Last modified by Artur on 2025/08/19 10:43

From version 5.1
edited by Helena
on 2025/05/21 21:35
Change comment: There is no comment for this version
To version 6.2
edited by Helena
on 2025/05/21 22:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -143,7 +143,7 @@
143 143  
144 144  === 3.4.1 Reporting and Dissemination Guidelines ===
145 145  
146 -==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
146 +==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
147 147  
148 148  Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
149 149  
... ... @@ -247,21 +247,21 @@
247 247  * If the “observation status” changes and the observation remains unchanged, both components would have to be reported.
248 248  * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation.
249 249  
250 -==== 3.4.2 Best Practices for Batch Data Exchange ====
250 +=== 3.4.2 Best Practices for Batch Data Exchange ===
251 251  
252 -**3.4.2.1 Introduction**
252 +==== 3.4.2.1 Introduction ====
253 253  
254 254  Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats.
255 255  
256 -**3.4.2.2 Positioning of the Dimension "Frequency"**
256 +==== 3.4.2.2 Positioning of the Dimension "Frequency" ====
257 257  
258 258  The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level.
259 259  
260 -**3.4.2.3 Identification of Data Structure Definitions (DSDs)**
260 +==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ====
261 261  
262 262  In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc.
263 263  
264 -**3.4.2.4 Identification of the Data Flows**
264 +==== 3.4.2.4 Identification of the Data Flows ====
265 265  
266 266  In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//.
267 267  
... ... @@ -269,7 +269,7 @@
269 269  
270 270  Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data.
271 271  
272 -**3.4.2.5 Special Issues**
272 +==== 3.4.2.5 Special Issues ====
273 273  
274 274  ===== 3.4.2.5.1 "Frequency" related issues =====
275 275  
... ... @@ -280,7 +280,6 @@
280 280  
281 281  **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp.
282 282  
283 -
284 284  = 4 General Notes for Implementers =
285 285  
286 286  This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing.
... ... @@ -291,39 +291,31 @@
291 291  
292 292  There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents.
293 293  
294 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
295 -**Java Data Type**
296 -
297 -**~ **
293 +(% style="width:912.294px" %)
294 +|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)(((
295 +**Java Data Type **
298 298  )))
299 -|String|xsd:string|System.String|java.lang.String
300 -|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er
301 -|Integer|xsd:int|System.Int32|int
302 -|Long|xsd.long|System.Int64|long
303 -|Short|xsd:short|System.Int16|short
304 -|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al
305 -|Float|xsd:float|System.Single|float
306 -|Double|xsd:double|System.Double|double
307 -|Boolean|xsd:boolean|System.Boolean|boolean
308 -|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String
309 -|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
310 -|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
311 -|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
312 -|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
313 -|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
314 -|(((
315 -Day,
297 +|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String
298 +|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er
299 +|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int
300 +|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long
301 +|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short
302 +|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al
303 +|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float
304 +|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double
305 +|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean
306 +|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String
307 +|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
308 +|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
309 +|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
310 +|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
311 +|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
312 +|(% style="width:172px" %)(((
313 +Day, MonthDay, Month
314 +)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
315 +|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype
316 +|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration
316 316  
317 -MonthDay, Month
318 -)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
319 -|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype
320 -|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
321 -**Java Data Type**
322 -
323 -**~ **
324 -)))
325 -| | |n|.Duration
326 -
327 327  There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary:
328 328  
329 329  * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9)
... ... @@ -349,10 +349,8 @@
349 349  * KeyValues (common:DataKeyType)
350 350  * IdentifiableReference (types for each identifiable object)
351 351  * DataSetReference (common:DataSetReferenceType)
352 -* AttachmentConstraintReference
343 +* AttachmentConstraintReference (common:AttachmentConstraintReferenceType)
353 353  
354 -(common:AttachmentConstraintReferenceType)
355 -
356 356  Data types also have a set of facets:
357 357  
358 358  * isSequence = true | false (indicates a sequentially increasing value)
... ... @@ -374,7 +374,7 @@
374 374  
375 375  == 4.2 Time and Time Format ==
376 376  
377 -==== 4.2.1 Introduction ====
366 +=== 4.2.1 Introduction ===
378 378  
379 379  First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled.
380 380  
... ... @@ -382,50 +382,47 @@
382 382  
383 383  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
384 384  
385 -* **Observational Time Period **o **Standard Time Period**
374 +* **Observational Time Period**
375 +** **Standard Time Period**
376 +*** **Basic Time Period**
377 +**** **Gregorian Time Period**
378 +**** //Date Time//
379 +*** **Reporting Time Period**
380 +** //Time Range//
386 386  
387 - § **Basic Time Period**
388 -
389 -* **Gregorian Time Period**
390 -* //Date Time//
391 -
392 -§ **Reporting Time Period **o //Time Range//
393 -
394 394  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
395 395  
396 -==== 4.2.2 Observational Time Period ====
384 +=== 4.2.2 Observational Time Period ===
397 397  
398 398  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
399 399  
400 -==== 4.2.3 Standard Time Period ====
388 +=== 4.2.3 Standard Time Period ===
401 401  
402 402  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
403 403  
404 -==== 4.2.4 Gregorian Time Period ====
392 +=== 4.2.4 Gregorian Time Period ===
405 405  
406 406  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
407 407  
408 -**Gregorian Year:**
409 -
396 +**Gregorian Year:**
410 410  Representation: xs:gYear (YYYY)
398 +Period: the start of January 1 to the end of December 31
411 411  
412 -Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
413 -
400 +**Gregorian Year Month**:
414 414  Representation: xs:gYearMonth (YYYY-MM)
402 +Period: the start of the first day of the month to end of the last day of the month
415 415  
416 -Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
417 -
404 +**Gregorian Day**:
418 418  Representation: xs:date (YYYY-MM-DD)
419 -
420 420  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
421 421  
422 -==== 4.2.5 Date Time ====
408 +=== 4.2.5 Date Time ===
423 423  
424 424  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
425 425  
426 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
427 427  
428 -==== 4.2.6 Standard Reporting Period ====
414 +=== 4.2.6 Standard Reporting Period ===
429 429  
430 430  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
431 431  
... ... @@ -432,75 +432,52 @@
432 432  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
433 433  
434 434  Where:
435 -
436 436  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
437 -
438 438  PERIOD_VALUE indicates the actual period within the year
439 439  
440 440  The following section details each of the standard reporting periods defined in SDMX:
441 441  
442 -**Reporting Year**:
443 -
444 - Period Indicator: A
445 -
426 +**Reporting Year**:
427 +Period Indicator: A
446 446  Period Duration: P1Y (one year)
447 -
448 448  Limit per year: 1
430 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
449 449  
450 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
451 -
452 - Period Indicator: S
453 -
432 +**Reporting Semester:**
433 +Period Indicator: S
454 454  Period Duration: P6M (six months)
455 -
456 456  Limit per year: 2
436 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
457 457  
458 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
459 -
460 - Period Indicator: T
461 -
438 +**Reporting Trimester:**
439 +Period Indicator: T
462 462  Period Duration: P4M (four months)
463 -
464 464  Limit per year: 3
442 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
465 465  
466 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
467 -
468 - Period Indicator: Q
469 -
444 +**Reporting Quarter:**
445 +Period Indicator: Q
470 470  Period Duration: P3M (three months)
471 -
472 472  Limit per year: 4
448 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
473 473  
474 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
475 -
450 +**Reporting Month**:
476 476  Period Indicator: M
477 -
478 478  Period Duration: P1M (one month)
479 -
480 480  Limit per year: 1
481 -
482 482  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
483 483  
484 484  **Reporting Week**:
485 -
486 486  Period Indicator: W
487 -
488 488  Period Duration: P7D (seven days)
489 -
490 490  Limit per year: 53
491 -
492 492  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
493 493  
494 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
495 -
496 496  **Reporting Day**:
497 -
498 498  Period Indicator: D
499 -
500 500  Period Duration: P1D (one day)
501 -
502 502  Limit per year: 366
503 -
504 504  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
505 505  
506 506  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -511,143 +511,109 @@
511 511  
512 512  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
513 513  
514 -1. **Determine [REPORTING_YEAR_BASE]:**
515 -
477 +**~1. Determine [REPORTING_YEAR_BASE]:**
516 516  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
517 -
518 518  This is the [REPORTING_YEAR_START_DATE]
519 -
520 -**a) If the [PERIOD_INDICATOR] is W:**
521 -
522 -1.
523 -11.
524 -111.
525 -1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
526 -
480 +**a) If the [PERIOD_INDICATOR] is W:
481 +~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
527 527  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
528 528  
529 -1.
530 -11.
531 -111.
532 -1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
533 -
484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
534 534  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
486 +b) **Else:** 
487 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
535 535  
536 -b) **Else:**
489 +**2. Determine [PERIOD_DURATION]:**
537 537  
538 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
491 +a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
492 +b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
493 +c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
494 +d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
495 +e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
496 +f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
497 +g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
539 539  
540 -1. **Determine [PERIOD_DURATION]:**
541 -11.
542 -111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
543 -111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
544 -111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
545 -111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
546 -111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
547 -111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
548 -111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
549 -1. **Determine [PERIOD_START]:**
499 +**3. Determine [PERIOD_START]:**
500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
550 550  
551 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
552 -
553 -1. **Determine the [PERIOD_END]:**
554 -
502 +**4. Determine the [PERIOD_END]:**
555 555  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
556 556  
557 557  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
558 558  
559 -**Examples: **
507 +**Examples:**
560 560  
561 561  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
562 -
563 563  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
564 -
565 565  b) [REPORTING_YEAR_BASE] = 2010-07-01
566 -
567 -1. [PERIOD_DURATION] = P3M
568 -1. (2-1) * P3M = P3M
569 -
512 +[PERIOD_DURATION] = P3M
513 +(2-1) * P3M = P3M
570 570  2010-07-01 + P3M = 2010-10-01
571 -
572 572  [PERIOD_START] = 2010-10-01
573 -
574 574  4. 2 * P3M = P6M
575 -
576 576  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
577 -
578 578  2011-01-01 + -P1D = 2010-12-31
579 -
580 580  [PERIOD_END] = 2011-12-31
581 581  
582 582  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
583 583  
584 584  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
585 -
586 586  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
587 -
588 588  a) 2011-07-01 = Friday
589 -
590 590  2011-07-01 + P3D = 2011-07-04
591 -
592 592  [REPORTING_YEAR_BASE] = 2011-07-04
593 -
594 -1. [PERIOD_DURATION] = P7D
595 -1. (36-1) * P7D = P245D
596 -
528 +2. [PERIOD_DURATION] = P7D
529 +3. (36-1) * P7D = P245D
597 597  2011-07-04 + P245D = 2012-03-05
598 -
599 599  [PERIOD_START] = 2012-03-05
600 -
601 601  4. 36 * P7D = P252D
602 -
603 603  2011-07-04 + P252D =2012-03-12
604 -
605 605  2012-03-12 + -P1D = 2012-03-11
606 -
607 607  [PERIOD_END] = 2012-03-11
608 608  
609 609  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
610 610  
611 -==== 4.2.7 Distinct Range ====
539 +=== 4.2.7 Distinct Range ===
612 612  
613 613  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
614 614  
615 -==== 4.2.8 Time Format ====
543 +=== 4.2.8 Time Format ===
616 616  
617 617  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
618 618  
619 -|**Code**|**Format**
620 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
621 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
622 -|**GTP**|Superset of all Gregorian Time Periods and date-time
623 -|**RTP**|Superset of all Reporting Time Periods
624 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
625 -|**GY**|Gregorian Year (YYYY)
626 -|**GTM**|Gregorian Year Month (YYYY-MM)
627 -|**GD**|Gregorian Day (YYYY-MM-DD)
628 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
629 -|**RY**|Reporting Year (YYYY-A1)
630 -|**RS**|Reporting Semester (YYYY-Ss)
631 -|**RT**|Reporting Trimester (YYYY-Tt)
632 -|**RQ**|Reporting Quarter (YYYY-Qq)
633 -|**RM**|Reporting Month (YYYY-Mmm)
634 -|**Code**|**Format**
635 -|**RW**|Reporting Week (YYYY-Www)
636 -|**RD**|Reporting Day (YYYY-Dddd)
547 +(% style="width:1049.29px" %)
548 +|**Code**|(% style="width:926px" %)**Format**
549 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
550 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
551 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
552 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
553 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
554 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
555 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
556 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
557 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
558 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
559 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
560 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
561 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
562 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
563 +|**Code**|(% style="width:926px" %)**Format**
564 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
565 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
637 637  
638 - **Table 1: SDMX-ML Time Format Codes**
567 +**Table 1: SDMX-ML Time Format Codes**
639 639  
640 -==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
569 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
641 641  
642 642  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
643 643  
644 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
573 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
645 645  
646 646  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
647 647  
648 648  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
649 649  
650 -==== 4.2.10 Time Zones ====
579 +=== 4.2.10 Time Zones ===
651 651  
652 652  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
653 653  
... ... @@ -668,7 +668,7 @@
668 668  
669 669  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
670 670  
671 -==== 4.2.11 Representing Time Spans Elsewhere ====
600 +=== 4.2.11 Representing Time Spans Elsewhere ===
672 672  
673 673  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
674 674  
... ... @@ -678,30 +678,29 @@
678 678  
679 679  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
680 680  
681 -==== 4.2.12 Notes on Formats ====
610 +=== 4.2.12 Notes on Formats ===
682 682  
683 683  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
684 684  
685 -==== 4.2.13 Effect on Time Ranges ====
614 +=== 4.2.13 Effect on Time Ranges ===
686 686  
687 687  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
688 688  
689 -==== 4.2.14 Time in Query Messages ====
618 +=== 4.2.14 Time in Query Messages ===
690 690  
691 691  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
692 692  
693 693  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
694 694  
695 -|**Operator**|**Rule**
696 -|Greater Than|Any data after the last moment of the period
697 -|Less Than|Any data before the first moment of the period
698 -|Greater Than or Equal To|(((
699 -Any data on or after the first moment of
700 -
701 -the period
624 +(% style="width:1024.29px" %)
625 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
626 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
627 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
628 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
629 +Any data on or after the first moment of the period
702 702  )))
703 -|Less Than or Equal To|Any data on or before the last moment of the period
704 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
631 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
632 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
705 705  
706 706  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
707 707  
... ... @@ -1244,7 +1244,7 @@
1244 1244  
1245 1245  == 10.1 Introduction ==
1246 1246  
1247 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1175 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1248 1248  
1249 1249  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1250 1250  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1268,7 +1268,7 @@
1268 1268  
1269 1269  In any case, the aliases used in the VTL transformations have to be mapped to the
1270 1270  
1271 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1199 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1272 1272  
1273 1273  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1274 1274  
... ... @@ -1278,7 +1278,7 @@
1278 1278  
1279 1279  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1280 1280  
1281 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1209 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1282 1282  
1283 1283  * SDMXprefix                                                                                   
1284 1284  * SDMX-IM-package-name             
... ... @@ -1286,7 +1286,7 @@
1286 1286  * agency-id                                                                          
1287 1287  * maintainedobject-id
1288 1288  * maintainedobject-version
1289 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1217 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1290 1290  * object-id
1291 1291  
1292 1292  The generic structure of the URN is the following:
... ... @@ -1305,7 +1305,7 @@
1305 1305  
1306 1306  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1307 1307  
1308 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1236 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1309 1309  
1310 1310  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1311 1311  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1325,7 +1325,7 @@
1325 1325  
1326 1326  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1327 1327  
1328 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1256 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1329 1329  
1330 1330  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1331 1331  
... ... @@ -1343,8 +1343,8 @@
1343 1343  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1344 1344  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1345 1345  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1346 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1347 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1274 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1275 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1348 1348  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1349 1349  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1350 1350  
... ... @@ -1371,11 +1371,11 @@
1371 1371  
1372 1372  DFR  :=  DF1 + DF2
1373 1373  
1374 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1302 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1375 1375  
1376 1376  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1377 1377  
1378 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1306 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1379 1379  
1380 1380  CL_FREQ
1381 1381  
... ... @@ -1385,7 +1385,7 @@
1385 1385  
1386 1386  SECTOR
1387 1387  
1388 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1316 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1389 1389  
1390 1390  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1391 1391  
... ... @@ -1419,9 +1419,9 @@
1419 1419  
1420 1420  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1421 1421  
1422 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1350 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1423 1423  
1424 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1352 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1425 1425  
1426 1426  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1427 1427  
... ... @@ -1435,15 +1435,15 @@
1435 1435  
1436 1436  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1437 1437  
1438 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1366 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1439 1439  
1440 1440  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1441 1441  
1442 1442  === 10.3.2 General mapping of VTL and SDMX data structures ===
1443 1443  
1444 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1372 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1445 1445  
1446 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1374 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1447 1447  
1448 1448  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1449 1449  
... ... @@ -1453,7 +1453,7 @@
1453 1453  
1454 1454  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1455 1455  
1456 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1384 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1457 1457  
1458 1458  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1459 1459  
... ... @@ -1543,7 +1543,7 @@
1543 1543  
1544 1544  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1545 1545  
1546 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1474 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1547 1547  
1548 1548  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1549 1549  
... ... @@ -1660,15 +1660,15 @@
1660 1660  
1661 1661   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1662 1662  
1663 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1591 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1664 1664  
1665 1665  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1666 1666  
1667 1667  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1668 1668  
1669 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1597 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1670 1670  
1671 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1599 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1672 1672  
1673 1673   Given a SDMX Dataflow and some predefined Dimensions of its
1674 1674  
... ... @@ -1680,14 +1680,14 @@
1680 1680  
1681 1681  In practice, this kind mapping is obtained like follows:
1682 1682  
1683 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1611 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1684 1684  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1685 1685  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1686 1686  
1687 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1615 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1688 1688  
1689 1689  *
1690 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1618 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1691 1691  
1692 1692  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1693 1693  
... ... @@ -1705,7 +1705,7 @@
1705 1705  
1706 1706  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1707 1707  
1708 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1636 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1709 1709  
1710 1710  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1711 1711  
... ... @@ -1715,7 +1715,7 @@
1715 1715  
1716 1716  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1717 1717  
1718 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1646 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1719 1719  
1720 1720  In the example above, for all the datasets of the kind
1721 1721  
... ... @@ -1735,7 +1735,7 @@
1735 1735  
1736 1736  …   …   …
1737 1737  
1738 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1666 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1739 1739  
1740 1740  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1741 1741  
... ... @@ -1758,12 +1758,12 @@
1758 1758  
1759 1759  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1760 1760  
1761 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1762 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1689 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1690 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1763 1763  
1764 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1692 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1765 1765  
1766 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1694 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1767 1767  
1768 1768  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1769 1769  
... ... @@ -1830,9 +1830,9 @@
1830 1830  
1831 1831  …);
1832 1832  
1833 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1761 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1834 1834  
1835 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1763 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1836 1836  
1837 1837  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1838 1838  
... ... @@ -1881,7 +1881,7 @@
1881 1881  
1882 1882  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1883 1883  
1884 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1812 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1885 1885  
1886 1886  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1887 1887  
... ... @@ -2170,12 +2170,12 @@
2170 2170  “true” or “false”
2171 2171  )))
2172 2172  
2173 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2174 2174  
2175 -In case a different default conversion is desired, it can be achieved through the
2176 2176  
2177 -CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2103 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2178 2178  
2105 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2106 +
2179 2179  The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table.
2180 2180  
2181 2181  |(% colspan="2" %)**VTL special characters for the formatting masks**
... ... @@ -2226,7 +2226,7 @@
2226 2226  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2227 2227  | |
2228 2228  
2229 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2157 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2230 2230  
2231 2231  === 10.4.5 Null Values ===
2232 2232  
... ... @@ -2258,12 +2258,18 @@
2258 2258  
2259 2259  For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”.
2260 2260  
2261 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2189 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2262 2262  
2191 +[[image:1747854006117-843.png]]
2192 +
2263 2263  The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework.
2264 2264  
2265 2265  Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below:
2266 2266  
2197 +[[image:1747854039499-443.png]]
2198 +
2199 +[[image:1747854067769-691.png]]
2200 +
2267 2267  Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution.
2268 2268  
2269 2269  == 11.2 Solution ==
... ... @@ -2284,12 +2284,14 @@
2284 2284  
2285 2285  To understand how the **XmlAnyElement** attribute works we present the following two web methods:
2286 2286  
2287 -In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2221 +[[image:1747854096778-844.png]]
2288 2288  
2289 -The difference between the two is that for the first method, **SubmitXml**, the
2223 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2290 2290  
2291 -XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2225 +[[image:1747854127303-270.png]]
2292 2292  
2227 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2228 +
2293 2293  Now we look at the message for the method that uses the **XmlAnyElement** attribute.
2294 2294  
2295 2295  The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter.
... ... @@ -2320,7 +2320,6 @@
2320 2320  
2321 2321  The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains:
2322 2322  
2323 -
2324 2324  ----
2325 2325  
2326 2326  [[~[1~]>>path:#_ftnref1]] The seconds can be reported fractionally
1747854006117-843.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.7 KB
Content
1747854039499-443.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +3.0 KB
Content
1747854067769-691.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +21.4 KB
Content
1747854096778-844.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.6 KB
Content
1747854127303-270.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +12.1 KB
Content