Last modified by Artur on 2025/08/19 10:43

From version 5.2
edited by Helena
on 2025/05/21 21:41
Change comment: There is no comment for this version
To version 6.3
edited by Helena
on 2025/05/21 22:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -371,50 +371,47 @@
371 371  
372 372  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
373 373  
374 -* **Observational Time Period **o **Standard Time Period**
374 +* **Observational Time Period**
375 +** **Standard Time Period**
376 +*** **Basic Time Period**
377 +**** **Gregorian Time Period**
378 +**** //Date Time//
379 +*** **Reporting Time Period**
380 +** //Time Range//
375 375  
376 - § **Basic Time Period**
377 -
378 -* **Gregorian Time Period**
379 -* //Date Time//
380 -
381 -§ **Reporting Time Period **o //Time Range//
382 -
383 383  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
384 384  
385 -==== 4.2.2 Observational Time Period ====
384 +=== 4.2.2 Observational Time Period ===
386 386  
387 387  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
388 388  
389 -==== 4.2.3 Standard Time Period ====
388 +=== 4.2.3 Standard Time Period ===
390 390  
391 391  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
392 392  
393 -==== 4.2.4 Gregorian Time Period ====
392 +=== 4.2.4 Gregorian Time Period ===
394 394  
395 395  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
396 396  
397 -**Gregorian Year:**
398 -
396 +**Gregorian Year:**
399 399  Representation: xs:gYear (YYYY)
398 +Period: the start of January 1 to the end of December 31
400 400  
401 -Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
402 -
400 +**Gregorian Year Month**:
403 403  Representation: xs:gYearMonth (YYYY-MM)
402 +Period: the start of the first day of the month to end of the last day of the month
404 404  
405 -Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
406 -
404 +**Gregorian Day**:
407 407  Representation: xs:date (YYYY-MM-DD)
408 -
409 409  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
410 410  
411 -==== 4.2.5 Date Time ====
408 +=== 4.2.5 Date Time ===
412 412  
413 413  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
414 414  
415 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
416 416  
417 -==== 4.2.6 Standard Reporting Period ====
414 +=== 4.2.6 Standard Reporting Period ===
418 418  
419 419  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
420 420  
... ... @@ -421,75 +421,52 @@
421 421  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
422 422  
423 423  Where:
424 -
425 425  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
426 -
427 427  PERIOD_VALUE indicates the actual period within the year
428 428  
429 429  The following section details each of the standard reporting periods defined in SDMX:
430 430  
431 -**Reporting Year**:
432 -
433 - Period Indicator: A
434 -
426 +**Reporting Year**:
427 +Period Indicator: A
435 435  Period Duration: P1Y (one year)
436 -
437 437  Limit per year: 1
430 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
438 438  
439 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
440 -
441 - Period Indicator: S
442 -
432 +**Reporting Semester:**
433 +Period Indicator: S
443 443  Period Duration: P6M (six months)
444 -
445 445  Limit per year: 2
436 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
446 446  
447 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
448 -
449 - Period Indicator: T
450 -
438 +**Reporting Trimester:**
439 +Period Indicator: T
451 451  Period Duration: P4M (four months)
452 -
453 453  Limit per year: 3
442 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
454 454  
455 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
456 -
457 - Period Indicator: Q
458 -
444 +**Reporting Quarter:**
445 +Period Indicator: Q
459 459  Period Duration: P3M (three months)
460 -
461 461  Limit per year: 4
448 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
462 462  
463 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
464 -
450 +**Reporting Month**:
465 465  Period Indicator: M
466 -
467 467  Period Duration: P1M (one month)
468 -
469 469  Limit per year: 1
470 -
471 471  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
472 472  
473 473  **Reporting Week**:
474 -
475 475  Period Indicator: W
476 -
477 477  Period Duration: P7D (seven days)
478 -
479 479  Limit per year: 53
480 -
481 481  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
482 482  
483 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
484 -
485 485  **Reporting Day**:
486 -
487 487  Period Indicator: D
488 -
489 489  Period Duration: P1D (one day)
490 -
491 491  Limit per year: 366
492 -
493 493  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
494 494  
495 495  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -500,143 +500,109 @@
500 500  
501 501  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
502 502  
503 -1. **Determine [REPORTING_YEAR_BASE]:**
504 -
477 +**~1. Determine [REPORTING_YEAR_BASE]:**
505 505  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
506 -
507 507  This is the [REPORTING_YEAR_START_DATE]
508 -
509 -**a) If the [PERIOD_INDICATOR] is W:**
510 -
511 -1.
512 -11.
513 -111.
514 -1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
515 -
480 +**a) If the [PERIOD_INDICATOR] is W:
481 +~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
516 516  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
517 517  
518 -1.
519 -11.
520 -111.
521 -1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
522 -
484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
523 523  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
486 +b) **Else:** 
487 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
524 524  
525 -b) **Else:**
489 +**2. Determine [PERIOD_DURATION]:**
526 526  
527 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
491 +a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
492 +b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
493 +c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
494 +d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
495 +e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
496 +f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
497 +g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
528 528  
529 -1. **Determine [PERIOD_DURATION]:**
530 -11.
531 -111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
532 -111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
533 -111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
534 -111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
535 -111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
536 -111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
537 -111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
538 -1. **Determine [PERIOD_START]:**
499 +**3. Determine [PERIOD_START]:**
500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
539 539  
540 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
541 -
542 -1. **Determine the [PERIOD_END]:**
543 -
502 +**4. Determine the [PERIOD_END]:**
544 544  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
545 545  
546 546  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
547 547  
548 -**Examples: **
507 +**Examples:**
549 549  
550 550  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
551 -
552 552  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
553 -
554 554  b) [REPORTING_YEAR_BASE] = 2010-07-01
555 -
556 -1. [PERIOD_DURATION] = P3M
557 -1. (2-1) * P3M = P3M
558 -
512 +[PERIOD_DURATION] = P3M
513 +(2-1) * P3M = P3M
559 559  2010-07-01 + P3M = 2010-10-01
560 -
561 561  [PERIOD_START] = 2010-10-01
562 -
563 563  4. 2 * P3M = P6M
564 -
565 565  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
566 -
567 567  2011-01-01 + -P1D = 2010-12-31
568 -
569 569  [PERIOD_END] = 2011-12-31
570 570  
571 571  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
572 572  
573 573  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
574 -
575 575  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
576 -
577 577  a) 2011-07-01 = Friday
578 -
579 579  2011-07-01 + P3D = 2011-07-04
580 -
581 581  [REPORTING_YEAR_BASE] = 2011-07-04
582 -
583 -1. [PERIOD_DURATION] = P7D
584 -1. (36-1) * P7D = P245D
585 -
528 +2. [PERIOD_DURATION] = P7D
529 +3. (36-1) * P7D = P245D
586 586  2011-07-04 + P245D = 2012-03-05
587 -
588 588  [PERIOD_START] = 2012-03-05
589 -
590 590  4. 36 * P7D = P252D
591 -
592 592  2011-07-04 + P252D =2012-03-12
593 -
594 594  2012-03-12 + -P1D = 2012-03-11
595 -
596 596  [PERIOD_END] = 2012-03-11
597 597  
598 598  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
599 599  
600 -==== 4.2.7 Distinct Range ====
539 +=== 4.2.7 Distinct Range ===
601 601  
602 602  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
603 603  
604 -==== 4.2.8 Time Format ====
543 +=== 4.2.8 Time Format ===
605 605  
606 606  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
607 607  
608 -|**Code**|**Format**
609 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
610 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
611 -|**GTP**|Superset of all Gregorian Time Periods and date-time
612 -|**RTP**|Superset of all Reporting Time Periods
613 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
614 -|**GY**|Gregorian Year (YYYY)
615 -|**GTM**|Gregorian Year Month (YYYY-MM)
616 -|**GD**|Gregorian Day (YYYY-MM-DD)
617 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
618 -|**RY**|Reporting Year (YYYY-A1)
619 -|**RS**|Reporting Semester (YYYY-Ss)
620 -|**RT**|Reporting Trimester (YYYY-Tt)
621 -|**RQ**|Reporting Quarter (YYYY-Qq)
622 -|**RM**|Reporting Month (YYYY-Mmm)
623 -|**Code**|**Format**
624 -|**RW**|Reporting Week (YYYY-Www)
625 -|**RD**|Reporting Day (YYYY-Dddd)
547 +(% style="width:1049.29px" %)
548 +|**Code**|(% style="width:926px" %)**Format**
549 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
550 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
551 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
552 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
553 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
554 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
555 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
556 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
557 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
558 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
559 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
560 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
561 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
562 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
563 +|**Code**|(% style="width:926px" %)**Format**
564 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
565 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
626 626  
627 - **Table 1: SDMX-ML Time Format Codes**
567 +**Table 1: SDMX-ML Time Format Codes**
628 628  
629 -==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
569 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
630 630  
631 631  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
632 632  
633 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
573 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
634 634  
635 635  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
636 636  
637 637  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
638 638  
639 -==== 4.2.10 Time Zones ====
579 +=== 4.2.10 Time Zones ===
640 640  
641 641  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
642 642  
... ... @@ -657,7 +657,7 @@
657 657  
658 658  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
659 659  
660 -==== 4.2.11 Representing Time Spans Elsewhere ====
600 +=== 4.2.11 Representing Time Spans Elsewhere ===
661 661  
662 662  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
663 663  
... ... @@ -667,30 +667,29 @@
667 667  
668 668  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
669 669  
670 -==== 4.2.12 Notes on Formats ====
610 +=== 4.2.12 Notes on Formats ===
671 671  
672 672  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
673 673  
674 -==== 4.2.13 Effect on Time Ranges ====
614 +=== 4.2.13 Effect on Time Ranges ===
675 675  
676 676  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
677 677  
678 -==== 4.2.14 Time in Query Messages ====
618 +=== 4.2.14 Time in Query Messages ===
679 679  
680 680  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
681 681  
682 682  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
683 683  
684 -|**Operator**|**Rule**
685 -|Greater Than|Any data after the last moment of the period
686 -|Less Than|Any data before the first moment of the period
687 -|Greater Than or Equal To|(((
688 -Any data on or after the first moment of
689 -
690 -the period
624 +(% style="width:1024.29px" %)
625 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
626 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
627 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
628 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
629 +Any data on or after the first moment of the period
691 691  )))
692 -|Less Than or Equal To|Any data on or before the last moment of the period
693 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
631 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
632 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
694 694  
695 695  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
696 696  
... ... @@ -1233,7 +1233,7 @@
1233 1233  
1234 1234  == 10.1 Introduction ==
1235 1235  
1236 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1175 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1237 1237  
1238 1238  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1239 1239  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1257,7 +1257,7 @@
1257 1257  
1258 1258  In any case, the aliases used in the VTL transformations have to be mapped to the
1259 1259  
1260 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1199 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1261 1261  
1262 1262  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1263 1263  
... ... @@ -1267,7 +1267,7 @@
1267 1267  
1268 1268  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1269 1269  
1270 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1209 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1271 1271  
1272 1272  * SDMXprefix                                                                                   
1273 1273  * SDMX-IM-package-name             
... ... @@ -1275,7 +1275,7 @@
1275 1275  * agency-id                                                                          
1276 1276  * maintainedobject-id
1277 1277  * maintainedobject-version
1278 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1217 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1279 1279  * object-id
1280 1280  
1281 1281  The generic structure of the URN is the following:
... ... @@ -1294,7 +1294,7 @@
1294 1294  
1295 1295  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1296 1296  
1297 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1236 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1298 1298  
1299 1299  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1300 1300  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1314,7 +1314,7 @@
1314 1314  
1315 1315  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1316 1316  
1317 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1256 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1318 1318  
1319 1319  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1320 1320  
... ... @@ -1332,14 +1332,14 @@
1332 1332  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1333 1333  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1334 1334  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1335 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1336 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1274 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1275 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1337 1337  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1338 1338  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1339 1339  
1340 1340  SDMX structural definitions;  o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted;
1341 1341  
1342 -*
1281 +*
1343 1343  ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted;
1344 1344  ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted.
1345 1345  * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,,
... ... @@ -1360,11 +1360,11 @@
1360 1360  
1361 1361  DFR  :=  DF1 + DF2
1362 1362  
1363 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1302 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1364 1364  
1365 1365  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1366 1366  
1367 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1306 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1368 1368  
1369 1369  CL_FREQ
1370 1370  
... ... @@ -1374,7 +1374,7 @@
1374 1374  
1375 1375  SECTOR
1376 1376  
1377 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1316 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1378 1378  
1379 1379  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1380 1380  
... ... @@ -1408,9 +1408,9 @@
1408 1408  
1409 1409  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1410 1410  
1411 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1350 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1412 1412  
1413 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1352 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1414 1414  
1415 1415  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1416 1416  
... ... @@ -1424,15 +1424,15 @@
1424 1424  
1425 1425  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1426 1426  
1427 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1366 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1428 1428  
1429 1429  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1430 1430  
1431 1431  === 10.3.2 General mapping of VTL and SDMX data structures ===
1432 1432  
1433 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1372 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1434 1434  
1435 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1374 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1436 1436  
1437 1437  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1438 1438  
... ... @@ -1442,7 +1442,7 @@
1442 1442  
1443 1443  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1444 1444  
1445 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1384 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1446 1446  
1447 1447  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1448 1448  
... ... @@ -1506,7 +1506,7 @@
1506 1506  
1507 1507   The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension;
1508 1508  
1509 -*
1448 +*
1510 1510  ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
1511 1511  ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
1512 1512  ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
... ... @@ -1513,7 +1513,7 @@
1513 1513  
1514 1514  **10.3.3.3 From SDMX DataAttributes to VTL Measures **
1515 1515  
1516 -*
1455 +*
1517 1517  ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the  two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
1518 1518  
1519 1519  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
... ... @@ -1532,7 +1532,7 @@
1532 1532  
1533 1533  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1534 1534  
1535 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1474 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1536 1536  
1537 1537  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1538 1538  
... ... @@ -1599,7 +1599,7 @@
1599 1599  
1600 1600   the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above
1601 1601  
1602 -*
1541 +*
1603 1603  ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj)
1604 1604  ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set
1605 1605  ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above)
... ... @@ -1649,15 +1649,15 @@
1649 1649  
1650 1650   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1651 1651  
1652 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1591 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1653 1653  
1654 1654  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1655 1655  
1656 1656  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1657 1657  
1658 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1597 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1659 1659  
1660 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1599 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1661 1661  
1662 1662   Given a SDMX Dataflow and some predefined Dimensions of its
1663 1663  
... ... @@ -1669,14 +1669,14 @@
1669 1669  
1670 1670  In practice, this kind mapping is obtained like follows:
1671 1671  
1672 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1611 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1673 1673  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1674 1674  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1675 1675  
1676 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1615 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1677 1677  
1678 -*
1679 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1617 +*
1618 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1680 1680  
1681 1681  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1682 1682  
... ... @@ -1694,7 +1694,7 @@
1694 1694  
1695 1695  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1696 1696  
1697 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1636 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1698 1698  
1699 1699  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1700 1700  
... ... @@ -1704,7 +1704,7 @@
1704 1704  
1705 1705  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1706 1706  
1707 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1646 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1708 1708  
1709 1709  In the example above, for all the datasets of the kind
1710 1710  
... ... @@ -1724,7 +1724,7 @@
1724 1724  
1725 1725  …   …   …
1726 1726  
1727 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1666 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1728 1728  
1729 1729  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1730 1730  
... ... @@ -1747,12 +1747,12 @@
1747 1747  
1748 1748  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1749 1749  
1750 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1751 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1689 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1690 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1752 1752  
1753 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1692 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1754 1754  
1755 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1694 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1756 1756  
1757 1757  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1758 1758  
... ... @@ -1819,9 +1819,9 @@
1819 1819  
1820 1820  …);
1821 1821  
1822 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1761 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1823 1823  
1824 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1763 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1825 1825  
1826 1826  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1827 1827  
... ... @@ -1870,7 +1870,7 @@
1870 1870  
1871 1871  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1872 1872  
1873 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1812 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1874 1874  
1875 1875  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1876 1876  
... ... @@ -2159,12 +2159,12 @@
2159 2159  “true” or “false”
2160 2160  )))
2161 2161  
2162 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2163 2163  
2164 -In case a different default conversion is desired, it can be achieved through the
2165 2165  
2166 -CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2103 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2167 2167  
2105 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2106 +
2168 2168  The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table.
2169 2169  
2170 2170  |(% colspan="2" %)**VTL special characters for the formatting masks**
... ... @@ -2215,7 +2215,7 @@
2215 2215  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2216 2216  | |
2217 2217  
2218 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2157 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2219 2219  
2220 2220  === 10.4.5 Null Values ===
2221 2221  
... ... @@ -2247,12 +2247,18 @@
2247 2247  
2248 2248  For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”.
2249 2249  
2250 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2189 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2251 2251  
2191 +[[image:1747854006117-843.png]]
2192 +
2252 2252  The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework.
2253 2253  
2254 2254  Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below:
2255 2255  
2197 +[[image:1747854039499-443.png]]
2198 +
2199 +[[image:1747854067769-691.png]]
2200 +
2256 2256  Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution.
2257 2257  
2258 2258  == 11.2 Solution ==
... ... @@ -2273,12 +2273,16 @@
2273 2273  
2274 2274  To understand how the **XmlAnyElement** attribute works we present the following two web methods:
2275 2275  
2276 -In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2221 +[[image:1747854096778-844.png]]
2277 2277  
2278 -The difference between the two is that for the first method, **SubmitXml**, the
2223 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2279 2279  
2280 -XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2225 +[[image:1747854127303-270.png]]
2281 2281  
2227 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2228 +
2229 +[[image:1747854163928-581.png]]
2230 +
2282 2282  Now we look at the message for the method that uses the **XmlAnyElement** attribute.
2283 2283  
2284 2284  The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter.
... ... @@ -2309,7 +2309,6 @@
2309 2309  
2310 2310  The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains:
2311 2311  
2312 -
2313 2313  ----
2314 2314  
2315 2315  [[~[1~]>>path:#_ftnref1]] The seconds can be reported fractionally
1747854006117-843.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.7 KB
Content
1747854039499-443.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +3.0 KB
Content
1747854067769-691.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +21.4 KB
Content
1747854096778-844.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.6 KB
Content
1747854127303-270.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +12.1 KB
Content
1747854163928-581.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +29.8 KB
Content