12 @@
1979 1979  “true” or “false”
1980 1980  )))
1981 1981  
1982 -
1983 -
1984 1984  **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
1985 1985  
1986 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2175 +In case a different default conversion is desired, it can be achieved through the
1987 1987  
2177 +CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2178 +
1988 1988  The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table.
1989 1989  
1990 1990  |(% colspan="2" %)**VTL special characters for the formatting masks**
... ... @@ -2035,7 +2035,7 @@
2035 2035  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2036 2036  | |
2037 2037  
2038 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2229 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2039 2039  
2040 2040  === 10.4.5 Null Values ===
2041 2041  
... ... @@ -2067,18 +2067,12 @@
2067 2067  
2068 2068  For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”.
2069 2069  
2070 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2261 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2071 2071  
2072 -[[image:1747854006117-843.png]]
2073 -
2074 2074  The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework.
2075 2075  
2076 2076  Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below:
2077 2077  
2078 -[[image:1747854039499-443.png]]
2079 -
2080 -[[image:1747854067769-691.png]]
2081 -
2082 2082  Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution.
2083 2083  
2084 2084  == 11.2 Solution ==
... ... @@ -2099,30 +2099,20 @@
2099 2099  
2100 2100  To understand how the **XmlAnyElement** attribute works we present the following two web methods:
2101 2101  
2102 -[[image:1747854096778-844.png]]
2287 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2103 2103  
2104 -In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2289 +The difference between the two is that for the first method, **SubmitXml**, the
2105 2105  
2106 -[[image:1747854127303-270.png]]
2291 +XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2107 2107  
2108 -The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2109 -
2110 -[[image:1747854163928-581.png]]
2111 -
2112 2112  Now we look at the message for the method that uses the **XmlAnyElement** attribute.
2113 2113  
2114 -[[image:1747854190641-364.png]]
2115 -
2116 -[[image:1747854236732-512.png]]
2117 -
2118 2118  The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter.
2119 2119  
2120 -For more information please consult: [[http:~~/~~/msdn.microsoft.com/en-us/library/aa480498.aspx>>http://msdn.microsoft.com/en-us/library/aa480498.aspx]]
2297 +For more information please consult:  [[http:~~/~~/msdn.microsoft.com/en>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[->>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[us/library/aa480498.aspx>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]]
2121 2121  
2122 2122  Furthermore at this point the problem with the different requests has been solved. However there is still the difference in the produced WSDL that has to be taken care. The automatic generated WSDL now doesn’t insert the extra element, but defines the content of the operation wrapper element as “xsd:any” type.
2123 2123  
2124 -[[image:1747854286398-614.png]]
2125 -
2126 2126  Without a common WSDL still the solution doesn’t enforce interoperability. In order to
2127 2127  
2128 2128  “fix” the WSDL, there two approaches. The first is to intervene in the generation process. This is a complicated approach, compared to the second approach, which overrides the generation process and returns the envisioned WSDL for the SDMX Web Service.
... ... @@ -2135,27 +2135,16 @@
2135 2135  
2136 2136  In the context of the SDMX Web Service, applying the above solution translates into the following:
2137 2137  
2138 -[[image:1747854385465-132.png]]
2139 -
2140 2140  The SOAP request/response will then be as follows:
2141 2141  
2142 2142  **GenericData Request**
2143 2143  
2144 -[[image:1747854406014-782.png]]
2145 -
2146 2146  **GenericData Response**
2147 2147  
2148 -[[image:1747854424488-855.png]]
2149 -
2150 2150  For overriding the automatically produced WSDL, in the solution explorer right click the project and select “Add” -> “New item…”. Then select the “Global Application Class”. This will create “.asax” class file in which the following code should replace the existing empty method:
2151 2151  
2152 -[[image:1747854453895-524.png]]
2153 -
2154 -[[image:1747854476631-125.png]]
2155 -
2156 2156  The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains:
2157 2157  
2158 -[[image:1747854493363-776.png]]
2159 2159  
2160 2160  ----
2161 2161  
... ... @@ -2248,5 +2248,3 @@
2248 2248  [[~[42~]>>path:#_ftnref42]] A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.
2249 2249  
2250 2250  [[~[43~]>>path:#_ftnref43]] The representation given in the DSD should obviously be compatible with the VTL data type.
2251 -
2252 -{{putFootnotes/}}
1747854006117-843.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -18.7 KB
Content
1747854039499-443.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -3.0 KB
Content
1747854067769-691.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -21.4 KB
Content
1747854096778-844.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -10.6 KB
Content
1747854127303-270.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -12.1 KB
Content
1747854163928-581.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -29.8 KB
Content
1747854190641-364.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -31.5 KB
Content
1747854236732-512.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 KB
Content
1747854286398-614.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747854385465-132.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747854406014-782.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747854424488-855.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747854453895-524.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747854476631-125.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747854493363-776.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747855024745-946.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747855054559-410.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747855075263-887.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747855402867-579.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747855462293-368.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747855493531-357.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content
1747856459132-767.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -55.0 KB
Content