Changes for page SDMX 2.1 Standards. Section 6. Technical Notes
Last modified by Artur on 2025/08/19 10:43
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -111,7 +111,8 @@ 111 111 1*. Maximum 70 characters. 112 112 1*. From ISO 8859-1 character set (including accented characters) 113 113 1. **Descriptions **are: 114 -1*. Maximum 350 characters; From ISO 8859-1 character set. 114 +1*. Maximum 350 characters; 115 +1*. From ISO 8859-1 character set. 115 115 1. **Code values** are: 116 116 1*. Maximum 18 characters; 117 117 1*. Any of A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore), / (solidus, slash), = (equal sign), - (hyphen); ... ... @@ -120,37 +120,43 @@ 120 120 121 121 A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore) 122 122 123 -1. **Observation values** are: 124 -1*. Decimal numerics (signed only if they are negative); 125 -1*. The maximum number of significant figures is: 126 -1*. 15 for a positive number 127 -1*. 14 for a positive decimal or a negative integer 128 -1*. 13 for a negative decimal 129 -1*. Scientific notation may be used. 130 -1. **Uncoded statistical concept** text values are: 131 -1*. 132 -1**. Maximum 1050 characters; 133 -1**. From ISO 8859-1 character set. 134 -1. **Time series keys**: 124 +**5. Observation values** are: 135 135 136 -In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters. The separator character is a colon (“:”) by conventional usage. 126 +* Decimal numerics (signed only if they are negative); 127 +* The maximum number of significant figures is: 128 +* 15 for a positive number 129 +* 14 for a positive decimal or a negative integer 130 +* 13 for a negative decimal 131 +* Scientific notation may be used. 137 137 133 +**6. Uncoded statistical concept** text values are: 134 + 135 +* Maximum 1050 characters; 136 +* From ISO 8859-1 character set. 137 + 138 +**7. Time series keys**: 139 + 140 +In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters. The separator character is a colon (“:”) by conventional usage. 141 + 138 138 == 3.4 SDMX-ML and SDMX-EDI Best Practices == 139 139 140 -=== 3.4.1 144 +=== 3.4.1 Reporting and Dissemination Guidelines === 141 141 142 - **3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges**Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use. Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.146 +==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ==== 143 143 148 +Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use. Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution. 149 + 144 144 Central institutions can play a double role: 145 145 146 146 * collecting and further disseminating statistics; 147 147 * devising structural definitions for use in data exchanges. 148 148 149 - **3.4.1.2 Defining Data Structure Definitions (DSDs)**155 +==== 3.4.1.2 Defining Data Structure Definitions (DSDs) ==== 150 150 151 151 The following guidelines are suggested for building a DSD. However, it is expected that these guidelines will be considered by central institutions when devising new DSDs. 152 152 153 -=== Dimensions, Attributes and Code Lists === 159 +(% class="wikigeneratedid" id="HDimensions2CAttributesandCodeLists" %) 160 +__Dimensions, Attributes and Code Lists__ 154 154 155 155 **//Avoid dimensions that are not appropriate for all the series in the data structure definition.//** If some dimensions are not applicable (this is evident from the need to have a code in a code list which is marked as “not applicable”, “not relevant” or “total”) for some series then consider moving these series to a new data structure definition in which these dimensions are dropped from the key structure. This is a judgement call as it is sometimes difficult to achieve this without increasing considerably the number of DSDs. 156 156 ... ... @@ -180,7 +180,8 @@ 180 180 181 181 The same code list can be used for several statistical concepts, within a data structure definition or across DSDs. Note that SDMX has recognised that these classifications are often quite large and the usage of codes in any one DSD is only a small extract of the full code list. In this version of the standard it is possible to exchange and disseminate a **partial code list** which is extracted from the full code list and which supports the dimension values valid for a particular DSD. 182 182 183 -=== Data Structure Definition Structure === 190 +(% class="wikigeneratedid" id="HDataStructureDefinitionStructure" %) 191 +__Data Structure Definition Structure__ 184 184 185 185 The following items have to be specified by a structural definitions maintenance agency when defining a new data structure definition: 186 186 ... ... @@ -210,7 +210,7 @@ 210 210 * code list name 211 211 * code values and descriptions 212 212 213 -Definition of data flow definitions. 221 +Definition of data flow definitions. Two (or more) partners performing data exchanges in a certain context need to agree on: 214 214 215 215 * the list of data set identifiers they will be using; 216 216 * for each data flow: ... ... @@ -217,10 +217,12 @@ 217 217 * its content and description 218 218 * the relevant DSD that defines the structure of the data reported or disseminated according the the dataflow definition 219 219 220 - **3.4.1.3 Exchanging Attributes**228 +==== 3.4.1.3 Exchanging Attributes ==== 221 221 222 - **//3.4.1.3.1 Attributes on series, sibling and data set level //**//Staticproperties//.230 +===== //3.4.1.3.1 Attributes on series, sibling and data set level // ===== 223 223 232 +//Static properties//. 233 + 224 224 * Upon creation of a series the sender has to provide to the receiver values for all mandatory attributes. In case they are available, values for conditional attributes should also be provided. Whereas initially this information may be provided by means other than SDMX-ML or SDMX-EDI messages (e.g. paper, telephone) it is expected that partner institutions will be in a position to provide this information in SDMX-ML or SDMX-EDI format over time. 225 225 * A centre may agree with its data exchange partners special procedures for authorising the setting of attributes' initial values. 226 226 * Attribute values at a data set level are set and maintained exclusively by the centre administrating the exchanged data set. ... ... @@ -237,21 +237,21 @@ 237 237 * If the “observation status” changes and the observation remains unchanged, both components would have to be reported. 238 238 * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation. 239 239 240 -=== =3.4.2=250 +=== 3.4.2 Best Practices for Batch Data Exchange === 241 241 242 - **3.4.2.1 Introduction**252 +==== 3.4.2.1 Introduction ==== 243 243 244 244 Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats. 245 245 246 - **3.4.2.2 Positioning of the Dimension "Frequency"**256 +==== 3.4.2.2 Positioning of the Dimension "Frequency" ==== 247 247 248 248 The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level. 249 249 250 - **3.4.2.3 Identification of Data Structure Definitions (DSDs)**260 +==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ==== 251 251 252 252 In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc. 253 253 254 - **3.4.2.4 Identification of the Data Flows**264 +==== 3.4.2.4 Identification of the Data Flows ==== 255 255 256 256 In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//. 257 257 ... ... @@ -259,7 +259,7 @@ 259 259 260 260 Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data. 261 261 262 - **3.4.2.5 Special Issues**272 +==== 3.4.2.5 Special Issues ==== 263 263 264 264 ===== 3.4.2.5.1 "Frequency" related issues ===== 265 265 ... ... @@ -270,7 +270,6 @@ 270 270 271 271 **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp. 272 272 273 - 274 274 = 4 General Notes for Implementers = 275 275 276 276 This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing. ... ... @@ -281,39 +281,31 @@ 281 281 282 282 There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents. 283 283 284 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|((( 285 -**Java Data Type** 286 - 287 -**~ ** 293 +(% style="width:912.294px" %) 294 +|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)((( 295 +**Java Data Type ** 288 288 ))) 289 -|String|xsd:string|System.String|java.lang.String 290 -|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er 291 -|Integer|xsd:int|System.Int32|int 292 -|Long|xsd.long|System.Int64|long 293 -|Short|xsd:short|System.Int16|short 294 -|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al 295 -|Float|xsd:float|System.Single|float 296 -|Double|xsd:double|System.Double|double 297 -|Boolean|xsd:boolean|System.Boolean|boolean 298 -|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String 299 -|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 300 -|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 301 -|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 302 -|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 303 -|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 304 -|((( 305 -Day, 297 +|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String 298 +|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er 299 +|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int 300 +|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long 301 +|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short 302 +|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al 303 +|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float 304 +|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double 305 +|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean 306 +|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String 307 +|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 308 +|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 309 +|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 310 +|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 311 +|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 312 +|(% style="width:172px" %)((( 313 +Day, MonthDay, Month 314 +)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 315 +|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype 316 +|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration 306 306 307 -MonthDay, Month 308 -)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 309 -|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype 310 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|((( 311 -**Java Data Type** 312 - 313 -**~ ** 314 -))) 315 -| | |n|.Duration 316 - 317 317 There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary: 318 318 319 319 * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9) ... ... @@ -339,10 +339,8 @@ 339 339 * KeyValues (common:DataKeyType) 340 340 * IdentifiableReference (types for each identifiable object) 341 341 * DataSetReference (common:DataSetReferenceType) 342 -* AttachmentConstraintReference 343 +* AttachmentConstraintReference (common:AttachmentConstraintReferenceType) 343 343 344 -(common:AttachmentConstraintReferenceType) 345 - 346 346 Data types also have a set of facets: 347 347 348 348 * isSequence = true | false (indicates a sequentially increasing value) ... ... @@ -364,7 +364,7 @@ 364 364 365 365 == 4.2 Time and Time Format == 366 366 367 -=== =4.2.1 Introduction ====366 +=== 4.2.1 Introduction === 368 368 369 369 First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled. 370 370 ... ... @@ -372,50 +372,47 @@ 372 372 373 373 The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format): 374 374 375 -* **Observational Time Period **o **Standard Time Period** 374 +* **Observational Time Period** 375 +** **Standard Time Period** 376 +*** **Basic Time Period** 377 +**** **Gregorian Time Period** 378 +**** //Date Time// 379 +*** **Reporting Time Period** 380 +** //Time Range// 376 376 377 - § **Basic Time Period** 378 - 379 -* **Gregorian Time Period** 380 -* //Date Time// 381 - 382 -§ **Reporting Time Period **o //Time Range// 383 - 384 384 The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow. 385 385 386 -=== =4.2.2 Observational Time Period ====384 +=== 4.2.2 Observational Time Period === 387 387 388 388 This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats. 389 389 390 -=== =4.2.3 Standard Time Period ====388 +=== 4.2.3 Standard Time Period === 391 391 392 392 This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59). 393 393 394 -=== =4.2.4 Gregorian Time Period ====392 +=== 4.2.4 Gregorian Time Period === 395 395 396 396 A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows: 397 397 398 -**Gregorian Year:** 399 - 396 +**Gregorian Year:** 400 400 Representation: xs:gYear (YYYY) 398 +Period: the start of January 1 to the end of December 31 401 401 402 -Period: the start of January 1 to the end of December 31 **Gregorian Year Month**: 403 - 400 +**Gregorian Year Month**: 404 404 Representation: xs:gYearMonth (YYYY-MM) 402 +Period: the start of the first day of the month to end of the last day of the month 405 405 406 -Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**: 407 - 404 +**Gregorian Day**: 408 408 Representation: xs:date (YYYY-MM-DD) 409 - 410 410 Period: the start of the day (00:00:00) to the end of the day (23:59:59) 411 411 412 -=== =4.2.5 Date Time ====408 +=== 4.2.5 Date Time === 413 413 414 414 This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used. 415 415 416 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 417 417 418 -=== =4.2.6 Standard Reporting Period ====414 +=== 4.2.6 Standard Reporting Period === 419 419 420 420 Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows: 421 421 ... ... @@ -422,75 +422,52 @@ 422 422 [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE] 423 423 424 424 Where: 425 - 426 426 REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period 427 - 428 428 PERIOD_VALUE indicates the actual period within the year 429 429 430 430 The following section details each of the standard reporting periods defined in SDMX: 431 431 432 -**Reporting Year**: 433 - 434 - Period Indicator: A 435 - 426 +**Reporting Year**: 427 +Period Indicator: A 436 436 Period Duration: P1Y (one year) 437 - 438 438 Limit per year: 1 430 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) 439 439 440 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:** 441 - 442 - Period Indicator: S 443 - 432 +**Reporting Semester:** 433 +Period Indicator: S 444 444 Period Duration: P6M (six months) 445 - 446 446 Limit per year: 2 436 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) 447 447 448 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:** 449 - 450 - Period Indicator: T 451 - 438 +**Reporting Trimester:** 439 +Period Indicator: T 452 452 Period Duration: P4M (four months) 453 - 454 454 Limit per year: 3 442 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) 455 455 456 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:** 457 - 458 - Period Indicator: Q 459 - 444 +**Reporting Quarter:** 445 +Period Indicator: Q 460 460 Period Duration: P3M (three months) 461 - 462 462 Limit per year: 4 448 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) 463 463 464 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**: 465 - 450 +**Reporting Month**: 466 466 Period Indicator: M 467 - 468 468 Period Duration: P1M (one month) 469 - 470 470 Limit per year: 1 471 - 472 472 Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 473 473 474 474 **Reporting Week**: 475 - 476 476 Period Indicator: W 477 - 478 478 Period Duration: P7D (seven days) 479 - 480 480 Limit per year: 53 481 - 482 482 Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 483 483 484 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 485 - 486 486 **Reporting Day**: 487 - 488 488 Period Indicator: D 489 - 490 490 Period Duration: P1D (one day) 491 - 492 492 Limit per year: 366 493 - 494 494 Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001). 495 495 496 496 This allows the values to be sorted chronologically using textual sorting methods. ... ... @@ -501,72 +501,48 @@ 501 501 502 502 Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]): 503 503 504 -1. **Determine [REPORTING_YEAR_BASE]:** 505 - 477 +**~1. Determine [REPORTING_YEAR_BASE]:** 506 506 Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD). 507 - 508 508 This is the [REPORTING_YEAR_START_DATE] 509 - 510 -**a) If the [PERIOD_INDICATOR] is W:** 511 - 512 -1. 513 -11. 514 -111. 515 -1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 516 - 480 +**a) If the [PERIOD_INDICATOR] is W: 481 +~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 517 517 Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 518 518 519 -1. 520 -11. 521 -111. 522 -1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 523 - 484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 524 524 Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 486 +b) **Else:** 487 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE] 525 525 526 - b)**Else:**489 +**2. Determine [PERIOD_DURATION]:** 527 527 528 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]. 491 +a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y. 492 +b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M. 493 +c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M. 494 +d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M. 495 +e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M. 496 +f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D. 497 +g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 529 529 530 -1. **Determine [PERIOD_DURATION]:** 531 -11. 532 -111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y. 533 -111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M. 534 -111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M. 535 -111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M. 536 -111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M. 537 -111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D. 538 -111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 539 -1. **Determine [PERIOD_START]:** 499 +**3. Determine [PERIOD_START]:** 500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 540 540 541 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 542 - 543 -1. **Determine the [PERIOD_END]:** 544 - 502 +**4. Determine the [PERIOD_END]:** 545 545 Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END]. 546 546 547 547 For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59). 548 548 549 -**Examples: 507 +**Examples:** 550 550 551 551 **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 552 - 553 553 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 554 - 555 555 b) [REPORTING_YEAR_BASE] = 2010-07-01 556 - 557 -1. [PERIOD_DURATION] = P3M 558 -1. (2-1) * P3M = P3M 559 - 512 +[PERIOD_DURATION] = P3M 513 +(2-1) * P3M = P3M 560 560 2010-07-01 + P3M = 2010-10-01 561 - 562 562 [PERIOD_START] = 2010-10-01 563 - 564 564 4. 2 * P3M = P6M 565 - 566 566 2010-07-01 + P6M = 2010-13-01 = 2011-01-01 567 - 568 568 2011-01-01 + -P1D = 2010-12-31 569 - 570 570 [PERIOD_END] = 2011-12-31 571 571 572 572 The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 ... ... @@ -1234,7 +1234,7 @@ 1234 1234 1235 1235 == 10.1 Introduction == 1236 1236 1237 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1186 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1238 1238 1239 1239 * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones; 1240 1240 * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms); ... ... @@ -1258,7 +1258,7 @@ 1258 1258 1259 1259 In any case, the aliases used in the VTL transformations have to be mapped to the 1260 1260 1261 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1210 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1262 1262 1263 1263 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 1264 1264 ... ... @@ -1268,7 +1268,7 @@ 1268 1268 1269 1269 This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose. 1270 1270 1271 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1220 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1272 1272 1273 1273 * SDMXprefix 1274 1274 * SDMX-IM-package-name ... ... @@ -1276,7 +1276,7 @@ 1276 1276 * agency-id 1277 1277 * maintainedobject-id 1278 1278 * maintainedobject-version 1279 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1228 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1280 1280 * object-id 1281 1281 1282 1282 The generic structure of the URN is the following: ... ... @@ -1295,7 +1295,7 @@ 1295 1295 1296 1296 The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2). 1297 1297 1298 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1247 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1299 1299 1300 1300 * if the artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id); 1301 1301 * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to; ... ... @@ -1315,7 +1315,7 @@ 1315 1315 1316 1316 * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,) 1317 1317 1318 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1267 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1319 1319 1320 1320 ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ <- 1321 1321 ... ... @@ -1333,14 +1333,14 @@ 1333 1333 * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 1334 1334 ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, 1335 1335 ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist. 1336 -* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1337 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1285 +* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1286 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1338 1338 * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 1339 1339 ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the 1340 1340 1341 1341 SDMX structural definitions; o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted; 1342 1342 1343 -* 1292 +* 1344 1344 ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted; 1345 1345 ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted. 1346 1346 * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,, ... ... @@ -1361,11 +1361,11 @@ 1361 1361 1362 1362 DFR := DF1 + DF2 1363 1363 1364 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1313 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1365 1365 1366 1366 ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’ 1367 1367 1368 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1317 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1369 1369 1370 1370 CL_FREQ 1371 1371 ... ... @@ -1375,7 +1375,7 @@ 1375 1375 1376 1376 SECTOR 1377 1377 1378 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1327 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1379 1379 1380 1380 ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC] 1381 1381 ... ... @@ -1409,9 +1409,9 @@ 1409 1409 1410 1410 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 1411 1411 1412 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1361 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1413 1413 1414 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1363 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1415 1415 1416 1416 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature. 1417 1417 ... ... @@ -1425,15 +1425,15 @@ 1425 1425 1426 1426 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 1427 1427 1428 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1377 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1429 1429 1430 1430 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 1431 1431 1432 1432 === 10.3.2 General mapping of VTL and SDMX data structures === 1433 1433 1434 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1383 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1435 1435 1436 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1385 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1437 1437 1438 1438 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 1439 1439 ... ... @@ -1443,7 +1443,7 @@ 1443 1443 1444 1444 SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 1445 1445 1446 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1395 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1447 1447 1448 1448 As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 1449 1449 ... ... @@ -1507,7 +1507,7 @@ 1507 1507 1508 1508 The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension; 1509 1509 1510 -* 1459 +* 1511 1511 ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 1512 1512 ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 1513 1513 ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj ... ... @@ -1514,7 +1514,7 @@ 1514 1514 1515 1515 **10.3.3.3 From SDMX DataAttributes to VTL Measures ** 1516 1516 1517 -* 1466 +* 1518 1518 ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 1519 1519 1520 1520 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. ... ... @@ -1533,7 +1533,7 @@ 1533 1533 1534 1534 This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the 1535 1535 1536 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1485 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1537 1537 1538 1538 1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 1539 1539 ... ... @@ -1600,7 +1600,7 @@ 1600 1600 1601 1601 the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above 1602 1602 1603 -* 1552 +* 1604 1604 ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj) 1605 1605 ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set 1606 1606 ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above) ... ... @@ -1650,15 +1650,15 @@ 1650 1650 1651 1651 The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows). 1652 1652 1653 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1602 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1654 1654 1655 1655 Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 1656 1656 1657 1657 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set). 1658 1658 1659 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1608 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1660 1660 1661 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1610 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1662 1662 1663 1663 Given a SDMX Dataflow and some predefined Dimensions of its 1664 1664 ... ... @@ -1670,14 +1670,14 @@ 1670 1670 1671 1671 In practice, this kind mapping is obtained like follows: 1672 1672 1673 -* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1622 +* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1674 1674 * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 1675 1675 ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated 1676 1676 1677 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1626 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1678 1678 1679 -* 1680 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1628 +* 1629 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1681 1681 1682 1682 In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 1683 1683 ... ... @@ -1695,7 +1695,7 @@ 1695 1695 1696 1696 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 1697 1697 1698 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1647 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1699 1699 1700 1700 First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations. 1701 1701 ... ... @@ -1705,7 +1705,7 @@ 1705 1705 1706 1706 //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA. 1707 1707 1708 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1657 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1709 1709 1710 1710 In the example above, for all the datasets of the kind 1711 1711 ... ... @@ -1725,7 +1725,7 @@ 1725 1725 1726 1726 … … … 1727 1727 1728 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1677 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1729 1729 1730 1730 In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. 1731 1731 ... ... @@ -1748,12 +1748,12 @@ 1748 1748 1749 1749 For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY: 1750 1750 1751 -* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1752 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1700 +* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1701 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1753 1753 1754 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1703 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1755 1755 1756 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1705 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1757 1757 1758 1758 ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’ <- expression 1759 1759 ... ... @@ -1820,9 +1820,9 @@ 1820 1820 1821 1821 …); 1822 1822 1823 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1772 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1824 1824 1825 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1774 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1826 1826 1827 1827 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 1828 1828 ... ... @@ -1871,7 +1871,7 @@ 1871 1871 1872 1872 Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 1873 1873 1874 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1823 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1875 1875 1876 1876 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 1877 1877 ... ... @@ -2216,7 +2216,7 @@ 2216 2216 |N|fixed number of digits used in the preceding textual representation of the month or the day 2217 2217 | | 2218 2218 2219 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2168 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2220 2220 2221 2221 === 10.4.5 Null Values === 2222 2222