Last modified by Artur on 2025/08/19 10:43

From version 4.2
edited by Helena
on 2025/05/21 21:28
Change comment: There is no comment for this version
To version 6.3
edited by Helena
on 2025/05/21 22:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -63,18 +63,12 @@
63 63  
64 64  The following section provides a brief overview of the differences between the various SDMX formats.
65 65  
66 -Version 2.0 was characterised by 4 data messages, each with a distinct format: Generic, Compact, Cross-Sectional and Utility. Because of the design, data in some formats could not always be related to another format. In version 2.1, this issue has been addressed by merging some formats and eliminating others. As a result, in
66 +Version 2.0 was characterised by 4 data messages, each with a distinct format: Generic, Compact, Cross-Sectional and Utility. Because of the design, data in some formats could not always be related to another format. In version 2.1, this issue has been addressed by merging some formats and eliminating others. As a result, in SDMX 2.1 there are just two types of data formats: //GenericData// and //StructureSpecificData// (i.e. specific to one Data Structure Definition).
67 67  
68 -SDMX 2.1 there are just two types of data formats: //GenericData// and
69 -
70 -//StructureSpecificData// (i.e. specific to one Data Structure Definition).
71 -
72 72  Both of these formats are now flexible enough to allow for data to be oriented in series with any dimension used to disambiguate the observations (as opposed to only time or a cross sectional measure in version 2.0). The formats have also been expanded to allow for ungrouped observations.
73 73  
74 -To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages;
70 +To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
75 75  
76 -//GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
77 -
78 78  === //Structure Definition// ===
79 79  
80 80  The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax.
... ... @@ -83,10 +83,8 @@
83 83  
84 84  === //Validation// ===
85 85  
86 -SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural
80 +SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.)
87 87  
88 -definition.)
89 -
90 90  The SDMX-ML Generic Data Message also leaves validation above the XML syntax level to the application.
91 91  
92 92  The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool.
... ... @@ -97,17 +97,13 @@
97 97  
98 98  === //Character Encodings// ===
99 99  
100 -All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER
92 +All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
101 101  
102 -SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND
103 -
104 -DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
105 -
106 106  === //Data Typing// ===
107 107  
108 108  The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below.
109 109  
110 -==== 3.3.2 Data Types ====
98 +==== 3.3.2 Data Types ====
111 111  
112 112  The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them.
113 113  
... ... @@ -123,7 +123,8 @@
123 123  1*. Maximum 70 characters.
124 124  1*. From ISO 8859-1 character set (including accented characters)
125 125  1. **Descriptions **are:
126 -1*. Maximum 350 characters;  From ISO 8859-1 character set.
114 +1*. Maximum 350 characters;
115 +1*. From ISO 8859-1 character set.
127 127  1. **Code values** are:
128 128  1*. Maximum 18 characters;
129 129  1*. Any of A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore), / (solidus, slash), = (equal sign), - (hyphen);
... ... @@ -132,37 +132,43 @@
132 132  
133 133  A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore)
134 134  
135 -1. **Observation values** are:
136 -1*. Decimal numerics (signed only if they are negative);
137 -1*. The maximum number of significant figures is:
138 -1*. 15 for a positive number
139 -1*. 14 for a positive decimal or a negative integer
140 -1*. 13 for a negative decimal
141 -1*. Scientific notation may be used.
142 -1. **Uncoded statistical concept** text values are:
143 -1*.
144 -1**. Maximum 1050 characters;
145 -1**. From ISO 8859-1 character set.
146 -1. **Time series keys**:
124 +**5. Observation values** are:
147 147  
148 -In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters.  The separator character is a colon (“:”) by conventional usage.
126 +* Decimal numerics (signed only if they are negative);
127 +* The maximum number of significant figures is:
128 +* 15 for a positive number
129 +* 14 for a positive decimal or a negative integer
130 +* 13 for a negative decimal
131 +* Scientific notation may be used.
149 149  
133 +**6. Uncoded statistical concept** text values are:
134 +
135 +* Maximum 1050 characters;
136 +* From ISO 8859-1 character set.
137 +
138 +**7. Time series keys**:
139 +
140 +In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters. The separator character is a colon (“:”) by conventional usage.
141 +
150 150  == 3.4 SDMX-ML and SDMX-EDI Best Practices ==
151 151  
152 -=== 3.4.1 Reporting and Dissemination Guidelines ===
144 +=== 3.4.1 Reporting and Dissemination Guidelines ===
153 153  
154 -**3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges **Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
146 +==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
155 155  
148 +Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
149 +
156 156  Central institutions can play a double role:
157 157  
158 158  * collecting and further disseminating statistics;
159 159  * devising structural definitions for use in data exchanges.
160 160  
161 -**3.4.1.2 Defining Data Structure Definitions (DSDs)**
155 +==== 3.4.1.2 Defining Data Structure Definitions (DSDs) ====
162 162  
163 163  The following guidelines are suggested for building a DSD. However, it is expected that these guidelines will be considered by central institutions when devising new DSDs.
164 164  
165 -=== Dimensions, Attributes and Code Lists ===
159 +(% class="wikigeneratedid" id="HDimensions2CAttributesandCodeLists" %)
160 +__Dimensions, Attributes and Code Lists__
166 166  
167 167  **//Avoid dimensions that are not appropriate for all the series in the data structure definition.//**  If some dimensions are not applicable (this is evident from the need to have a code in a code list which is marked as “not applicable”, “not relevant” or “total”) for some series then consider moving these series to a new data structure definition in which these dimensions are dropped from the key structure. This is a judgement call as it is sometimes difficult to achieve this without increasing considerably the number of DSDs.
168 168  
... ... @@ -192,7 +192,8 @@
192 192  
193 193  The same code list can be used for several statistical concepts, within a data structure definition or across DSDs. Note that SDMX has recognised that these classifications are often quite large and the usage of codes in any one DSD is only a small extract of the full code list. In this version of the standard it is possible to exchange and disseminate a **partial code list** which is extracted from the full code list and which supports the dimension values valid for a particular DSD.
194 194  
195 -=== Data Structure Definition Structure ===
190 +(% class="wikigeneratedid" id="HDataStructureDefinitionStructure" %)
191 +__Data Structure Definition Structure__
196 196  
197 197  The following items have to be specified by a structural definitions maintenance agency when defining a new data structure definition:
198 198  
... ... @@ -222,7 +222,7 @@
222 222  * code list name
223 223  * code values and descriptions
224 224  
225 -Definition of data flow definitions.  Two (or more) partners performing data exchanges in a certain context need to agree on:
221 +Definition of data flow definitions. Two (or more) partners performing data exchanges in a certain context need to agree on:
226 226  
227 227  * the list of data set identifiers they will be using;
228 228  * for each data flow:
... ... @@ -229,10 +229,12 @@
229 229  * its content and description
230 230  * the relevant DSD that defines the structure of the data reported or disseminated according the the dataflow definition
231 231  
232 -**3.4.1.3 Exchanging Attributes**
228 +==== 3.4.1.3 Exchanging Attributes ====
233 233  
234 -**//3.4.1.3.1 Attributes on series, sibling and data set level //**//Static properties//.
230 +===== //3.4.1.3.1 Attributes on series, sibling and data set level // =====
235 235  
232 +//Static properties//.
233 +
236 236  * Upon creation of a series the sender has to provide to the receiver values for all mandatory attributes. In case they are available, values for conditional attributes  should also be provided. Whereas initially this information may be provided by means other than SDMX-ML or SDMX-EDI messages (e.g. paper, telephone) it is expected that partner institutions will be in a position to provide this information in SDMX-ML or SDMX-EDI format over time.
237 237  * A centre may agree with its data exchange partners special procedures for authorising the setting of attributes' initial values.
238 238  * Attribute values at a data set level are set and maintained exclusively by the centre administrating the exchanged data set.
... ... @@ -249,21 +249,21 @@
249 249  * If the “observation status” changes and the observation remains unchanged, both components would have to be reported.
250 250  * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation.
251 251  
252 -==== 3.4.2 Best Practices for Batch Data Exchange ====
250 +=== 3.4.2 Best Practices for Batch Data Exchange ===
253 253  
254 -**3.4.2.1 Introduction**
252 +==== 3.4.2.1 Introduction ====
255 255  
256 256  Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats.
257 257  
258 -**3.4.2.2 Positioning of the Dimension "Frequency"**
256 +==== 3.4.2.2 Positioning of the Dimension "Frequency" ====
259 259  
260 260  The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level.
261 261  
262 -**3.4.2.3 Identification of Data Structure Definitions (DSDs)**
260 +==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ====
263 263  
264 264  In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc.
265 265  
266 -**3.4.2.4 Identification of the Data Flows**
264 +==== 3.4.2.4 Identification of the Data Flows ====
267 267  
268 268  In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//.
269 269  
... ... @@ -271,7 +271,7 @@
271 271  
272 272  Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data.
273 273  
274 -**3.4.2.5 Special Issues**
272 +==== 3.4.2.5 Special Issues ====
275 275  
276 276  ===== 3.4.2.5.1 "Frequency" related issues =====
277 277  
... ... @@ -282,7 +282,6 @@
282 282  
283 283  **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp.
284 284  
285 -
286 286  = 4 General Notes for Implementers =
287 287  
288 288  This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing.
... ... @@ -293,39 +293,31 @@
293 293  
294 294  There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents.
295 295  
296 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
297 -**Java Data Type**
298 -
299 -**~ **
293 +(% style="width:912.294px" %)
294 +|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)(((
295 +**Java Data Type **
300 300  )))
301 -|String|xsd:string|System.String|java.lang.String
302 -|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er
303 -|Integer|xsd:int|System.Int32|int
304 -|Long|xsd.long|System.Int64|long
305 -|Short|xsd:short|System.Int16|short
306 -|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al
307 -|Float|xsd:float|System.Single|float
308 -|Double|xsd:double|System.Double|double
309 -|Boolean|xsd:boolean|System.Boolean|boolean
310 -|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String
311 -|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
312 -|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
313 -|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
314 -|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
315 -|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
316 -|(((
317 -Day,
297 +|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String
298 +|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er
299 +|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int
300 +|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long
301 +|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short
302 +|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al
303 +|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float
304 +|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double
305 +|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean
306 +|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String
307 +|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
308 +|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
309 +|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
310 +|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
311 +|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
312 +|(% style="width:172px" %)(((
313 +Day, MonthDay, Month
314 +)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
315 +|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype
316 +|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration
318 318  
319 -MonthDay, Month
320 -)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
321 -|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype
322 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
323 -**Java Data Type**
324 -
325 -**~ **
326 -)))
327 -| | |n|.Duration
328 -
329 329  There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary:
330 330  
331 331  * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9)
... ... @@ -351,10 +351,8 @@
351 351  * KeyValues (common:DataKeyType)
352 352  * IdentifiableReference (types for each identifiable object)
353 353  * DataSetReference (common:DataSetReferenceType)
354 -* AttachmentConstraintReference
343 +* AttachmentConstraintReference (common:AttachmentConstraintReferenceType)
355 355  
356 -(common:AttachmentConstraintReferenceType)
357 -
358 358  Data types also have a set of facets:
359 359  
360 360  * isSequence = true | false (indicates a sequentially increasing value)
... ... @@ -376,7 +376,7 @@
376 376  
377 377  == 4.2 Time and Time Format ==
378 378  
379 -==== 4.2.1 Introduction ====
366 +=== 4.2.1 Introduction ===
380 380  
381 381  First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled.
382 382  
... ... @@ -384,50 +384,47 @@
384 384  
385 385  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
386 386  
387 -* **Observational Time Period **o **Standard Time Period**
374 +* **Observational Time Period**
375 +** **Standard Time Period**
376 +*** **Basic Time Period**
377 +**** **Gregorian Time Period**
378 +**** //Date Time//
379 +*** **Reporting Time Period**
380 +** //Time Range//
388 388  
389 - § **Basic Time Period**
390 -
391 -* **Gregorian Time Period**
392 -* //Date Time//
393 -
394 -§ **Reporting Time Period **o //Time Range//
395 -
396 396  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
397 397  
398 -==== 4.2.2 Observational Time Period ====
384 +=== 4.2.2 Observational Time Period ===
399 399  
400 400  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
401 401  
402 -==== 4.2.3 Standard Time Period ====
388 +=== 4.2.3 Standard Time Period ===
403 403  
404 404  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
405 405  
406 -==== 4.2.4 Gregorian Time Period ====
392 +=== 4.2.4 Gregorian Time Period ===
407 407  
408 408  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
409 409  
410 -**Gregorian Year:**
411 -
396 +**Gregorian Year:**
412 412  Representation: xs:gYear (YYYY)
398 +Period: the start of January 1 to the end of December 31
413 413  
414 -Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
415 -
400 +**Gregorian Year Month**:
416 416  Representation: xs:gYearMonth (YYYY-MM)
402 +Period: the start of the first day of the month to end of the last day of the month
417 417  
418 -Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
419 -
404 +**Gregorian Day**:
420 420  Representation: xs:date (YYYY-MM-DD)
421 -
422 422  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
423 423  
424 -==== 4.2.5 Date Time ====
408 +=== 4.2.5 Date Time ===
425 425  
426 426  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
427 427  
428 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
429 429  
430 -==== 4.2.6 Standard Reporting Period ====
414 +=== 4.2.6 Standard Reporting Period ===
431 431  
432 432  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
433 433  
... ... @@ -434,75 +434,52 @@
434 434  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
435 435  
436 436  Where:
437 -
438 438  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
439 -
440 440  PERIOD_VALUE indicates the actual period within the year
441 441  
442 442  The following section details each of the standard reporting periods defined in SDMX:
443 443  
444 -**Reporting Year**:
445 -
446 - Period Indicator: A
447 -
426 +**Reporting Year**:
427 +Period Indicator: A
448 448  Period Duration: P1Y (one year)
449 -
450 450  Limit per year: 1
430 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
451 451  
452 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
453 -
454 - Period Indicator: S
455 -
432 +**Reporting Semester:**
433 +Period Indicator: S
456 456  Period Duration: P6M (six months)
457 -
458 458  Limit per year: 2
436 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
459 459  
460 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
461 -
462 - Period Indicator: T
463 -
438 +**Reporting Trimester:**
439 +Period Indicator: T
464 464  Period Duration: P4M (four months)
465 -
466 466  Limit per year: 3
442 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
467 467  
468 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
469 -
470 - Period Indicator: Q
471 -
444 +**Reporting Quarter:**
445 +Period Indicator: Q
472 472  Period Duration: P3M (three months)
473 -
474 474  Limit per year: 4
448 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
475 475  
476 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
477 -
450 +**Reporting Month**:
478 478  Period Indicator: M
479 -
480 480  Period Duration: P1M (one month)
481 -
482 482  Limit per year: 1
483 -
484 484  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
485 485  
486 486  **Reporting Week**:
487 -
488 488  Period Indicator: W
489 -
490 490  Period Duration: P7D (seven days)
491 -
492 492  Limit per year: 53
493 -
494 494  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
495 495  
496 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
497 -
498 498  **Reporting Day**:
499 -
500 500  Period Indicator: D
501 -
502 502  Period Duration: P1D (one day)
503 -
504 504  Limit per year: 366
505 -
506 506  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
507 507  
508 508  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -513,143 +513,109 @@
513 513  
514 514  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
515 515  
516 -1. **Determine [REPORTING_YEAR_BASE]:**
517 -
477 +**~1. Determine [REPORTING_YEAR_BASE]:**
518 518  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
519 -
520 520  This is the [REPORTING_YEAR_START_DATE]
521 -
522 -**a) If the [PERIOD_INDICATOR] is W:**
523 -
524 -1.
525 -11.
526 -111.
527 -1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
528 -
480 +**a) If the [PERIOD_INDICATOR] is W:
481 +~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
529 529  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
530 530  
531 -1.
532 -11.
533 -111.
534 -1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
535 -
484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
536 536  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
486 +b) **Else:** 
487 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
537 537  
538 -b) **Else:**
489 +**2. Determine [PERIOD_DURATION]:**
539 539  
540 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
491 +a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
492 +b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
493 +c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
494 +d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
495 +e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
496 +f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
497 +g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
541 541  
542 -1. **Determine [PERIOD_DURATION]:**
543 -11.
544 -111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
545 -111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
546 -111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
547 -111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
548 -111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
549 -111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
550 -111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
551 -1. **Determine [PERIOD_START]:**
499 +**3. Determine [PERIOD_START]:**
500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
552 552  
553 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
554 -
555 -1. **Determine the [PERIOD_END]:**
556 -
502 +**4. Determine the [PERIOD_END]:**
557 557  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
558 558  
559 559  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
560 560  
561 -**Examples: **
507 +**Examples:**
562 562  
563 563  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
564 -
565 565  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
566 -
567 567  b) [REPORTING_YEAR_BASE] = 2010-07-01
568 -
569 -1. [PERIOD_DURATION] = P3M
570 -1. (2-1) * P3M = P3M
571 -
512 +[PERIOD_DURATION] = P3M
513 +(2-1) * P3M = P3M
572 572  2010-07-01 + P3M = 2010-10-01
573 -
574 574  [PERIOD_START] = 2010-10-01
575 -
576 576  4. 2 * P3M = P6M
577 -
578 578  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
579 -
580 580  2011-01-01 + -P1D = 2010-12-31
581 -
582 582  [PERIOD_END] = 2011-12-31
583 583  
584 584  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
585 585  
586 586  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
587 -
588 588  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
589 -
590 590  a) 2011-07-01 = Friday
591 -
592 592  2011-07-01 + P3D = 2011-07-04
593 -
594 594  [REPORTING_YEAR_BASE] = 2011-07-04
595 -
596 -1. [PERIOD_DURATION] = P7D
597 -1. (36-1) * P7D = P245D
598 -
528 +2. [PERIOD_DURATION] = P7D
529 +3. (36-1) * P7D = P245D
599 599  2011-07-04 + P245D = 2012-03-05
600 -
601 601  [PERIOD_START] = 2012-03-05
602 -
603 603  4. 36 * P7D = P252D
604 -
605 605  2011-07-04 + P252D =2012-03-12
606 -
607 607  2012-03-12 + -P1D = 2012-03-11
608 -
609 609  [PERIOD_END] = 2012-03-11
610 610  
611 611  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
612 612  
613 -==== 4.2.7 Distinct Range ====
539 +=== 4.2.7 Distinct Range ===
614 614  
615 615  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
616 616  
617 -==== 4.2.8 Time Format ====
543 +=== 4.2.8 Time Format ===
618 618  
619 619  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
620 620  
621 -|**Code**|**Format**
622 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
623 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
624 -|**GTP**|Superset of all Gregorian Time Periods and date-time
625 -|**RTP**|Superset of all Reporting Time Periods
626 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
627 -|**GY**|Gregorian Year (YYYY)
628 -|**GTM**|Gregorian Year Month (YYYY-MM)
629 -|**GD**|Gregorian Day (YYYY-MM-DD)
630 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
631 -|**RY**|Reporting Year (YYYY-A1)
632 -|**RS**|Reporting Semester (YYYY-Ss)
633 -|**RT**|Reporting Trimester (YYYY-Tt)
634 -|**RQ**|Reporting Quarter (YYYY-Qq)
635 -|**RM**|Reporting Month (YYYY-Mmm)
636 -|**Code**|**Format**
637 -|**RW**|Reporting Week (YYYY-Www)
638 -|**RD**|Reporting Day (YYYY-Dddd)
547 +(% style="width:1049.29px" %)
548 +|**Code**|(% style="width:926px" %)**Format**
549 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
550 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
551 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
552 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
553 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
554 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
555 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
556 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
557 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
558 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
559 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
560 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
561 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
562 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
563 +|**Code**|(% style="width:926px" %)**Format**
564 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
565 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
639 639  
640 - **Table 1: SDMX-ML Time Format Codes**
567 +**Table 1: SDMX-ML Time Format Codes**
641 641  
642 -==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
569 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
643 643  
644 644  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
645 645  
646 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
573 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
647 647  
648 648  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
649 649  
650 650  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
651 651  
652 -==== 4.2.10 Time Zones ====
579 +=== 4.2.10 Time Zones ===
653 653  
654 654  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
655 655  
... ... @@ -670,7 +670,7 @@
670 670  
671 671  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
672 672  
673 -==== 4.2.11 Representing Time Spans Elsewhere ====
600 +=== 4.2.11 Representing Time Spans Elsewhere ===
674 674  
675 675  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
676 676  
... ... @@ -680,30 +680,29 @@
680 680  
681 681  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
682 682  
683 -==== 4.2.12 Notes on Formats ====
610 +=== 4.2.12 Notes on Formats ===
684 684  
685 685  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
686 686  
687 -==== 4.2.13 Effect on Time Ranges ====
614 +=== 4.2.13 Effect on Time Ranges ===
688 688  
689 689  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
690 690  
691 -==== 4.2.14 Time in Query Messages ====
618 +=== 4.2.14 Time in Query Messages ===
692 692  
693 693  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
694 694  
695 695  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
696 696  
697 -|**Operator**|**Rule**
698 -|Greater Than|Any data after the last moment of the period
699 -|Less Than|Any data before the first moment of the period
700 -|Greater Than or Equal To|(((
701 -Any data on or after the first moment of
702 -
703 -the period
624 +(% style="width:1024.29px" %)
625 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
626 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
627 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
628 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
629 +Any data on or after the first moment of the period
704 704  )))
705 -|Less Than or Equal To|Any data on or before the last moment of the period
706 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
631 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
632 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
707 707  
708 708  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
709 709  
... ... @@ -1246,7 +1246,7 @@
1246 1246  
1247 1247  == 10.1 Introduction ==
1248 1248  
1249 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1175 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1250 1250  
1251 1251  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1252 1252  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1270,7 +1270,7 @@
1270 1270  
1271 1271  In any case, the aliases used in the VTL transformations have to be mapped to the
1272 1272  
1273 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1199 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1274 1274  
1275 1275  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1276 1276  
... ... @@ -1280,7 +1280,7 @@
1280 1280  
1281 1281  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1282 1282  
1283 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1209 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1284 1284  
1285 1285  * SDMXprefix                                                                                   
1286 1286  * SDMX-IM-package-name             
... ... @@ -1288,7 +1288,7 @@
1288 1288  * agency-id                                                                          
1289 1289  * maintainedobject-id
1290 1290  * maintainedobject-version
1291 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1217 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1292 1292  * object-id
1293 1293  
1294 1294  The generic structure of the URN is the following:
... ... @@ -1307,7 +1307,7 @@
1307 1307  
1308 1308  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1309 1309  
1310 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1236 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1311 1311  
1312 1312  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1313 1313  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1327,7 +1327,7 @@
1327 1327  
1328 1328  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1329 1329  
1330 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1256 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1331 1331  
1332 1332  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1333 1333  
... ... @@ -1345,8 +1345,8 @@
1345 1345  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1346 1346  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1347 1347  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1348 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1349 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1274 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1275 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1350 1350  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1351 1351  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1352 1352  
... ... @@ -1373,11 +1373,11 @@
1373 1373  
1374 1374  DFR  :=  DF1 + DF2
1375 1375  
1376 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1302 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1377 1377  
1378 1378  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1379 1379  
1380 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1306 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1381 1381  
1382 1382  CL_FREQ
1383 1383  
... ... @@ -1387,7 +1387,7 @@
1387 1387  
1388 1388  SECTOR
1389 1389  
1390 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1316 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1391 1391  
1392 1392  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1393 1393  
... ... @@ -1421,9 +1421,9 @@
1421 1421  
1422 1422  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1423 1423  
1424 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1350 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1425 1425  
1426 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1352 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1427 1427  
1428 1428  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1429 1429  
... ... @@ -1437,15 +1437,15 @@
1437 1437  
1438 1438  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1439 1439  
1440 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1366 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1441 1441  
1442 1442  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1443 1443  
1444 1444  === 10.3.2 General mapping of VTL and SDMX data structures ===
1445 1445  
1446 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1372 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1447 1447  
1448 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1374 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1449 1449  
1450 1450  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1451 1451  
... ... @@ -1455,7 +1455,7 @@
1455 1455  
1456 1456  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1457 1457  
1458 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1384 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1459 1459  
1460 1460  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1461 1461  
... ... @@ -1545,7 +1545,7 @@
1545 1545  
1546 1546  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1547 1547  
1548 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1474 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1549 1549  
1550 1550  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1551 1551  
... ... @@ -1662,15 +1662,15 @@
1662 1662  
1663 1663   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1664 1664  
1665 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1591 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1666 1666  
1667 1667  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1668 1668  
1669 1669  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1670 1670  
1671 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1597 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1672 1672  
1673 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1599 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1674 1674  
1675 1675   Given a SDMX Dataflow and some predefined Dimensions of its
1676 1676  
... ... @@ -1682,14 +1682,14 @@
1682 1682  
1683 1683  In practice, this kind mapping is obtained like follows:
1684 1684  
1685 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1611 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1686 1686  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1687 1687  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1688 1688  
1689 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1615 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1690 1690  
1691 1691  *
1692 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1618 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1693 1693  
1694 1694  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1695 1695  
... ... @@ -1707,7 +1707,7 @@
1707 1707  
1708 1708  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1709 1709  
1710 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1636 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1711 1711  
1712 1712  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1713 1713  
... ... @@ -1717,7 +1717,7 @@
1717 1717  
1718 1718  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1719 1719  
1720 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1646 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1721 1721  
1722 1722  In the example above, for all the datasets of the kind
1723 1723  
... ... @@ -1737,7 +1737,7 @@
1737 1737  
1738 1738  …   …   …
1739 1739  
1740 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1666 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1741 1741  
1742 1742  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1743 1743  
... ... @@ -1760,12 +1760,12 @@
1760 1760  
1761 1761  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1762 1762  
1763 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1764 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1689 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1690 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1765 1765  
1766 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1692 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1767 1767  
1768 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1694 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1769 1769  
1770 1770  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1771 1771  
... ... @@ -1832,9 +1832,9 @@
1832 1832  
1833 1833  …);
1834 1834  
1835 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1761 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1836 1836  
1837 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1763 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1838 1838  
1839 1839  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1840 1840  
... ... @@ -1883,7 +1883,7 @@
1883 1883  
1884 1884  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1885 1885  
1886 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1812 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1887 1887  
1888 1888  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1889 1889  
... ... @@ -2172,12 +2172,12 @@
2172 2172  “true” or “false”
2173 2173  )))
2174 2174  
2175 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2176 2176  
2177 -In case a different default conversion is desired, it can be achieved through the
2178 2178  
2179 -CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2103 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2180 2180  
2105 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2106 +
2181 2181  The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table.
2182 2182  
2183 2183  |(% colspan="2" %)**VTL special characters for the formatting masks**
... ... @@ -2228,7 +2228,7 @@
2228 2228  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2229 2229  | |
2230 2230  
2231 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2157 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2232 2232  
2233 2233  === 10.4.5 Null Values ===
2234 2234  
... ... @@ -2260,12 +2260,18 @@
2260 2260  
2261 2261  For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”.
2262 2262  
2263 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2189 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2264 2264  
2191 +[[image:1747854006117-843.png]]
2192 +
2265 2265  The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework.
2266 2266  
2267 2267  Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below:
2268 2268  
2197 +[[image:1747854039499-443.png]]
2198 +
2199 +[[image:1747854067769-691.png]]
2200 +
2269 2269  Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution.
2270 2270  
2271 2271  == 11.2 Solution ==
... ... @@ -2286,12 +2286,16 @@
2286 2286  
2287 2287  To understand how the **XmlAnyElement** attribute works we present the following two web methods:
2288 2288  
2289 -In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2221 +[[image:1747854096778-844.png]]
2290 2290  
2291 -The difference between the two is that for the first method, **SubmitXml**, the
2223 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2292 2292  
2293 -XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2225 +[[image:1747854127303-270.png]]
2294 2294  
2227 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2228 +
2229 +[[image:1747854163928-581.png]]
2230 +
2295 2295  Now we look at the message for the method that uses the **XmlAnyElement** attribute.
2296 2296  
2297 2297  The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter.
... ... @@ -2322,7 +2322,6 @@
2322 2322  
2323 2323  The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains:
2324 2324  
2325 -
2326 2326  ----
2327 2327  
2328 2328  [[~[1~]>>path:#_ftnref1]] The seconds can be reported fractionally
1747854006117-843.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.7 KB
Content
1747854039499-443.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +3.0 KB
Content
1747854067769-691.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +21.4 KB
Content
1747854096778-844.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.6 KB
Content
1747854127303-270.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +12.1 KB
Content
1747854163928-581.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +29.8 KB
Content