Last modified by Artur on 2025/08/19 10:43

From version 5.4
edited by Helena
on 2025/05/21 21:50
Change comment: There is no comment for this version
To version 3.1
edited by Helena
on 2025/05/21 17:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -13,8 +13,10 @@
13 13  
14 14  == 1.1 Purpose ==
15 15  
16 -The intention of this document is to document certain aspects of SDMX that are important to understand and will aid implementation decisions. The explanations here supplement the information documented in the SDMX XML schema and the Information Model.
16 +The intention of this document is to document certain aspects of SDMX that are important to understand and will aid implementation decisions. The explanations here supplement the information documented in the SDMX XML schema and the
17 17  
18 +Information Model.
19 +
18 18  == 1.2 Structure ==
19 19  
20 20  This document is organized into the following major parts:
... ... @@ -39,7 +39,7 @@
39 39  
40 40  == 3.2 SDMX Information Model for Format Implementers ==
41 41  
42 -=== 3.2.1 Introduction ===
44 +=== 3.2.1 Introduction ===
43 43  
44 44  The purpose of this sub-section is to provide an introduction to the SDMX-IM relating to Data Structure Definitions and Data Sets for those whose primary interest is in the use of the XML or EDI formats.  For those wishing to have a deeper understanding of the Information Model, the full SDMX-IM document, and other sections in this guide provide a more in-depth view, along with UML diagrams and supporting explanation. For those who are unfamiliar with DSDs, an appendix to the SDMX-IM provides a tutorial which may serve as a useful introduction.
45 45  
... ... @@ -47,12 +47,16 @@
47 47  
48 48  The Data Structure Definition and Data Set parts of the information model are consistent with the GESMES/TS version 3.0 Data Model (called SDMX-EDI in the SDMX standard), with these exceptions:
49 49  
50 -* the “sibling group” construct has been generalized to permit any dimension or dimensions to be wildcarded, and not just frequency, as in GESMES/TS. It has been renamed a “group” to distinguish it from the “sibling group” where only frequency is wildcarded. The set of allowable partial “group” keys must be declared in the DSD, and attributes may be attached to any of these group keys;
51 -* furthermore, whilst the “group” has been retained for compatibility with version 2.0 and with SDMX-EDI, it has, at version 2.1, been replaced by the “Attribute Relationship” definition which is explained later
52 -* the section on data representation is now a convention, to support interoperability with EDIFACT-syntax implementations ( see section 3.3.2);
52 +the “sibling group” construct has been generalized to permit any dimension or dimensions to be wildcarded, and not just frequency, as in GESMES/TS. It has been renamed a “group” to distinguish it from the “sibling group” where only frequency is wildcarded. The set of allowable partial “group” keys must be declared in the DSD, and attributes may be attached to any of these group keys;
53 53  
54 -DSD-specific data formats are derived from the model, and some supporting features for declaring multiple measures have been added to the structural metadata descriptions Clearly, this is not a coincidence. The GESMES/TS Data Model provides the foundation for the EDIFACT messages in SDMX-EDI, and also is the starting point for the development of SDMX-ML.
54 +furthermore, whilst the group has been retained for compatibility with version 2.0 and with SDMX-EDI, it has, at version 2.1, been replaced by the “Attribute Relationship” definition which is explained later
55 55  
56 +the section on data representation is now a convention, to support interoperability with EDIFACT-syntax implementations ( see section 3.3.2);
57 +
58 +DSD-specific data formats are derived from the model, and some supporting features for declaring multiple measures have been added to the structural metadata descriptions
59 +
60 +Clearly, this is not a coincidence. The GESMES/TS Data Model provides the foundation for the EDIFACT messages in SDMX-EDI, and also is the starting point for the development of SDMX-ML.
61 +
56 56  Note that in the descriptions below, text in courier and italicised are the names used in the information model (e.g. //DataSet//).
57 57  
58 58  == 3.3 SDMX-ML and SDMX-EDI: Comparison of Expressive Capabilities and Function ==
... ... @@ -59,16 +59,22 @@
59 59  
60 60  SDMX offers several equivalent formats for describing data and structural metadata, optimized for use in different applications. Although all of these formats are derived directly from the SDM-IM, and are thus equivalent, the syntaxes used to express the model place some restrictions on their use. Also, different optimizations provide different capabilities. This section describes these differences, and provides some rules for applications which may need to support more than one SDMX format or syntax. This section is constrained to the Data Structure Definitionand the Date Set.
61 61  
62 -=== 3.3.1 Format Optimizations and Differences ===
68 +=== 3.3.1 Format Optimizations and Differences ===
63 63  
64 64  The following section provides a brief overview of the differences between the various SDMX formats.
65 65  
66 -Version 2.0 was characterised by 4 data messages, each with a distinct format: Generic, Compact, Cross-Sectional and Utility. Because of the design, data in some formats could not always be related to another format. In version 2.1, this issue has been addressed by merging some formats and eliminating others. As a result, in SDMX 2.1 there are just two types of data formats: //GenericData// and //StructureSpecificData// (i.e. specific to one Data Structure Definition).
72 +Version 2.0 was characterised by 4 data messages, each with a distinct format: Generic, Compact, Cross-Sectional and Utility. Because of the design, data in some formats could not always be related to another format. In version 2.1, this issue has been addressed by merging some formats and eliminating others. As a result, in
67 67  
74 +SDMX 2.1 there are just two types of data formats: //GenericData// and
75 +
76 +//StructureSpecificData// (i.e. specific to one Data Structure Definition).
77 +
68 68  Both of these formats are now flexible enough to allow for data to be oriented in series with any dimension used to disambiguate the observations (as opposed to only time or a cross sectional measure in version 2.0). The formats have also been expanded to allow for ungrouped observations.
69 69  
70 -To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
80 +To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages;
71 71  
82 +//GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
83 +
72 72  === //Structure Definition// ===
73 73  
74 74  The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax.
... ... @@ -77,8 +77,10 @@
77 77  
78 78  === //Validation// ===
79 79  
80 -SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.)
92 +SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural
81 81  
94 +definition.)
95 +
82 82  The SDMX-ML Generic Data Message also leaves validation above the XML syntax level to the application.
83 83  
84 84  The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool.
... ... @@ -89,13 +89,17 @@
89 89  
90 90  === //Character Encodings// ===
91 91  
92 -All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
106 +All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER
93 93  
108 +SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND
109 +
110 +DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
111 +
94 94  === //Data Typing// ===
95 95  
96 96  The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below.
97 97  
98 -==== 3.3.2 Data Types ====
116 +==== 3.3.2 Data Types ====
99 99  
100 100  The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them.
101 101  
... ... @@ -111,8 +111,7 @@
111 111  1*. Maximum 70 characters.
112 112  1*. From ISO 8859-1 character set (including accented characters)
113 113  1. **Descriptions **are:
114 -1*. Maximum 350 characters;
115 -1*. From ISO 8859-1 character set.
132 +1*. Maximum 350 characters;  From ISO 8859-1 character set.
116 116  1. **Code values** are:
117 117  1*. Maximum 18 characters;
118 118  1*. Any of A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore), / (solidus, slash), = (equal sign), - (hyphen);
... ... @@ -121,43 +121,37 @@
121 121  
122 122  A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore)
123 123  
124 -**5. Observation values** are:
141 +1. **Observation values** are:
142 +1*. Decimal numerics (signed only if they are negative);
143 +1*. The maximum number of significant figures is:
144 +1*. 15 for a positive number
145 +1*. 14 for a positive decimal or a negative integer
146 +1*. 13 for a negative decimal
147 +1*. Scientific notation may be used.
148 +1. **Uncoded statistical concept** text values are:
149 +1*.
150 +1**. Maximum 1050 characters;
151 +1**. From ISO 8859-1 character set.
152 +1. **Time series keys**:
125 125  
126 -* Decimal numerics (signed only if they are negative);
127 -* The maximum number of significant figures is:
128 -* 15 for a positive number
129 -* 14 for a positive decimal or a negative integer
130 -* 13 for a negative decimal
131 -* Scientific notation may be used.
154 +In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters.  The separator character is a colon (“:”) by conventional usage.
132 132  
133 -**6. Uncoded statistical concept** text values are:
134 -
135 -* Maximum 1050 characters;
136 -* From ISO 8859-1 character set.
137 -
138 -**7. Time series keys**:
139 -
140 -In principle, the maximum permissible length of time series keys used in a data exchange does not need to be restricted. However, for working purposes, an effort is made to limit the maximum length to 35 characters; in this length, also (for SDMXEDI) one (separator) position is included between all successive dimension values; this means that the maximum length allowed for a pure series key (concatenation of dimension values) can be less than 35 characters. The separator character is a colon (“:”) by conventional usage.
141 -
142 142  == 3.4 SDMX-ML and SDMX-EDI Best Practices ==
143 143  
144 -=== 3.4.1 Reporting and Dissemination Guidelines ===
158 +=== 3.4.1 Reporting and Dissemination Guidelines ===
145 145  
146 -==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
160 +**3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges **Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
147 147  
148 -Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
149 -
150 150  Central institutions can play a double role:
151 151  
152 152  * collecting and further disseminating statistics;
153 153  * devising structural definitions for use in data exchanges.
154 154  
155 -==== 3.4.1.2 Defining Data Structure Definitions (DSDs) ====
167 +**3.4.1.2 Defining Data Structure Definitions (DSDs)**
156 156  
157 157  The following guidelines are suggested for building a DSD. However, it is expected that these guidelines will be considered by central institutions when devising new DSDs.
158 158  
159 -(% class="wikigeneratedid" id="HDimensions2CAttributesandCodeLists" %)
160 -__Dimensions, Attributes and Code Lists__
171 +=== Dimensions, Attributes and Code Lists ===
161 161  
162 162  **//Avoid dimensions that are not appropriate for all the series in the data structure definition.//**  If some dimensions are not applicable (this is evident from the need to have a code in a code list which is marked as “not applicable”, “not relevant” or “total”) for some series then consider moving these series to a new data structure definition in which these dimensions are dropped from the key structure. This is a judgement call as it is sometimes difficult to achieve this without increasing considerably the number of DSDs.
163 163  
... ... @@ -187,8 +187,7 @@
187 187  
188 188  The same code list can be used for several statistical concepts, within a data structure definition or across DSDs. Note that SDMX has recognised that these classifications are often quite large and the usage of codes in any one DSD is only a small extract of the full code list. In this version of the standard it is possible to exchange and disseminate a **partial code list** which is extracted from the full code list and which supports the dimension values valid for a particular DSD.
189 189  
190 -(% class="wikigeneratedid" id="HDataStructureDefinitionStructure" %)
191 -__Data Structure Definition Structure__
201 +=== Data Structure Definition Structure ===
192 192  
193 193  The following items have to be specified by a structural definitions maintenance agency when defining a new data structure definition:
194 194  
... ... @@ -218,7 +218,7 @@
218 218  * code list name
219 219  * code values and descriptions
220 220  
221 -Definition of data flow definitions. Two (or more) partners performing data exchanges in a certain context need to agree on:
231 +Definition of data flow definitions.  Two (or more) partners performing data exchanges in a certain context need to agree on:
222 222  
223 223  * the list of data set identifiers they will be using;
224 224  * for each data flow:
... ... @@ -225,12 +225,10 @@
225 225  * its content and description
226 226  * the relevant DSD that defines the structure of the data reported or disseminated according the the dataflow definition
227 227  
228 -==== 3.4.1.3 Exchanging Attributes ====
238 +**3.4.1.3 Exchanging Attributes**
229 229  
230 -===== //3.4.1.3.1 Attributes on series, sibling and data set level // =====
240 +**//3.4.1.3.1 Attributes on series, sibling and data set level //**//Static properties//.
231 231  
232 -//Static properties//.
233 -
234 234  * Upon creation of a series the sender has to provide to the receiver values for all mandatory attributes. In case they are available, values for conditional attributes  should also be provided. Whereas initially this information may be provided by means other than SDMX-ML or SDMX-EDI messages (e.g. paper, telephone) it is expected that partner institutions will be in a position to provide this information in SDMX-ML or SDMX-EDI format over time.
235 235  * A centre may agree with its data exchange partners special procedures for authorising the setting of attributes' initial values.
236 236  * Attribute values at a data set level are set and maintained exclusively by the centre administrating the exchanged data set.
... ... @@ -247,21 +247,21 @@
247 247  * If the “observation status” changes and the observation remains unchanged, both components would have to be reported.
248 248  * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation.
249 249  
250 -=== 3.4.2 Best Practices for Batch Data Exchange ===
258 +==== 3.4.2 Best Practices for Batch Data Exchange ====
251 251  
252 -==== 3.4.2.1 Introduction ====
260 +**3.4.2.1 Introduction**
253 253  
254 254  Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats.
255 255  
256 -==== 3.4.2.2 Positioning of the Dimension "Frequency" ====
264 +**3.4.2.2 Positioning of the Dimension "Frequency"**
257 257  
258 258  The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level.
259 259  
260 -==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ====
268 +**3.4.2.3 Identification of Data Structure Definitions (DSDs)**
261 261  
262 262  In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc.
263 263  
264 -==== 3.4.2.4 Identification of the Data Flows ====
272 +**3.4.2.4 Identification of the Data Flows**
265 265  
266 266  In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//.
267 267  
... ... @@ -269,7 +269,7 @@
269 269  
270 270  Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data.
271 271  
272 -==== 3.4.2.5 Special Issues ====
280 +**3.4.2.5 Special Issues**
273 273  
274 274  ===== 3.4.2.5.1 "Frequency" related issues =====
275 275  
... ... @@ -280,6 +280,7 @@
280 280  
281 281  **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp.
282 282  
291 +
283 283  = 4 General Notes for Implementers =
284 284  
285 285  This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing.
... ... @@ -290,31 +290,39 @@
290 290  
291 291  There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents.
292 292  
293 -(% style="width:912.294px" %)
294 -|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)(((
295 -**Java Data Type **
302 +|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
303 +**Java Data Type**
304 +
305 +**~ **
296 296  )))
297 -|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String
298 -|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er
299 -|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int
300 -|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long
301 -|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short
302 -|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al
303 -|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float
304 -|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double
305 -|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean
306 -|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String
307 -|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
308 -|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
309 -|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
310 -|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
311 -|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
312 -|(% style="width:172px" %)(((
313 -Day, MonthDay, Month
314 -)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
315 -|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype
316 -|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration
307 +|String|xsd:string|System.String|java.lang.String
308 +|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er
309 +|Integer|xsd:int|System.Int32|int
310 +|Long|xsd.long|System.Int64|long
311 +|Short|xsd:short|System.Int16|short
312 +|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al
313 +|Float|xsd:float|System.Single|float
314 +|Double|xsd:double|System.Double|double
315 +|Boolean|xsd:boolean|System.Boolean|boolean
316 +|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String
317 +|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
318 +|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
319 +|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
320 +|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
321 +|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
322 +|(((
323 +Day,
317 317  
325 +MonthDay, Month
326 +)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
327 +|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype
328 +|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
329 +**Java Data Type**
330 +
331 +**~ **
332 +)))
333 +| | |n|.Duration
334 +
318 318  There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary:
319 319  
320 320  * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9)
... ... @@ -340,8 +340,10 @@
340 340  * KeyValues (common:DataKeyType)
341 341  * IdentifiableReference (types for each identifiable object)
342 342  * DataSetReference (common:DataSetReferenceType)
343 -* AttachmentConstraintReference (common:AttachmentConstraintReferenceType)
360 +* AttachmentConstraintReference
344 344  
362 +(common:AttachmentConstraintReferenceType)
363 +
345 345  Data types also have a set of facets:
346 346  
347 347  * isSequence = true | false (indicates a sequentially increasing value)
... ... @@ -363,7 +363,7 @@
363 363  
364 364  == 4.2 Time and Time Format ==
365 365  
366 -=== 4.2.1 Introduction ===
385 +==== 4.2.1 Introduction ====
367 367  
368 368  First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled.
369 369  
... ... @@ -371,47 +371,50 @@
371 371  
372 372  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
373 373  
374 -* **Observational Time Period**
375 -** **Standard Time Period**
376 -*** **Basic Time Period**
377 -**** **Gregorian Time Period**
378 -**** //Date Time//
379 -*** **Reporting Time Period**
380 -** //Time Range//
393 +* **Observational Time Period **o **Standard Time Period**
381 381  
395 + § **Basic Time Period**
396 +
397 +* **Gregorian Time Period**
398 +* //Date Time//
399 +
400 +§ **Reporting Time Period **o //Time Range//
401 +
382 382  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
383 383  
384 -=== 4.2.2 Observational Time Period ===
404 +==== 4.2.2 Observational Time Period ====
385 385  
386 386  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
387 387  
388 -=== 4.2.3 Standard Time Period ===
408 +==== 4.2.3 Standard Time Period ====
389 389  
390 390  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
391 391  
392 -=== 4.2.4 Gregorian Time Period ===
412 +==== 4.2.4 Gregorian Time Period ====
393 393  
394 394  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
395 395  
396 -**Gregorian Year:**
416 +**Gregorian Year:**
417 +
397 397  Representation: xs:gYear (YYYY)
398 -Period: the start of January 1 to the end of December 31
399 399  
400 -**Gregorian Year Month**:
420 +Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
421 +
401 401  Representation: xs:gYearMonth (YYYY-MM)
402 -Period: the start of the first day of the month to end of the last day of the month
403 403  
404 -**Gregorian Day**:
424 +Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
425 +
405 405  Representation: xs:date (YYYY-MM-DD)
427 +
406 406  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
407 407  
408 -=== 4.2.5 Date Time ===
430 +==== 4.2.5 Date Time ====
409 409  
410 410  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
411 411  
412 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
434 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
413 413  
414 -=== 4.2.6 Standard Reporting Period ===
436 +==== 4.2.6 Standard Reporting Period ====
415 415  
416 416  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
417 417  
... ... @@ -418,52 +418,75 @@
418 418  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
419 419  
420 420  Where:
443 +
421 421  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
445 +
422 422  PERIOD_VALUE indicates the actual period within the year
423 423  
424 424  The following section details each of the standard reporting periods defined in SDMX:
425 425  
426 -**Reporting Year**:
427 -Period Indicator: A
450 +**Reporting Year**:
451 +
452 + Period Indicator: A
453 +
428 428  Period Duration: P1Y (one year)
455 +
429 429  Limit per year: 1
430 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
431 431  
432 -**Reporting Semester:**
433 -Period Indicator: S
458 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
459 +
460 + Period Indicator: S
461 +
434 434  Period Duration: P6M (six months)
463 +
435 435  Limit per year: 2
436 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
437 437  
438 -**Reporting Trimester:**
439 -Period Indicator: T
466 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
467 +
468 + Period Indicator: T
469 +
440 440  Period Duration: P4M (four months)
471 +
441 441  Limit per year: 3
442 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
443 443  
444 -**Reporting Quarter:**
445 -Period Indicator: Q
474 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
475 +
476 + Period Indicator: Q
477 +
446 446  Period Duration: P3M (three months)
479 +
447 447  Limit per year: 4
448 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
449 449  
450 -**Reporting Month**:
482 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
483 +
451 451  Period Indicator: M
485 +
452 452  Period Duration: P1M (one month)
487 +
453 453  Limit per year: 1
489 +
454 454  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
455 455  
456 456  **Reporting Week**:
493 +
457 457  Period Indicator: W
495 +
458 458  Period Duration: P7D (seven days)
497 +
459 459  Limit per year: 53
499 +
460 460  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
461 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
462 462  
502 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
503 +
463 463  **Reporting Day**:
505 +
464 464  Period Indicator: D
507 +
465 465  Period Duration: P1D (one day)
509 +
466 466  Limit per year: 366
511 +
467 467  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
468 468  
469 469  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -474,31 +474,45 @@
474 474  
475 475  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
476 476  
477 -**~1. Determine [REPORTING_YEAR_BASE]:**
522 +1. **Determine [REPORTING_YEAR_BASE]:**
523 +
478 478  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
525 +
479 479  This is the [REPORTING_YEAR_START_DATE]
480 -**a) If the [PERIOD_INDICATOR] is W:
481 -~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
527 +
528 +**a) If the [PERIOD_INDICATOR] is W:**
529 +
530 +1.
531 +11.
532 +111.
533 +1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
534 +
482 482  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
483 483  
484 -​​​​​​​2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
537 +1.
538 +11.
539 +111.
540 +1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
541 +
485 485  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
486 -b) **Else:** 
487 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
488 488  
489 -**2. Determine [PERIOD_DURATION]:**
544 +b) **Else:**
490 490  
491 -a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
492 -b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
493 -c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
494 -d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
495 -e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
496 -f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
497 -g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
546 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
498 498  
499 -**3. Determine [PERIOD_START]:**
500 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
548 +1. **Determine [PERIOD_DURATION]:**
549 +11.
550 +111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
551 +111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
552 +111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
553 +111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
554 +111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
555 +111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
556 +111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
557 +1. **Determine [PERIOD_START]:**
501 501  
559 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
560 +
502 502  1. **Determine the [PERIOD_END]:**
503 503  
504 504  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
... ... @@ -1193,7 +1193,7 @@
1193 1193  
1194 1194  == 10.1 Introduction ==
1195 1195  
1196 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1255 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1197 1197  
1198 1198  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1199 1199  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1217,7 +1217,7 @@
1217 1217  
1218 1218  In any case, the aliases used in the VTL transformations have to be mapped to the
1219 1219  
1220 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1279 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1221 1221  
1222 1222  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1223 1223  
... ... @@ -1227,7 +1227,7 @@
1227 1227  
1228 1228  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1229 1229  
1230 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1289 +The SDMX URN[[(% class="wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1231 1231  
1232 1232  * SDMXprefix                                                                                   
1233 1233  * SDMX-IM-package-name             
... ... @@ -1235,7 +1235,7 @@
1235 1235  * agency-id                                                                          
1236 1236  * maintainedobject-id
1237 1237  * maintainedobject-version
1238 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1297 +* container-object-id [[(% class="wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1239 1239  * object-id
1240 1240  
1241 1241  The generic structure of the URN is the following:
... ... @@ -1254,7 +1254,7 @@
1254 1254  
1255 1255  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1256 1256  
1257 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1316 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1258 1258  
1259 1259  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1260 1260  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1274,7 +1274,7 @@
1274 1274  
1275 1275  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1276 1276  
1277 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1336 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1278 1278  
1279 1279  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1280 1280  
... ... @@ -1292,14 +1292,14 @@
1292 1292  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1293 1293  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1294 1294  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1295 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1296 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1354 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1355 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1297 1297  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1298 1298  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1299 1299  
1300 1300  SDMX structural definitions;  o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted;
1301 1301  
1302 -*
1361 +*
1303 1303  ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted;
1304 1304  ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted.
1305 1305  * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,,
... ... @@ -1320,11 +1320,11 @@
1320 1320  
1321 1321  DFR  :=  DF1 + DF2
1322 1322  
1323 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1382 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1324 1324  
1325 1325  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1326 1326  
1327 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1386 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1328 1328  
1329 1329  CL_FREQ
1330 1330  
... ... @@ -1334,7 +1334,7 @@
1334 1334  
1335 1335  SECTOR
1336 1336  
1337 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1396 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1338 1338  
1339 1339  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1340 1340  
... ... @@ -1368,9 +1368,9 @@
1368 1368  
1369 1369  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1370 1370  
1371 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1430 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1372 1372  
1373 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1432 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1374 1374  
1375 1375  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1376 1376  
... ... @@ -1384,15 +1384,15 @@
1384 1384  
1385 1385  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1386 1386  
1387 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1446 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1388 1388  
1389 1389  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1390 1390  
1391 1391  === 10.3.2 General mapping of VTL and SDMX data structures ===
1392 1392  
1393 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1452 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1394 1394  
1395 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1454 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1396 1396  
1397 1397  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1398 1398  
... ... @@ -1402,7 +1402,7 @@
1402 1402  
1403 1403  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1404 1404  
1405 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1464 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1406 1406  
1407 1407  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1408 1408  
... ... @@ -1466,7 +1466,7 @@
1466 1466  
1467 1467   The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension;
1468 1468  
1469 -*
1528 +*
1470 1470  ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
1471 1471  ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
1472 1472  ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
... ... @@ -1473,7 +1473,7 @@
1473 1473  
1474 1474  **10.3.3.3 From SDMX DataAttributes to VTL Measures **
1475 1475  
1476 -*
1535 +*
1477 1477  ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the  two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
1478 1478  
1479 1479  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
... ... @@ -1492,7 +1492,7 @@
1492 1492  
1493 1493  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1494 1494  
1495 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1554 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1496 1496  
1497 1497  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1498 1498  
... ... @@ -1559,7 +1559,7 @@
1559 1559  
1560 1560   the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above
1561 1561  
1562 -*
1621 +*
1563 1563  ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj)
1564 1564  ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set
1565 1565  ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above)
... ... @@ -1609,15 +1609,15 @@
1609 1609  
1610 1610   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1611 1611  
1612 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1671 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1613 1613  
1614 1614  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1615 1615  
1616 1616  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1617 1617  
1618 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1677 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1619 1619  
1620 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1679 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1621 1621  
1622 1622   Given a SDMX Dataflow and some predefined Dimensions of its
1623 1623  
... ... @@ -1629,14 +1629,14 @@
1629 1629  
1630 1630  In practice, this kind mapping is obtained like follows:
1631 1631  
1632 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1691 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1633 1633  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1634 1634  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1635 1635  
1636 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1695 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1637 1637  
1638 -*
1639 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1697 +*
1698 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1640 1640  
1641 1641  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1642 1642  
... ... @@ -1654,7 +1654,7 @@
1654 1654  
1655 1655  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1656 1656  
1657 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1716 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1658 1658  
1659 1659  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1660 1660  
... ... @@ -1664,7 +1664,7 @@
1664 1664  
1665 1665  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1666 1666  
1667 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1726 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1668 1668  
1669 1669  In the example above, for all the datasets of the kind
1670 1670  
... ... @@ -1684,7 +1684,7 @@
1684 1684  
1685 1685  …   …   …
1686 1686  
1687 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1746 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1688 1688  
1689 1689  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1690 1690  
... ... @@ -1707,12 +1707,12 @@
1707 1707  
1708 1708  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1709 1709  
1710 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1711 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1769 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1770 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1712 1712  
1713 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1772 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1714 1714  
1715 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1774 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1716 1716  
1717 1717  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1718 1718  
... ... @@ -1779,9 +1779,9 @@
1779 1779  
1780 1780  …);
1781 1781  
1782 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1841 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1783 1783  
1784 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1843 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1785 1785  
1786 1786  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1787 1787  
... ... @@ -1830,7 +1830,7 @@
1830 1830  
1831 1831  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1832 1832  
1833 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1892 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1834 1834  
1835 1835  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1836 1836  
... ... @@ -2175,7 +2175,7 @@
2175 2175  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2176 2176  | |
2177 2177  
2178 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2237 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2179 2179  
2180 2180  === 10.4.5 Null Values ===
2181 2181