Changes for page SDMX 2.1 Standards. Section 6. Technical Notes
Last modified by Artur on 2025/08/19 10:43
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -143,18 +143,21 @@ 143 143 144 144 === 3.4.1 Reporting and Dissemination Guidelines === 145 145 146 - **3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges**Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use. Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.146 +==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ==== 147 147 148 +Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use. Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution. 149 + 148 148 Central institutions can play a double role: 149 149 150 150 * collecting and further disseminating statistics; 151 151 * devising structural definitions for use in data exchanges. 152 152 153 - **3.4.1.2 Defining Data Structure Definitions (DSDs)**155 +==== 3.4.1.2 Defining Data Structure Definitions (DSDs) ==== 154 154 155 155 The following guidelines are suggested for building a DSD. However, it is expected that these guidelines will be considered by central institutions when devising new DSDs. 156 156 157 -=== Dimensions, Attributes and Code Lists === 159 +(% class="wikigeneratedid" id="HDimensions2CAttributesandCodeLists" %) 160 +__Dimensions, Attributes and Code Lists__ 158 158 159 159 **//Avoid dimensions that are not appropriate for all the series in the data structure definition.//** If some dimensions are not applicable (this is evident from the need to have a code in a code list which is marked as “not applicable”, “not relevant” or “total”) for some series then consider moving these series to a new data structure definition in which these dimensions are dropped from the key structure. This is a judgement call as it is sometimes difficult to achieve this without increasing considerably the number of DSDs. 160 160 ... ... @@ -184,7 +184,8 @@ 184 184 185 185 The same code list can be used for several statistical concepts, within a data structure definition or across DSDs. Note that SDMX has recognised that these classifications are often quite large and the usage of codes in any one DSD is only a small extract of the full code list. In this version of the standard it is possible to exchange and disseminate a **partial code list** which is extracted from the full code list and which supports the dimension values valid for a particular DSD. 186 186 187 -=== Data Structure Definition Structure === 190 +(% class="wikigeneratedid" id="HDataStructureDefinitionStructure" %) 191 +__Data Structure Definition Structure__ 188 188 189 189 The following items have to be specified by a structural definitions maintenance agency when defining a new data structure definition: 190 190 ... ... @@ -214,7 +214,7 @@ 214 214 * code list name 215 215 * code values and descriptions 216 216 217 -Definition of data flow definitions. 221 +Definition of data flow definitions. Two (or more) partners performing data exchanges in a certain context need to agree on: 218 218 219 219 * the list of data set identifiers they will be using; 220 220 * for each data flow: ... ... @@ -221,10 +221,12 @@ 221 221 * its content and description 222 222 * the relevant DSD that defines the structure of the data reported or disseminated according the the dataflow definition 223 223 224 - **3.4.1.3 Exchanging Attributes**228 +==== 3.4.1.3 Exchanging Attributes ==== 225 225 226 - **//3.4.1.3.1 Attributes on series, sibling and data set level //**//Staticproperties//.230 +===== //3.4.1.3.1 Attributes on series, sibling and data set level // ===== 227 227 232 +//Static properties//. 233 + 228 228 * Upon creation of a series the sender has to provide to the receiver values for all mandatory attributes. In case they are available, values for conditional attributes should also be provided. Whereas initially this information may be provided by means other than SDMX-ML or SDMX-EDI messages (e.g. paper, telephone) it is expected that partner institutions will be in a position to provide this information in SDMX-ML or SDMX-EDI format over time. 229 229 * A centre may agree with its data exchange partners special procedures for authorising the setting of attributes' initial values. 230 230 * Attribute values at a data set level are set and maintained exclusively by the centre administrating the exchanged data set. ... ... @@ -241,21 +241,21 @@ 241 241 * If the “observation status” changes and the observation remains unchanged, both components would have to be reported. 242 242 * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation. 243 243 244 -=== =3.4.2=250 +=== 3.4.2 Best Practices for Batch Data Exchange === 245 245 246 - **3.4.2.1 Introduction**252 +==== 3.4.2.1 Introduction ==== 247 247 248 248 Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats. 249 249 250 - **3.4.2.2 Positioning of the Dimension "Frequency"**256 +==== 3.4.2.2 Positioning of the Dimension "Frequency" ==== 251 251 252 252 The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level. 253 253 254 - **3.4.2.3 Identification of Data Structure Definitions (DSDs)**260 +==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ==== 255 255 256 256 In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc. 257 257 258 - **3.4.2.4 Identification of the Data Flows**264 +==== 3.4.2.4 Identification of the Data Flows ==== 259 259 260 260 In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//. 261 261 ... ... @@ -263,7 +263,7 @@ 263 263 264 264 Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data. 265 265 266 - **3.4.2.5 Special Issues**272 +==== 3.4.2.5 Special Issues ==== 267 267 268 268 ===== 3.4.2.5.1 "Frequency" related issues ===== 269 269 ... ... @@ -274,7 +274,6 @@ 274 274 275 275 **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp. 276 276 277 - 278 278 = 4 General Notes for Implementers = 279 279 280 280 This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing. ... ... @@ -285,39 +285,31 @@ 285 285 286 286 There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents. 287 287 288 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|((( 289 -**Java Data Type** 290 - 291 -**~ ** 293 +(% style="width:912.294px" %) 294 +|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)((( 295 +**Java Data Type ** 292 292 ))) 293 -|String|xsd:string|System.String|java.lang.String 294 -|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er 295 -|Integer|xsd:int|System.Int32|int 296 -|Long|xsd.long|System.Int64|long 297 -|Short|xsd:short|System.Int16|short 298 -|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al 299 -|Float|xsd:float|System.Single|float 300 -|Double|xsd:double|System.Double|double 301 -|Boolean|xsd:boolean|System.Boolean|boolean 302 -|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String 303 -|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 304 -|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 305 -|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 306 -|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 307 -|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 308 -|((( 309 -Day, 297 +|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String 298 +|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er 299 +|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int 300 +|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long 301 +|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short 302 +|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al 303 +|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float 304 +|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double 305 +|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean 306 +|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String 307 +|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 308 +|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 309 +|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 310 +|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 311 +|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 312 +|(% style="width:172px" %)((( 313 +Day, MonthDay, Month 314 +)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar 315 +|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype 316 +|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration 310 310 311 -MonthDay, Month 312 -)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar 313 -|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype 314 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|((( 315 -**Java Data Type** 316 - 317 -**~ ** 318 -))) 319 -| | |n|.Duration 320 - 321 321 There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary: 322 322 323 323 * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9) ... ... @@ -343,10 +343,8 @@ 343 343 * KeyValues (common:DataKeyType) 344 344 * IdentifiableReference (types for each identifiable object) 345 345 * DataSetReference (common:DataSetReferenceType) 346 -* AttachmentConstraintReference 343 +* AttachmentConstraintReference (common:AttachmentConstraintReferenceType) 347 347 348 -(common:AttachmentConstraintReferenceType) 349 - 350 350 Data types also have a set of facets: 351 351 352 352 * isSequence = true | false (indicates a sequentially increasing value) ... ... @@ -368,7 +368,7 @@ 368 368 369 369 == 4.2 Time and Time Format == 370 370 371 -=== =4.2.1 Introduction ====366 +=== 4.2.1 Introduction === 372 372 373 373 First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled. 374 374 ... ... @@ -376,50 +376,47 @@ 376 376 377 377 The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format): 378 378 379 -* **Observational Time Period **o **Standard Time Period** 374 +* **Observational Time Period** 375 +** **Standard Time Period** 376 +*** **Basic Time Period** 377 +**** **Gregorian Time Period** 378 +**** //Date Time// 379 +*** **Reporting Time Period** 380 +** //Time Range// 380 380 381 - § **Basic Time Period** 382 - 383 -* **Gregorian Time Period** 384 -* //Date Time// 385 - 386 -§ **Reporting Time Period **o //Time Range// 387 - 388 388 The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow. 389 389 390 -=== =4.2.2 Observational Time Period ====384 +=== 4.2.2 Observational Time Period === 391 391 392 392 This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats. 393 393 394 -=== =4.2.3 Standard Time Period ====388 +=== 4.2.3 Standard Time Period === 395 395 396 396 This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59). 397 397 398 -=== =4.2.4 Gregorian Time Period ====392 +=== 4.2.4 Gregorian Time Period === 399 399 400 400 A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows: 401 401 402 -**Gregorian Year:** 403 - 396 +**Gregorian Year:** 404 404 Representation: xs:gYear (YYYY) 398 +Period: the start of January 1 to the end of December 31 405 405 406 -Period: the start of January 1 to the end of December 31 **Gregorian Year Month**: 407 - 400 +**Gregorian Year Month**: 408 408 Representation: xs:gYearMonth (YYYY-MM) 402 +Period: the start of the first day of the month to end of the last day of the month 409 409 410 -Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**: 411 - 404 +**Gregorian Day**: 412 412 Representation: xs:date (YYYY-MM-DD) 413 - 414 414 Period: the start of the day (00:00:00) to the end of the day (23:59:59) 415 415 416 -=== =4.2.5 Date Time ====408 +=== 4.2.5 Date Time === 417 417 418 418 This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used. 419 419 420 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 421 421 422 -=== =4.2.6 Standard Reporting Period ====414 +=== 4.2.6 Standard Reporting Period === 423 423 424 424 Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows: 425 425 ... ... @@ -426,75 +426,52 @@ 426 426 [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE] 427 427 428 428 Where: 429 - 430 430 REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period 431 - 432 432 PERIOD_VALUE indicates the actual period within the year 433 433 434 434 The following section details each of the standard reporting periods defined in SDMX: 435 435 436 -**Reporting Year**: 437 - 438 - Period Indicator: A 439 - 426 +**Reporting Year**: 427 +Period Indicator: A 440 440 Period Duration: P1Y (one year) 441 - 442 442 Limit per year: 1 430 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) 443 443 444 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:** 445 - 446 - Period Indicator: S 447 - 432 +**Reporting Semester:** 433 +Period Indicator: S 448 448 Period Duration: P6M (six months) 449 - 450 450 Limit per year: 2 436 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) 451 451 452 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:** 453 - 454 - Period Indicator: T 455 - 438 +**Reporting Trimester:** 439 +Period Indicator: T 456 456 Period Duration: P4M (four months) 457 - 458 458 Limit per year: 3 442 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) 459 459 460 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:** 461 - 462 - Period Indicator: Q 463 - 444 +**Reporting Quarter:** 445 +Period Indicator: Q 464 464 Period Duration: P3M (three months) 465 - 466 466 Limit per year: 4 448 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) 467 467 468 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**: 469 - 450 +**Reporting Month**: 470 470 Period Indicator: M 471 - 472 472 Period Duration: P1M (one month) 473 - 474 474 Limit per year: 1 475 - 476 476 Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 477 477 478 478 **Reporting Week**: 479 - 480 480 Period Indicator: W 481 - 482 482 Period Duration: P7D (seven days) 483 - 484 484 Limit per year: 53 485 - 486 486 Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 487 487 488 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 489 - 490 490 **Reporting Day**: 491 - 492 492 Period Indicator: D 493 - 494 494 Period Duration: P1D (one day) 495 - 496 496 Limit per year: 366 497 - 498 498 Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001). 499 499 500 500 This allows the values to be sorted chronologically using textual sorting methods. ... ... @@ -505,143 +505,109 @@ 505 505 506 506 Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]): 507 507 508 -1. **Determine [REPORTING_YEAR_BASE]:** 509 - 477 +**~1. Determine [REPORTING_YEAR_BASE]:** 510 510 Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD). 511 - 512 512 This is the [REPORTING_YEAR_START_DATE] 513 - 514 -**a) If the [PERIOD_INDICATOR] is W:** 515 - 516 -1. 517 -11. 518 -111. 519 -1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 520 - 480 +**a) If the [PERIOD_INDICATOR] is W: 481 +~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 521 521 Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 522 522 523 -1. 524 -11. 525 -111. 526 -1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 527 - 484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 528 528 Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 486 +b) **Else:** 487 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE] 529 529 530 - b)**Else:**489 +**2. Determine [PERIOD_DURATION]:** 531 531 532 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]. 491 +a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y. 492 +b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M. 493 +c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M. 494 +d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M. 495 +e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M. 496 +f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D. 497 +g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 533 533 534 -1. **Determine [PERIOD_DURATION]:** 535 -11. 536 -111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y. 537 -111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M. 538 -111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M. 539 -111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M. 540 -111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M. 541 -111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D. 542 -111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 543 -1. **Determine [PERIOD_START]:** 499 +**3. Determine [PERIOD_START]:** 500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 544 544 545 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 546 - 547 -1. **Determine the [PERIOD_END]:** 548 - 502 +**4. Determine the [PERIOD_END]:** 549 549 Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END]. 550 550 551 551 For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59). 552 552 553 -**Examples: 507 +**Examples:** 554 554 555 555 **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 556 - 557 557 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 558 - 559 559 b) [REPORTING_YEAR_BASE] = 2010-07-01 560 - 561 -1. [PERIOD_DURATION] = P3M 562 -1. (2-1) * P3M = P3M 563 - 512 +[PERIOD_DURATION] = P3M 513 +(2-1) * P3M = P3M 564 564 2010-07-01 + P3M = 2010-10-01 565 - 566 566 [PERIOD_START] = 2010-10-01 567 - 568 568 4. 2 * P3M = P6M 569 - 570 570 2010-07-01 + P6M = 2010-13-01 = 2011-01-01 571 - 572 572 2011-01-01 + -P1D = 2010-12-31 573 - 574 574 [PERIOD_END] = 2011-12-31 575 575 576 576 The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 577 577 578 578 **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 579 - 580 580 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 581 - 582 582 a) 2011-07-01 = Friday 583 - 584 584 2011-07-01 + P3D = 2011-07-04 585 - 586 586 [REPORTING_YEAR_BASE] = 2011-07-04 587 - 588 -1. [PERIOD_DURATION] = P7D 589 -1. (36-1) * P7D = P245D 590 - 528 +2. [PERIOD_DURATION] = P7D 529 +3. (36-1) * P7D = P245D 591 591 2011-07-04 + P245D = 2012-03-05 592 - 593 593 [PERIOD_START] = 2012-03-05 594 - 595 595 4. 36 * P7D = P252D 596 - 597 597 2011-07-04 + P252D =2012-03-12 598 - 599 599 2012-03-12 + -P1D = 2012-03-11 600 - 601 601 [PERIOD_END] = 2012-03-11 602 602 603 603 The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59 604 604 605 -=== =4.2.7 Distinct Range ====539 +=== 4.2.7 Distinct Range === 606 606 607 607 In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive. 608 608 609 -=== =4.2.8 Time Format ====543 +=== 4.2.8 Time Format === 610 610 611 611 In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 612 612 613 -|**Code**|**Format** 614 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 615 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods 616 -|**GTP**|Superset of all Gregorian Time Periods and date-time 617 -|**RTP**|Superset of all Reporting Time Periods 618 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 619 -|**GY**|Gregorian Year (YYYY) 620 -|**GTM**|Gregorian Year Month (YYYY-MM) 621 -|**GD**|Gregorian Day (YYYY-MM-DD) 622 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 623 -|**RY**|Reporting Year (YYYY-A1) 624 -|**RS**|Reporting Semester (YYYY-Ss) 625 -|**RT**|Reporting Trimester (YYYY-Tt) 626 -|**RQ**|Reporting Quarter (YYYY-Qq) 627 -|**RM**|Reporting Month (YYYY-Mmm) 628 -|**Code**|**Format** 629 -|**RW**|Reporting Week (YYYY-Www) 630 -|**RD**|Reporting Day (YYYY-Dddd) 547 +(% style="width:1049.29px" %) 548 +|**Code**|(% style="width:926px" %)**Format** 549 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 550 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods 551 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time 552 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods 553 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 554 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY) 555 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM) 556 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD) 557 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 558 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1) 559 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss) 560 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt) 561 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq) 562 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm) 563 +|**Code**|(% style="width:926px" %)**Format** 564 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www) 565 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd) 631 631 632 - 567 +**Table 1: SDMX-ML Time Format Codes** 633 633 634 -=== =4.2.9 Transformation between SDMX-ML and SDMX-EDI ====569 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI === 635 635 636 636 When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT". 637 637 638 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations) 573 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations). 639 639 640 640 When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML. 641 641 642 642 When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq. 643 643 644 -=== =4.2.10=579 +=== 4.2.10 Time Zones === 645 645 646 646 In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold): 647 647 ... ... @@ -662,7 +662,7 @@ 662 662 663 663 According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message. 664 664 665 -=== =4.2.11=600 +=== 4.2.11 Representing Time Spans Elsewhere === 666 666 667 667 It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this: 668 668 ... ... @@ -672,30 +672,29 @@ 672 672 673 673 <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/> 674 674 675 -=== =4.2.12=610 +=== 4.2.12 Notes on Formats === 676 676 677 677 There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing. 678 678 679 -=== =4.2.13=614 +=== 4.2.13 Effect on Time Ranges === 680 680 681 681 All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value. 682 682 683 -=== =4.2.14 Time in Query Messages ====618 +=== 4.2.14 Time in Query Messages === 684 684 685 685 When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters. 686 686 687 687 Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter. 688 688 689 -|**Operator**|**Rule** 690 -|Greater Than|Any data after the last moment of the period 691 -|Less Than|Any data before the first moment of the period 692 -|Greater Than or Equal To|((( 693 -Any data on or after the first moment of 694 - 695 -the period 624 +(% style="width:1024.29px" %) 625 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule** 626 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period 627 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period 628 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)((( 629 +Any data on or after the first moment of the period 696 696 ))) 697 -|Less Than or Equal To|Any data on or before the last moment of the period 698 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period 631 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period 632 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period 699 699 700 700 Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any": 701 701 ... ... @@ -1238,7 +1238,7 @@ 1238 1238 1239 1239 == 10.1 Introduction == 1240 1240 1241 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1175 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1242 1242 1243 1243 * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones; 1244 1244 * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms); ... ... @@ -1262,7 +1262,7 @@ 1262 1262 1263 1263 In any case, the aliases used in the VTL transformations have to be mapped to the 1264 1264 1265 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1199 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1266 1266 1267 1267 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 1268 1268 ... ... @@ -1272,7 +1272,7 @@ 1272 1272 1273 1273 This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose. 1274 1274 1275 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1209 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1276 1276 1277 1277 * SDMXprefix 1278 1278 * SDMX-IM-package-name ... ... @@ -1280,7 +1280,7 @@ 1280 1280 * agency-id 1281 1281 * maintainedobject-id 1282 1282 * maintainedobject-version 1283 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1217 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1284 1284 * object-id 1285 1285 1286 1286 The generic structure of the URN is the following: ... ... @@ -1299,7 +1299,7 @@ 1299 1299 1300 1300 The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2). 1301 1301 1302 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1236 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1303 1303 1304 1304 * if the artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id); 1305 1305 * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to; ... ... @@ -1319,7 +1319,7 @@ 1319 1319 1320 1320 * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,) 1321 1321 1322 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1256 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1323 1323 1324 1324 ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ <- 1325 1325 ... ... @@ -1337,8 +1337,8 @@ 1337 1337 * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 1338 1338 ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, 1339 1339 ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist. 1340 -* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1341 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1274 +* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1275 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1342 1342 * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 1343 1343 ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the 1344 1344 ... ... @@ -1365,11 +1365,11 @@ 1365 1365 1366 1366 DFR := DF1 + DF2 1367 1367 1368 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1302 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1369 1369 1370 1370 ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’ 1371 1371 1372 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1306 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1373 1373 1374 1374 CL_FREQ 1375 1375 ... ... @@ -1379,7 +1379,7 @@ 1379 1379 1380 1380 SECTOR 1381 1381 1382 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1316 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1383 1383 1384 1384 ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC] 1385 1385 ... ... @@ -1413,9 +1413,9 @@ 1413 1413 1414 1414 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 1415 1415 1416 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1350 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1417 1417 1418 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1352 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1419 1419 1420 1420 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature. 1421 1421 ... ... @@ -1429,15 +1429,15 @@ 1429 1429 1430 1430 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 1431 1431 1432 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1366 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1433 1433 1434 1434 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 1435 1435 1436 1436 === 10.3.2 General mapping of VTL and SDMX data structures === 1437 1437 1438 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1372 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1439 1439 1440 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1374 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1441 1441 1442 1442 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 1443 1443 ... ... @@ -1447,7 +1447,7 @@ 1447 1447 1448 1448 SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 1449 1449 1450 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1384 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1451 1451 1452 1452 As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 1453 1453 ... ... @@ -1537,7 +1537,7 @@ 1537 1537 1538 1538 This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the 1539 1539 1540 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1474 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1541 1541 1542 1542 1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 1543 1543 ... ... @@ -1654,15 +1654,15 @@ 1654 1654 1655 1655 The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows). 1656 1656 1657 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1591 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1658 1658 1659 1659 Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 1660 1660 1661 1661 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set). 1662 1662 1663 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1597 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1664 1664 1665 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1599 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1666 1666 1667 1667 Given a SDMX Dataflow and some predefined Dimensions of its 1668 1668 ... ... @@ -1674,14 +1674,14 @@ 1674 1674 1675 1675 In practice, this kind mapping is obtained like follows: 1676 1676 1677 -* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1611 +* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1678 1678 * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 1679 1679 ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated 1680 1680 1681 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1615 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1682 1682 1683 1683 * 1684 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1618 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1685 1685 1686 1686 In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 1687 1687 ... ... @@ -1699,7 +1699,7 @@ 1699 1699 1700 1700 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 1701 1701 1702 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1636 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1703 1703 1704 1704 First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations. 1705 1705 ... ... @@ -1709,7 +1709,7 @@ 1709 1709 1710 1710 //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA. 1711 1711 1712 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1646 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1713 1713 1714 1714 In the example above, for all the datasets of the kind 1715 1715 ... ... @@ -1729,7 +1729,7 @@ 1729 1729 1730 1730 … … … 1731 1731 1732 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1666 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1733 1733 1734 1734 In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. 1735 1735 ... ... @@ -1752,12 +1752,12 @@ 1752 1752 1753 1753 For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY: 1754 1754 1755 -* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1756 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1689 +* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1690 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1757 1757 1758 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1692 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1759 1759 1760 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1694 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1761 1761 1762 1762 ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’ <- expression 1763 1763 ... ... @@ -1824,9 +1824,9 @@ 1824 1824 1825 1825 …); 1826 1826 1827 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1761 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1828 1828 1829 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1763 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1830 1830 1831 1831 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 1832 1832 ... ... @@ -1875,7 +1875,7 @@ 1875 1875 1876 1876 Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 1877 1877 1878 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1812 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1879 1879 1880 1880 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 1881 1881 ... ... @@ -2164,12 +2164,12 @@ 2164 2164 “true” or “false” 2165 2165 ))) 2166 2166 2167 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2168 2168 2169 -In case a different default conversion is desired, it can be achieved through the 2170 2170 2171 - CustomTypeSchemeand CustomTypeartefacts(see alsothe sectionTransformationsand Expressionsof theSDMX information model).2103 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2172 2172 2105 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 2106 + 2173 2173 The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table. 2174 2174 2175 2175 |(% colspan="2" %)**VTL special characters for the formatting masks** ... ... @@ -2220,7 +2220,7 @@ 2220 2220 |N|fixed number of digits used in the preceding textual representation of the month or the day 2221 2221 | | 2222 2222 2223 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2157 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2224 2224 2225 2225 === 10.4.5 Null Values === 2226 2226 ... ... @@ -2252,12 +2252,18 @@ 2252 2252 2253 2253 For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”. 2254 2254 2255 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2189 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2256 2256 2191 +[[image:1747854006117-843.png]] 2192 + 2257 2257 The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework. 2258 2258 2259 2259 Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below: 2260 2260 2197 +[[image:1747854039499-443.png]] 2198 + 2199 +[[image:1747854067769-691.png]] 2200 + 2261 2261 Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution. 2262 2262 2263 2263 == 11.2 Solution == ... ... @@ -2278,12 +2278,14 @@ 2278 2278 2279 2279 To understand how the **XmlAnyElement** attribute works we present the following two web methods: 2280 2280 2281 - In thismethod the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element.Since the attribute is notpassed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.2221 +[[image:1747854096778-844.png]] 2282 2282 2283 - Thedifferencebetween the two is that for thefirst method,**SubmitXml**,the2223 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter. 2284 2284 2285 - XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plugwhatever XML is included into the input parameter.The message style from ASP.NET Helpfor the two methods is shownbelow. First we look at the message for the method without the **XmlAnyElement** attribute.2225 +[[image:1747854127303-270.png]] 2286 2286 2227 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute. 2228 + 2287 2287 Now we look at the message for the method that uses the **XmlAnyElement** attribute. 2288 2288 2289 2289 The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter. ... ... @@ -2314,7 +2314,6 @@ 2314 2314 2315 2315 The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains: 2316 2316 2317 - 2318 2318 ---- 2319 2319 2320 2320 [[~[1~]>>path:#_ftnref1]] The seconds can be reported fractionally
- 1747854006117-843.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.7 KB - Content
- 1747854039499-443.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.0 KB - Content
- 1747854067769-691.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.4 KB - Content
- 1747854096778-844.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.6 KB - Content
- 1747854127303-270.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +12.1 KB - Content