Last modified by Artur on 2025/08/19 10:43

From version 4.5
edited by Helena
on 2025/05/21 21:31
Change comment: There is no comment for this version
To version 7.6
edited by Helena
on 2025/05/21 22:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -69,13 +69,15 @@
69 69  
70 70  To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
71 71  
72 -=== //Structure Definition// ===
72 +(% class="wikigeneratedid" id="HStructureDefinition" %)
73 +**//Structure Definition//**
73 73  
74 74  The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax.
75 75  
76 76  The SDMX-ML Structure Message allows for the structures on which a Data Structure Definition depends – that is, codelists and concepts – to be either included in the message or to be referenced by the message containing the data structure definition. XML syntax is designed to leverage URIs and other Internet-based referencing mechanisms, and these are used in the SDMX-ML message. This option is not available to those using the SDMX-EDI structure message.
77 77  
78 -=== //Validation// ===
79 +(% class="wikigeneratedid" id="HValidation" %)
80 +**//Validation//**
79 79  
80 80  SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.)
81 81  
... ... @@ -83,19 +83,22 @@
83 83  
84 84  The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool.
85 85  
86 -=== //Update and Delete Messages and Documentation Messages// ===
88 +(% class="wikigeneratedid" id="HUpdateandDeleteMessagesandDocumentationMessages" %)
89 +//Update and Delete Messages and Documentation Messages//
87 87  
88 88  All SDMX data messages allow for both delete messages and messages consisting of only data or only documentation.
89 89  
90 -=== //Character Encodings// ===
93 +(% class="wikigeneratedid" id="HCharacterEncodings" %)
94 +**//Character Encodings//**
91 91  
92 92  All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
93 93  
94 -=== //Data Typing// ===
98 +(% class="wikigeneratedid" id="HDataTyping" %)
99 +**//Data Typing//**
95 95  
96 96  The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below.
97 97  
98 -==== 3.3.2 Data Types ====
103 +=== 3.3.2 Data Types ===
99 99  
100 100  The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them.
101 101  
... ... @@ -121,37 +121,43 @@
121 121  
122 122  A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore)
123 123  
124 -1. **Observation values** are:
125 -1*. Decimal numerics (signed only if they are negative);
126 -1*. The maximum number of significant figures is:
127 -1*. 15 for a positive number
128 -1*. 14 for a positive decimal or a negative integer
129 -1*. 13 for a negative decimal
130 -1*. Scientific notation may be used.
131 -1. **Uncoded statistical concept** text values are:
132 -1*.
133 -1**. Maximum 1050 characters;
134 -1**. From ISO 8859-1 character set.
135 -1. **Time series keys**:
129 +**5. Observation values** are:
136 136  
137 -In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters.  The separator character is a colon (“:”) by conventional usage.
131 +* Decimal numerics (signed only if they are negative);
132 +* The maximum number of significant figures is:
133 +* 15 for a positive number
134 +* 14 for a positive decimal or a negative integer
135 +* 13 for a negative decimal
136 +* Scientific notation may be used.
138 138  
138 +**6. Uncoded statistical concept** text values are:
139 +
140 +* Maximum 1050 characters;
141 +* From ISO 8859-1 character set.
142 +
143 +**7. Time series keys**:
144 +
145 +In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters. The separator character is a colon (“:”) by conventional usage.
146 +
139 139  == 3.4 SDMX-ML and SDMX-EDI Best Practices ==
140 140  
141 -=== 3.4.1 Reporting and Dissemination Guidelines ===
149 +=== 3.4.1 Reporting and Dissemination Guidelines ===
142 142  
143 -**3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges **Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
151 +==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
144 144  
153 +Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
154 +
145 145  Central institutions can play a double role:
146 146  
147 147  * collecting and further disseminating statistics;
148 148  * devising structural definitions for use in data exchanges.
149 149  
150 -**3.4.1.2 Defining Data Structure Definitions (DSDs)**
160 +==== 3.4.1.2 Defining Data Structure Definitions (DSDs) ====
151 151  
152 152  The following guidelines are suggested for building a DSD. However, it is expected that these guidelines will be considered by central institutions when devising new DSDs.
153 153  
154 -=== Dimensions, Attributes and Code Lists ===
164 +(% class="wikigeneratedid" id="HDimensions2CAttributesandCodeLists" %)
165 +__Dimensions, Attributes and Code Lists__
155 155  
156 156  **//Avoid dimensions that are not appropriate for all the series in the data structure definition.//**  If some dimensions are not applicable (this is evident from the need to have a code in a code list which is marked as “not applicable”, “not relevant” or “total”) for some series then consider moving these series to a new data structure definition in which these dimensions are dropped from the key structure. This is a judgement call as it is sometimes difficult to achieve this without increasing considerably the number of DSDs.
157 157  
... ... @@ -181,7 +181,8 @@
181 181  
182 182  The same code list can be used for several statistical concepts, within a data structure definition or across DSDs. Note that SDMX has recognised that these classifications are often quite large and the usage of codes in any one DSD is only a small extract of the full code list. In this version of the standard it is possible to exchange and disseminate a **partial code list** which is extracted from the full code list and which supports the dimension values valid for a particular DSD.
183 183  
184 -=== Data Structure Definition Structure ===
195 +(% class="wikigeneratedid" id="HDataStructureDefinitionStructure" %)
196 +__Data Structure Definition Structure__
185 185  
186 186  The following items have to be specified by a structural definitions maintenance agency when defining a new data structure definition:
187 187  
... ... @@ -211,7 +211,7 @@
211 211  * code list name
212 212  * code values and descriptions
213 213  
214 -Definition of data flow definitions.  Two (or more) partners performing data exchanges in a certain context need to agree on:
226 +Definition of data flow definitions. Two (or more) partners performing data exchanges in a certain context need to agree on:
215 215  
216 216  * the list of data set identifiers they will be using;
217 217  * for each data flow:
... ... @@ -218,10 +218,12 @@
218 218  * its content and description
219 219  * the relevant DSD that defines the structure of the data reported or disseminated according the the dataflow definition
220 220  
221 -**3.4.1.3 Exchanging Attributes**
233 +==== 3.4.1.3 Exchanging Attributes ====
222 222  
223 -**//3.4.1.3.1 Attributes on series, sibling and data set level //**//Static properties//.
235 +===== //3.4.1.3.1 Attributes on series, sibling and data set level // =====
224 224  
237 +//Static properties//.
238 +
225 225  * Upon creation of a series the sender has to provide to the receiver values for all mandatory attributes. In case they are available, values for conditional attributes  should also be provided. Whereas initially this information may be provided by means other than SDMX-ML or SDMX-EDI messages (e.g. paper, telephone) it is expected that partner institutions will be in a position to provide this information in SDMX-ML or SDMX-EDI format over time.
226 226  * A centre may agree with its data exchange partners special procedures for authorising the setting of attributes' initial values.
227 227  * Attribute values at a data set level are set and maintained exclusively by the centre administrating the exchanged data set.
... ... @@ -238,21 +238,21 @@
238 238  * If the “observation status” changes and the observation remains unchanged, both components would have to be reported.
239 239  * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation.
240 240  
241 -==== 3.4.2 Best Practices for Batch Data Exchange ====
255 +=== 3.4.2 Best Practices for Batch Data Exchange ===
242 242  
243 -**3.4.2.1 Introduction**
257 +==== 3.4.2.1 Introduction ====
244 244  
245 245  Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats.
246 246  
247 -**3.4.2.2 Positioning of the Dimension "Frequency"**
261 +==== 3.4.2.2 Positioning of the Dimension "Frequency" ====
248 248  
249 249  The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level.
250 250  
251 -**3.4.2.3 Identification of Data Structure Definitions (DSDs)**
265 +==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ====
252 252  
253 253  In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc.
254 254  
255 -**3.4.2.4 Identification of the Data Flows**
269 +==== 3.4.2.4 Identification of the Data Flows ====
256 256  
257 257  In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//.
258 258  
... ... @@ -260,7 +260,7 @@
260 260  
261 261  Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data.
262 262  
263 -**3.4.2.5 Special Issues**
277 +==== 3.4.2.5 Special Issues ====
264 264  
265 265  ===== 3.4.2.5.1 "Frequency" related issues =====
266 266  
... ... @@ -271,7 +271,6 @@
271 271  
272 272  **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp.
273 273  
274 -
275 275  = 4 General Notes for Implementers =
276 276  
277 277  This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing.
... ... @@ -282,39 +282,31 @@
282 282  
283 283  There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents.
284 284  
285 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
286 -**Java Data Type**
287 -
288 -**~ **
298 +(% style="width:912.294px" %)
299 +|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)(((
300 +**Java Data Type **
289 289  )))
290 -|String|xsd:string|System.String|java.lang.String
291 -|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er
292 -|Integer|xsd:int|System.Int32|int
293 -|Long|xsd.long|System.Int64|long
294 -|Short|xsd:short|System.Int16|short
295 -|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al
296 -|Float|xsd:float|System.Single|float
297 -|Double|xsd:double|System.Double|double
298 -|Boolean|xsd:boolean|System.Boolean|boolean
299 -|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String
300 -|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
301 -|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
302 -|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
303 -|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
304 -|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
305 -|(((
306 -Day,
302 +|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String
303 +|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er
304 +|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int
305 +|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long
306 +|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short
307 +|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al
308 +|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float
309 +|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double
310 +|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean
311 +|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String
312 +|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
313 +|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
314 +|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
315 +|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
316 +|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
317 +|(% style="width:172px" %)(((
318 +Day, MonthDay, Month
319 +)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
320 +|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype
321 +|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration
307 307  
308 -MonthDay, Month
309 -)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
310 -|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype
311 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
312 -**Java Data Type**
313 -
314 -**~ **
315 -)))
316 -| | |n|.Duration
317 -
318 318  There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary:
319 319  
320 320  * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9)
... ... @@ -340,10 +340,8 @@
340 340  * KeyValues (common:DataKeyType)
341 341  * IdentifiableReference (types for each identifiable object)
342 342  * DataSetReference (common:DataSetReferenceType)
343 -* AttachmentConstraintReference
348 +* AttachmentConstraintReference (common:AttachmentConstraintReferenceType)
344 344  
345 -(common:AttachmentConstraintReferenceType)
346 -
347 347  Data types also have a set of facets:
348 348  
349 349  * isSequence = true | false (indicates a sequentially increasing value)
... ... @@ -365,7 +365,7 @@
365 365  
366 366  == 4.2 Time and Time Format ==
367 367  
368 -==== 4.2.1 Introduction ====
371 +=== 4.2.1 Introduction ===
369 369  
370 370  First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled.
371 371  
... ... @@ -373,50 +373,47 @@
373 373  
374 374  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
375 375  
376 -* **Observational Time Period **o **Standard Time Period**
379 +* **Observational Time Period**
380 +** **Standard Time Period**
381 +*** **Basic Time Period**
382 +**** **Gregorian Time Period**
383 +**** //Date Time//
384 +*** **Reporting Time Period**
385 +** //Time Range//
377 377  
378 - § **Basic Time Period**
379 -
380 -* **Gregorian Time Period**
381 -* //Date Time//
382 -
383 -§ **Reporting Time Period **o //Time Range//
384 -
385 385  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
386 386  
387 -==== 4.2.2 Observational Time Period ====
389 +=== 4.2.2 Observational Time Period ===
388 388  
389 389  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
390 390  
391 -==== 4.2.3 Standard Time Period ====
393 +=== 4.2.3 Standard Time Period ===
392 392  
393 393  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
394 394  
395 -==== 4.2.4 Gregorian Time Period ====
397 +=== 4.2.4 Gregorian Time Period ===
396 396  
397 397  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
398 398  
399 -**Gregorian Year:**
400 -
401 +**Gregorian Year:**
401 401  Representation: xs:gYear (YYYY)
403 +Period: the start of January 1 to the end of December 31
402 402  
403 -Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
404 -
405 +**Gregorian Year Month**:
405 405  Representation: xs:gYearMonth (YYYY-MM)
407 +Period: the start of the first day of the month to end of the last day of the month
406 406  
407 -Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
408 -
409 +**Gregorian Day**:
409 409  Representation: xs:date (YYYY-MM-DD)
410 -
411 411  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
412 412  
413 -==== 4.2.5 Date Time ====
413 +=== 4.2.5 Date Time ===
414 414  
415 415  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
416 416  
417 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
417 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
418 418  
419 -==== 4.2.6 Standard Reporting Period ====
419 +=== 4.2.6 Standard Reporting Period ===
420 420  
421 421  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
422 422  
... ... @@ -423,75 +423,52 @@
423 423  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
424 424  
425 425  Where:
426 -
427 427  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
428 -
429 429  PERIOD_VALUE indicates the actual period within the year
430 430  
431 431  The following section details each of the standard reporting periods defined in SDMX:
432 432  
433 -**Reporting Year**:
434 -
435 - Period Indicator: A
436 -
431 +**Reporting Year**:
432 +Period Indicator: A
437 437  Period Duration: P1Y (one year)
438 -
439 439  Limit per year: 1
435 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
440 440  
441 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
442 -
443 - Period Indicator: S
444 -
437 +**Reporting Semester:**
438 +Period Indicator: S
445 445  Period Duration: P6M (six months)
446 -
447 447  Limit per year: 2
441 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
448 448  
449 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
450 -
451 - Period Indicator: T
452 -
443 +**Reporting Trimester:**
444 +Period Indicator: T
453 453  Period Duration: P4M (four months)
454 -
455 455  Limit per year: 3
447 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
456 456  
457 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
458 -
459 - Period Indicator: Q
460 -
449 +**Reporting Quarter:**
450 +Period Indicator: Q
461 461  Period Duration: P3M (three months)
462 -
463 463  Limit per year: 4
453 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
464 464  
465 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
466 -
455 +**Reporting Month**:
467 467  Period Indicator: M
468 -
469 469  Period Duration: P1M (one month)
470 -
471 471  Limit per year: 1
472 -
473 473  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
474 474  
475 475  **Reporting Week**:
476 -
477 477  Period Indicator: W
478 -
479 479  Period Duration: P7D (seven days)
480 -
481 481  Limit per year: 53
482 -
483 483  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
466 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
484 484  
485 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
486 -
487 487  **Reporting Day**:
488 -
489 489  Period Indicator: D
490 -
491 491  Period Duration: P1D (one day)
492 -
493 493  Limit per year: 366
494 -
495 495  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
496 496  
497 497  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -502,143 +502,109 @@
502 502  
503 503  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
504 504  
505 -1. **Determine [REPORTING_YEAR_BASE]:**
506 -
482 +**~1. Determine [REPORTING_YEAR_BASE]:**
507 507  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
508 -
509 509  This is the [REPORTING_YEAR_START_DATE]
510 -
511 -**a) If the [PERIOD_INDICATOR] is W:**
512 -
513 -1.
514 -11.
515 -111.
516 -1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
517 -
485 +**a) If the [PERIOD_INDICATOR] is W:
486 +~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
518 518  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
519 519  
520 -1.
521 -11.
522 -111.
523 -1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
524 -
489 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
525 525  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
491 +b) **Else:** 
492 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
526 526  
527 -b) **Else:**
494 +**2. Determine [PERIOD_DURATION]:**
528 528  
529 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
496 +a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
497 +b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
498 +c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
499 +d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
500 +e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
501 +f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
502 +g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
530 530  
531 -1. **Determine [PERIOD_DURATION]:**
532 -11.
533 -111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
534 -111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
535 -111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
536 -111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
537 -111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
538 -111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
539 -111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
540 -1. **Determine [PERIOD_START]:**
504 +**3. Determine [PERIOD_START]:**
505 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
541 541  
542 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
543 -
544 -1. **Determine the [PERIOD_END]:**
545 -
507 +**4. Determine the [PERIOD_END]:**
546 546  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
547 547  
548 548  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
549 549  
550 -**Examples: **
512 +**Examples:**
551 551  
552 552  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
553 -
554 554  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
555 -
556 556  b) [REPORTING_YEAR_BASE] = 2010-07-01
557 -
558 -1. [PERIOD_DURATION] = P3M
559 -1. (2-1) * P3M = P3M
560 -
517 +[PERIOD_DURATION] = P3M
518 +(2-1) * P3M = P3M
561 561  2010-07-01 + P3M = 2010-10-01
562 -
563 563  [PERIOD_START] = 2010-10-01
564 -
565 565  4. 2 * P3M = P6M
566 -
567 567  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
568 -
569 569  2011-01-01 + -P1D = 2010-12-31
570 -
571 571  [PERIOD_END] = 2011-12-31
572 572  
573 573  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
574 574  
575 575  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
576 -
577 577  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
578 -
579 579  a) 2011-07-01 = Friday
580 -
581 581  2011-07-01 + P3D = 2011-07-04
582 -
583 583  [REPORTING_YEAR_BASE] = 2011-07-04
584 -
585 -1. [PERIOD_DURATION] = P7D
586 -1. (36-1) * P7D = P245D
587 -
533 +2. [PERIOD_DURATION] = P7D
534 +3. (36-1) * P7D = P245D
588 588  2011-07-04 + P245D = 2012-03-05
589 -
590 590  [PERIOD_START] = 2012-03-05
591 -
592 592  4. 36 * P7D = P252D
593 -
594 594  2011-07-04 + P252D =2012-03-12
595 -
596 596  2012-03-12 + -P1D = 2012-03-11
597 -
598 598  [PERIOD_END] = 2012-03-11
599 599  
600 600  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
601 601  
602 -==== 4.2.7 Distinct Range ====
544 +=== 4.2.7 Distinct Range ===
603 603  
604 604  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
605 605  
606 -==== 4.2.8 Time Format ====
548 +=== 4.2.8 Time Format ===
607 607  
608 608  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
609 609  
610 -|**Code**|**Format**
611 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
612 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
613 -|**GTP**|Superset of all Gregorian Time Periods and date-time
614 -|**RTP**|Superset of all Reporting Time Periods
615 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
616 -|**GY**|Gregorian Year (YYYY)
617 -|**GTM**|Gregorian Year Month (YYYY-MM)
618 -|**GD**|Gregorian Day (YYYY-MM-DD)
619 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
620 -|**RY**|Reporting Year (YYYY-A1)
621 -|**RS**|Reporting Semester (YYYY-Ss)
622 -|**RT**|Reporting Trimester (YYYY-Tt)
623 -|**RQ**|Reporting Quarter (YYYY-Qq)
624 -|**RM**|Reporting Month (YYYY-Mmm)
625 -|**Code**|**Format**
626 -|**RW**|Reporting Week (YYYY-Www)
627 -|**RD**|Reporting Day (YYYY-Dddd)
552 +(% style="width:1049.29px" %)
553 +|**Code**|(% style="width:926px" %)**Format**
554 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
555 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
556 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
557 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
558 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
559 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
560 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
561 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
562 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
563 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
564 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
565 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
566 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
567 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
568 +|**Code**|(% style="width:926px" %)**Format**
569 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
570 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
628 628  
629 - **Table 1: SDMX-ML Time Format Codes**
572 +**Table 1: SDMX-ML Time Format Codes**
630 630  
631 -==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
574 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
632 632  
633 633  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
634 634  
635 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
578 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
636 636  
637 637  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
638 638  
639 639  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
640 640  
641 -==== 4.2.10 Time Zones ====
584 +=== 4.2.10 Time Zones ===
642 642  
643 643  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
644 644  
... ... @@ -659,7 +659,7 @@
659 659  
660 660  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
661 661  
662 -==== 4.2.11 Representing Time Spans Elsewhere ====
605 +=== 4.2.11 Representing Time Spans Elsewhere ===
663 663  
664 664  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
665 665  
... ... @@ -669,30 +669,29 @@
669 669  
670 670  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
671 671  
672 -==== 4.2.12 Notes on Formats ====
615 +=== 4.2.12 Notes on Formats ===
673 673  
674 674  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
675 675  
676 -==== 4.2.13 Effect on Time Ranges ====
619 +=== 4.2.13 Effect on Time Ranges ===
677 677  
678 678  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
679 679  
680 -==== 4.2.14 Time in Query Messages ====
623 +=== 4.2.14 Time in Query Messages ===
681 681  
682 682  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
683 683  
684 684  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
685 685  
686 -|**Operator**|**Rule**
687 -|Greater Than|Any data after the last moment of the period
688 -|Less Than|Any data before the first moment of the period
689 -|Greater Than or Equal To|(((
690 -Any data on or after the first moment of
691 -
692 -the period
629 +(% style="width:1024.29px" %)
630 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
631 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
632 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
633 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
634 +Any data on or after the first moment of the period
693 693  )))
694 -|Less Than or Equal To|Any data on or before the last moment of the period
695 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
636 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
637 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
696 696  
697 697  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
698 698  
... ... @@ -705,9 +705,7 @@
705 705  **Examples:**
706 706  
707 707  **Gregorian Period**
708 -
709 709  Query Parameter: Greater than 2010
710 -
711 711  Literal Interpretation: Any data where the start period occurs after 2010-1231T23:59:59.
712 712  
713 713  Example Matches:
... ... @@ -725,15 +725,11 @@
725 725  * 2010-D185 or later (reporting year start day ~-~-07-01 or later)
726 726  
727 727  **Reporting Period with explicit start day**
728 -
729 729  Query Parameter: Greater than or equal to 2009-Q3, reporting year start day = "-07-01"
730 -
731 731  Literal Interpretation: Any data where the start period occurs on after 2010-0101T00:00:00 (Note that in this case 2009-Q3 is converted to the explicit date range of 2010-01-01/2010-03-31 because of the reporting year start day value). Example Matches: Same as previous example
732 732  
733 733  **Reporting Period with "Any" start day**
734 -
735 735  Query Parameter: Greater than or equal to 2010-Q3, reporting year start day = "Any"
736 -
737 737  Literal Interpretation: Any data with a reporting period where the start period is on or after the start period of 2010-Q3 for the same reporting year start day, or and data where the start period is on or after 2010-07-01. Example Matches:
738 738  
739 739  * 2011 or later
... ... @@ -745,13 +745,10 @@
745 745  * 2010-T3 (any reporting year start day)
746 746  * 2010-Q3 or later (any reporting year start day)
747 747  * 2010-M07 or later (any reporting year start day)
748 -* 2010-W27 or later (reporting year start day ~-~-01-01)^^4^^  2010-D182 or later (reporting year start day ~-~-01-01)
749 -* 2010-W28 or later (reporting year start day ~-~-07-01)^^5^^
684 +* 2010-W27 or later (reporting year start day ~-~-01-01){{footnote}}2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.{{/footnote}}  2010-D182 or later (reporting year start day ~-~-01-01)
685 +* 2010-W28 or later (reporting year start day ~-~-07-01){{footnote}}2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.{{/footnote}}
686 +* 2010-D185 or later (reporting year start day ~-~-07-01)
750 750  
751 -^^4^^ 2010-Q3 (with a reporting year start day of ~-~-01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.
752 -
753 - 2010-D185 or later (reporting year start day ~-~-07-01)
754 -
755 755  == 4.3 Structural Metadata Querying Best Practices ==
756 756  
757 757  When querying for structural metadata, the ability to state how references should be resolved is quite powerful. However, this mechanism is not always necessary and can create an undue burden on the systems processing the queries if it is not used properly.
... ... @@ -768,8 +768,6 @@
768 768  
769 769  This mechanism is an “early binding” one – everything with a versioned identity is a known quantity, and will not change. It is worth pointing out that in some cases relationships are essentially one-way references: an illustrative case is that of Categories. While a Category may be referenced by many dataflows and metadata flows, the addition of more references from flow objects does not version the Category. This is because the flows are not properties of the Categories – they merely make references to it. If the name of a Category changed, or its subCategories changed, then versioning would be necessary.
770 770  
771 -^^5^^ 2010-Q3 (with a reporting year start day of ~-~-07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.
772 -
773 773  Versioning operates at the level of versionable and maintainable objects in the SDMX information model. If any of the children of objects at these levels change, then the objects themselves are versioned.
774 774  
775 775  One area which is much impacted by this versioning scheme is the ability to reference external objects. With the many dependencies within the various structural objects in SDMX, it is useful to have a scheme for external referencing. This is done at the level of maintainable objects (DSDs, code lists, concept schemes, etc.) In an SDMX-ML Structure Message, whenever an “isExternalReference” attribute is set to true, then the application must resolve the address provided in the associated “uri” attribute and use the SDMX-ML Structure Message stored at that location for the full definition of the object in question. Alternately, if a registry “urn” attribute has been provided, the registry can be used to supply the full details of the object.
... ... @@ -792,13 +792,13 @@
792 792  
793 793  [[image:1747836776649-282.jpeg]]
794 794  
795 -1. **1: Schematic of the Metadata Structure Definition**
726 +**Figure 1: Schematic of the Metadata Structure Definition**
796 796  
797 797  The MSD comprises the specification of the object types to which metadata can be reported in a Metadata Set (Metadata Target(s)), and the Report Structure(s) comprising the Metadata Attributes that identify the Concept for which metadata may be reported in the Metadata Set. Importantly, one Report Structure references the Metadata Target for which it is relevant. One Report Structure can reference many Metadata Target i.e. the same Report Structure can be used for different target objects.
798 798  
799 799  [[image:1747836776655-364.jpeg]]
800 800  
801 -1. **2: Example MSD showing Metadata Targets**
732 +**Figure 2: Example MSD showing Metadata Targets**
802 802  
803 803  Note that the SDMX-ML schemas have explicit XML elements for each identifiable object type because identifying, for instance, a Maintainable Object has different properties from an Identifiable Object which must also include the agencyId, version, and id of the Maintainable Object in which it resides.
804 804  
... ... @@ -808,8 +808,10 @@
808 808  
809 809  [[image:1747836776658-510.jpeg]]
810 810  
811 -**Figure 3: Example MSD showing specification of three Metadata Attributes **This example shows the following hierarchy of Metadata Attributes:
742 +**Figure 3: Example MSD showing specification of three Metadata Attributes**
812 812  
744 +This example shows the following hierarchy of Metadata Attributes:
745 +
813 813  Source – this is presentational and no metadata is expected to be reported at this level
814 814  
815 815  * Source Type
... ... @@ -823,10 +823,7 @@
823 823  
824 824   **Figure 4: Example Metadata Set **This example shows:
825 825  
826 -1. The reference to the MSD, Metadata Report, and Metadata Target
827 -
828 -(MetadataTargetValue)
829 -
759 +1. The reference to the MSD, Metadata Report, and Metadata Target (MetadataTargetValue)
830 830  1. The reported metadata attributes (AttributeValueSet)
831 831  
832 832  = 6 Maintenance Agencies =
... ... @@ -883,8 +883,9 @@
883 883  
884 884  The Information Model for this is shown below:
885 885  
816 +[[image:1747855024745-946.png]]
886 886  
887 - **Figure 8: Information Model Extract for Concept Role**
818 +**Figure 8: Information Model Extract for Concept Role**
888 888  
889 889  It is possible to specify zero or more concept roles for a Dimension, Measure Dimension and Data Attribute (but not the ReportingYearStartDay). The Time Dimension, Primary Measure, and the  Attribute ReportingYearStartDay have explicitly defined roles and cannot be further specified with additional concept roles.
890 890  
... ... @@ -904,13 +904,14 @@
904 904  
905 905  The Cross-Domain Concept Scheme maintained by SDMX contains concept role concepts (FREQ chosen as an example).
906 906  
907 -[[image:1747836776691-440.jpeg]]
838 +[[image:1747855054559-410.png]]
908 908  
840 +
909 909  Whether this is a role or not depends upon the application understanding that FREQ in the Cross-Domain Concept Scheme is a role of Frequency.
910 910  
911 911  Using a Concept Scheme that is not the Cross-Domain Concept Scheme where it is required to assign a role using the Cross-Domain Concept Scheme. Again FREQ is chosen as the example.
912 912  
913 -[[image:1747836776693-898.jpeg]]
845 +[[image:1747855075263-887.png]]
914 914  
915 915  
916 916  This explicitly states that this Dimension is playing a role identified by the FREQ concept in the Cross-Domain Concept Scheme. Again the application needs to understand what FREQ in the Cross-Domain Concept Scheme implies in terms of a role.
... ... @@ -960,7 +960,7 @@
960 960  
961 961  == 8.3 Rules for a Content Constraint ==
962 962  
963 -=== 8.3.1 Scope of a Content Constraint ===
895 +=== 8.3.1 (% style="color:inherit; font-family:inherit; font-size:max(21px, min(23px, 17.4444px + 0.462963vw))" %)Scope of a Content Constraint(%%) ===
964 964  
965 965  A Content Constraint is used specify the content of a data or metadata source in terms of the component values or the keys.
966 966  
... ... @@ -999,20 +999,20 @@
999 999  
1000 1000  In view of the flexibility of constraints attachment, clear rules on their usage are required. These are elaborated below.
1001 1001  
1002 -=== 8.3.2 Multiple Content Constraints ===
934 +=== 8.3.2 Multiple Content Constraints ===
1003 1003  
1004 1004  There can be many Content Constraints for any Constrainable Artefact (e.g. DSD), subject to the following restrictions:
1005 1005  
1006 -**8.3.2.1 Cube Region**
938 +==== 8.3.2.1 Cube Region ====
1007 1007  
1008 1008  1. The constraint can contain multiple Member Selections (e.g. Dimension) but:
1009 1009  1. A specific  Member Selection (e.g. Dimension FREQ)  can only be contained in one Content Constraint for any one attached object (e.g. a specific DSD or specific Dataflow)
1010 1010  
1011 -**8.3.2.2 Key Set**
943 +==== 8.3.2.2 Key Set ====
1012 1012  
1013 1013  Key Sets will be processed in the order they appear in the Constraint and wildcards can be used (e.g. any key position not reference explicitly is deemed to be “all values”). As the Key Sets can be “included” or “excluded” it is recommended that Key Sets with wildcards are declared before KeySets with specific series keys. This will minimize the risk that keys are inadvertently included or excluded.  
1014 1014  
1015 -=== 8.3.3 Inheritance of a Content Constraint ===
947 +=== 8.3.3 Inheritance of a Content Constraint ===
1016 1016  
1017 1017  **8.3.3.1 Attachment levels of a Content Constraint**
1018 1018  
... ... @@ -1235,7 +1235,7 @@
1235 1235  
1236 1236  == 10.1 Introduction ==
1237 1237  
1238 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1170 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1239 1239  
1240 1240  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1241 1241  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1259,7 +1259,7 @@
1259 1259  
1260 1260  In any case, the aliases used in the VTL transformations have to be mapped to the
1261 1261  
1262 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1194 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1263 1263  
1264 1264  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1265 1265  
... ... @@ -1269,7 +1269,7 @@
1269 1269  
1270 1270  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1271 1271  
1272 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1204 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1273 1273  
1274 1274  * SDMXprefix                                                                                   
1275 1275  * SDMX-IM-package-name             
... ... @@ -1277,7 +1277,7 @@
1277 1277  * agency-id                                                                          
1278 1278  * maintainedobject-id
1279 1279  * maintainedobject-version
1280 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1212 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1281 1281  * object-id
1282 1282  
1283 1283  The generic structure of the URN is the following:
... ... @@ -1296,7 +1296,7 @@
1296 1296  
1297 1297  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1298 1298  
1299 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1231 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1300 1300  
1301 1301  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1302 1302  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1316,7 +1316,7 @@
1316 1316  
1317 1317  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1318 1318  
1319 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1251 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1320 1320  
1321 1321  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1322 1322  
... ... @@ -1334,8 +1334,8 @@
1334 1334  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1335 1335  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1336 1336  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1337 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1338 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1269 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1270 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1339 1339  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1340 1340  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1341 1341  
... ... @@ -1362,11 +1362,11 @@
1362 1362  
1363 1363  DFR  :=  DF1 + DF2
1364 1364  
1365 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1297 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1366 1366  
1367 1367  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1368 1368  
1369 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1301 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1370 1370  
1371 1371  CL_FREQ
1372 1372  
... ... @@ -1376,7 +1376,7 @@
1376 1376  
1377 1377  SECTOR
1378 1378  
1379 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1311 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1380 1380  
1381 1381  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1382 1382  
... ... @@ -1410,9 +1410,9 @@
1410 1410  
1411 1411  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1412 1412  
1413 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1345 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1414 1414  
1415 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1347 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1416 1416  
1417 1417  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1418 1418  
... ... @@ -1426,15 +1426,15 @@
1426 1426  
1427 1427  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1428 1428  
1429 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1361 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1430 1430  
1431 1431  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1432 1432  
1433 1433  === 10.3.2 General mapping of VTL and SDMX data structures ===
1434 1434  
1435 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1367 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1436 1436  
1437 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1369 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1438 1438  
1439 1439  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1440 1440  
... ... @@ -1444,7 +1444,7 @@
1444 1444  
1445 1445  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1446 1446  
1447 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1379 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1448 1448  
1449 1449  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1450 1450  
... ... @@ -1534,7 +1534,7 @@
1534 1534  
1535 1535  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1536 1536  
1537 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1469 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1538 1538  
1539 1539  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1540 1540  
... ... @@ -1651,15 +1651,15 @@
1651 1651  
1652 1652   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1653 1653  
1654 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1586 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1655 1655  
1656 1656  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1657 1657  
1658 1658  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1659 1659  
1660 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1592 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1661 1661  
1662 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1594 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1663 1663  
1664 1664   Given a SDMX Dataflow and some predefined Dimensions of its
1665 1665  
... ... @@ -1671,14 +1671,14 @@
1671 1671  
1672 1672  In practice, this kind mapping is obtained like follows:
1673 1673  
1674 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1606 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1675 1675  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1676 1676  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1677 1677  
1678 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1610 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1679 1679  
1680 1680  *
1681 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1613 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1682 1682  
1683 1683  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1684 1684  
... ... @@ -1696,7 +1696,7 @@
1696 1696  
1697 1697  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1698 1698  
1699 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1631 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1700 1700  
1701 1701  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1702 1702  
... ... @@ -1706,7 +1706,7 @@
1706 1706  
1707 1707  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1708 1708  
1709 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1641 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1710 1710  
1711 1711  In the example above, for all the datasets of the kind
1712 1712  
... ... @@ -1726,7 +1726,7 @@
1726 1726  
1727 1727  …   …   …
1728 1728  
1729 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1661 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1730 1730  
1731 1731  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1732 1732  
... ... @@ -1749,12 +1749,12 @@
1749 1749  
1750 1750  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1751 1751  
1752 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1753 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1684 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1685 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1754 1754  
1755 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1687 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1756 1756  
1757 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1689 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1758 1758  
1759 1759  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1760 1760  
... ... @@ -1821,9 +1821,9 @@
1821 1821  
1822 1822  …);
1823 1823  
1824 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1756 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1825 1825  
1826 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1758 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1827 1827  
1828 1828  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1829 1829  
... ... @@ -1872,7 +1872,7 @@
1872 1872  
1873 1873  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1874 1874  
1875 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1807 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1876 1876  
1877 1877  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1878 1878  
... ... @@ -2161,12 +2161,12 @@
2161 2161  “true” or “false”
2162 2162  )))
2163 2163  
2164 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2165 2165  
2166 -In case a different default conversion is desired, it can be achieved through the
2167 2167  
2168 -CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2098 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2169 2169  
2100 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2101 +
2170 2170  The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table.
2171 2171  
2172 2172  |(% colspan="2" %)**VTL special characters for the formatting masks**
... ... @@ -2217,7 +2217,7 @@
2217 2217  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2218 2218  | |
2219 2219  
2220 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2152 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2221 2221  
2222 2222  === 10.4.5 Null Values ===
2223 2223  
... ... @@ -2249,12 +2249,18 @@
2249 2249  
2250 2250  For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”.
2251 2251  
2252 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2184 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2253 2253  
2186 +[[image:1747854006117-843.png]]
2187 +
2254 2254  The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework.
2255 2255  
2256 2256  Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below:
2257 2257  
2192 +[[image:1747854039499-443.png]]
2193 +
2194 +[[image:1747854067769-691.png]]
2195 +
2258 2258  Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution.
2259 2259  
2260 2260  == 11.2 Solution ==
... ... @@ -2275,20 +2275,30 @@
2275 2275  
2276 2276  To understand how the **XmlAnyElement** attribute works we present the following two web methods:
2277 2277  
2278 -In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2216 +[[image:1747854096778-844.png]]
2279 2279  
2280 -The difference between the two is that for the first method, **SubmitXml**, the
2218 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2281 2281  
2282 -XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2220 +[[image:1747854127303-270.png]]
2283 2283  
2222 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2223 +
2224 +[[image:1747854163928-581.png]]
2225 +
2284 2284  Now we look at the message for the method that uses the **XmlAnyElement** attribute.
2285 2285  
2228 +[[image:1747854190641-364.png]]
2229 +
2230 +[[image:1747854236732-512.png]]
2231 +
2286 2286  The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter.
2287 2287  
2288 -For more information please consult:  [[http:~~/~~/msdn.microsoft.com/en>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[->>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[us/library/aa480498.aspx>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]]
2234 +For more information please consult: [[http:~~/~~/msdn.microsoft.com/en-us/library/aa480498.aspx>>http://msdn.microsoft.com/en-us/library/aa480498.aspx]]
2289 2289  
2290 2290  Furthermore at this point the problem with the different requests has been solved. However there is still the difference in the produced WSDL that has to be taken care. The automatic generated WSDL now doesn’t insert the extra element, but defines the content of the operation wrapper element as “xsd:any” type.
2291 2291  
2238 +[[image:1747854286398-614.png]]
2239 +
2292 2292  Without a common WSDL still the solution doesn’t enforce interoperability. In order to
2293 2293  
2294 2294  “fix” the WSDL, there two approaches. The first is to intervene in the generation process. This is a complicated approach, compared to the second approach, which overrides the generation process and returns the envisioned WSDL for the SDMX Web Service.
... ... @@ -2301,16 +2301,27 @@
2301 2301  
2302 2302  In the context of the SDMX Web Service, applying the above solution translates into the following:
2303 2303  
2252 +[[image:1747854385465-132.png]]
2253 +
2304 2304  The SOAP request/response will then be as follows:
2305 2305  
2306 2306  **GenericData Request**
2307 2307  
2258 +[[image:1747854406014-782.png]]
2259 +
2308 2308  **GenericData Response**
2309 2309  
2262 +[[image:1747854424488-855.png]]
2263 +
2310 2310  For overriding the automatically produced WSDL, in the solution explorer right click the project and select “Add” -> “New item…”. Then select the “Global Application Class”. This will create “.asax” class file in which the following code should replace the existing empty method:
2311 2311  
2266 +[[image:1747854453895-524.png]]
2267 +
2268 +[[image:1747854476631-125.png]]
2269 +
2312 2312  The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains:
2313 2313  
2272 +[[image:1747854493363-776.png]]
2314 2314  
2315 2315  ----
2316 2316  
... ... @@ -2403,3 +2403,5 @@
2403 2403  [[~[42~]>>path:#_ftnref42]] A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.
2404 2404  
2405 2405  [[~[43~]>>path:#_ftnref43]] The representation given in the DSD should obviously be compatible with the VTL data type.
2365 +
2366 +{{putFootnotes/}}
1747854006117-843.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.7 KB
Content
1747854039499-443.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +3.0 KB
Content
1747854067769-691.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +21.4 KB
Content
1747854096778-844.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.6 KB
Content
1747854127303-270.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +12.1 KB
Content
1747854163928-581.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +29.8 KB
Content
1747854190641-364.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +31.5 KB
Content
1747854236732-512.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 KB
Content
1747854286398-614.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854385465-132.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854406014-782.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854424488-855.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854453895-524.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854476631-125.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854493363-776.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747855024745-946.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747855054559-410.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747855075263-887.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content