Last modified by Artur on 2025/08/19 10:43

From version 5.4
edited by Helena
on 2025/05/21 21:50
Change comment: There is no comment for this version
To version 7.8
edited by Helena
on 2025/05/21 22:20
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -69,13 +69,15 @@
69 69  
70 70  To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements.
71 71  
72 -=== //Structure Definition// ===
72 +(% class="wikigeneratedid" id="HStructureDefinition" %)
73 +**//Structure Definition//**
73 73  
74 74  The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax.
75 75  
76 76  The SDMX-ML Structure Message allows for the structures on which a Data Structure Definition depends – that is, codelists and concepts – to be either included in the message or to be referenced by the message containing the data structure definition. XML syntax is designed to leverage URIs and other Internet-based referencing mechanisms, and these are used in the SDMX-ML message. This option is not available to those using the SDMX-EDI structure message.
77 77  
78 -=== //Validation// ===
79 +(% class="wikigeneratedid" id="HValidation" %)
80 +**//Validation//**
79 79  
80 80  SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.)
81 81  
... ... @@ -83,19 +83,22 @@
83 83  
84 84  The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool.
85 85  
86 -=== //Update and Delete Messages and Documentation Messages// ===
88 +(% class="wikigeneratedid" id="HUpdateandDeleteMessagesandDocumentationMessages" %)
89 +//Update and Delete Messages and Documentation Messages//
87 87  
88 88  All SDMX data messages allow for both delete messages and messages consisting of only data or only documentation.
89 89  
90 -=== //Character Encodings// ===
93 +(% class="wikigeneratedid" id="HCharacterEncodings" %)
94 +**//Character Encodings//**
91 91  
92 92  All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa.
93 93  
94 -=== //Data Typing// ===
98 +(% class="wikigeneratedid" id="HDataTyping" %)
99 +**//Data Typing//**
95 95  
96 96  The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below.
97 97  
98 -==== 3.3.2 Data Types ====
103 +=== 3.3.2 Data Types ===
99 99  
100 100  The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them.
101 101  
... ... @@ -409,7 +409,7 @@
409 409  
410 410  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
411 411  
412 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
417 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
413 413  
414 414  === 4.2.6 Standard Reporting Period ===
415 415  
... ... @@ -458,7 +458,7 @@
458 458  Period Duration: P7D (seven days)
459 459  Limit per year: 53
460 460  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
461 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
466 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
462 462  
463 463  **Reporting Day**:
464 464  Period Indicator: D
... ... @@ -481,7 +481,7 @@
481 481  ~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
482 482  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
483 483  
484 -​​​​​​​2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
489 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
485 485  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
486 486  b) **Else:** 
487 487  The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
... ... @@ -497,106 +497,86 @@
497 497  g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
498 498  
499 499  **3. Determine [PERIOD_START]:**
500 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
505 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
501 501  
502 -1. **Determine the [PERIOD_END]:**
503 -
507 +**4. Determine the [PERIOD_END]:**
504 504  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
505 505  
506 506  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
507 507  
508 -**Examples: **
512 +**Examples:**
509 509  
510 510  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
511 -
512 512  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
513 -
514 514  b) [REPORTING_YEAR_BASE] = 2010-07-01
515 -
516 -1. [PERIOD_DURATION] = P3M
517 -1. (2-1) * P3M = P3M
518 -
517 +[PERIOD_DURATION] = P3M
518 +(2-1) * P3M = P3M
519 519  2010-07-01 + P3M = 2010-10-01
520 -
521 521  [PERIOD_START] = 2010-10-01
522 -
523 523  4. 2 * P3M = P6M
524 -
525 525  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
526 -
527 527  2011-01-01 + -P1D = 2010-12-31
528 -
529 529  [PERIOD_END] = 2011-12-31
530 530  
531 531  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
532 532  
533 533  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
534 -
535 535  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
536 -
537 537  a) 2011-07-01 = Friday
538 -
539 539  2011-07-01 + P3D = 2011-07-04
540 -
541 541  [REPORTING_YEAR_BASE] = 2011-07-04
542 -
543 -1. [PERIOD_DURATION] = P7D
544 -1. (36-1) * P7D = P245D
545 -
533 +2. [PERIOD_DURATION] = P7D
534 +3. (36-1) * P7D = P245D
546 546  2011-07-04 + P245D = 2012-03-05
547 -
548 548  [PERIOD_START] = 2012-03-05
549 -
550 550  4. 36 * P7D = P252D
551 -
552 552  2011-07-04 + P252D =2012-03-12
553 -
554 554  2012-03-12 + -P1D = 2012-03-11
555 -
556 556  [PERIOD_END] = 2012-03-11
557 557  
558 558  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
559 559  
560 -==== 4.2.7 Distinct Range ====
544 +=== 4.2.7 Distinct Range ===
561 561  
562 562  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
563 563  
564 -==== 4.2.8 Time Format ====
548 +=== 4.2.8 Time Format ===
565 565  
566 566  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
567 567  
568 -|**Code**|**Format**
569 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
570 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
571 -|**GTP**|Superset of all Gregorian Time Periods and date-time
572 -|**RTP**|Superset of all Reporting Time Periods
573 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
574 -|**GY**|Gregorian Year (YYYY)
575 -|**GTM**|Gregorian Year Month (YYYY-MM)
576 -|**GD**|Gregorian Day (YYYY-MM-DD)
577 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
578 -|**RY**|Reporting Year (YYYY-A1)
579 -|**RS**|Reporting Semester (YYYY-Ss)
580 -|**RT**|Reporting Trimester (YYYY-Tt)
581 -|**RQ**|Reporting Quarter (YYYY-Qq)
582 -|**RM**|Reporting Month (YYYY-Mmm)
583 -|**Code**|**Format**
584 -|**RW**|Reporting Week (YYYY-Www)
585 -|**RD**|Reporting Day (YYYY-Dddd)
552 +(% style="width:1049.29px" %)
553 +|**Code**|(% style="width:926px" %)**Format**
554 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
555 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
556 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
557 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
558 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
559 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
560 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
561 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
562 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
563 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
564 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
565 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
566 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
567 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
568 +|**Code**|(% style="width:926px" %)**Format**
569 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
570 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
586 586  
587 - **Table 1: SDMX-ML Time Format Codes**
572 +**Table 1: SDMX-ML Time Format Codes**
588 588  
589 -==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
574 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
590 590  
591 591  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
592 592  
593 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
578 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
594 594  
595 595  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
596 596  
597 597  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
598 598  
599 -==== 4.2.10 Time Zones ====
584 +=== 4.2.10 Time Zones ===
600 600  
601 601  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
602 602  
... ... @@ -617,7 +617,7 @@
617 617  
618 618  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
619 619  
620 -==== 4.2.11 Representing Time Spans Elsewhere ====
605 +=== 4.2.11 Representing Time Spans Elsewhere ===
621 621  
622 622  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
623 623  
... ... @@ -627,30 +627,29 @@
627 627  
628 628  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
629 629  
630 -==== 4.2.12 Notes on Formats ====
615 +=== 4.2.12 Notes on Formats ===
631 631  
632 632  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
633 633  
634 -==== 4.2.13 Effect on Time Ranges ====
619 +=== 4.2.13 Effect on Time Ranges ===
635 635  
636 636  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
637 637  
638 -==== 4.2.14 Time in Query Messages ====
623 +=== 4.2.14 Time in Query Messages ===
639 639  
640 640  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
641 641  
642 642  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
643 643  
644 -|**Operator**|**Rule**
645 -|Greater Than|Any data after the last moment of the period
646 -|Less Than|Any data before the first moment of the period
647 -|Greater Than or Equal To|(((
648 -Any data on or after the first moment of
649 -
650 -the period
629 +(% style="width:1024.29px" %)
630 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
631 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
632 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
633 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
634 +Any data on or after the first moment of the period
651 651  )))
652 -|Less Than or Equal To|Any data on or before the last moment of the period
653 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
636 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
637 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
654 654  
655 655  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
656 656  
... ... @@ -663,9 +663,7 @@
663 663  **Examples:**
664 664  
665 665  **Gregorian Period**
666 -
667 667  Query Parameter: Greater than 2010
668 -
669 669  Literal Interpretation: Any data where the start period occurs after 2010-1231T23:59:59.
670 670  
671 671  Example Matches:
... ... @@ -683,15 +683,11 @@
683 683  * 2010-D185 or later (reporting year start day ~-~-07-01 or later)
684 684  
685 685  **Reporting Period with explicit start day**
686 -
687 687  Query Parameter: Greater than or equal to 2009-Q3, reporting year start day = "-07-01"
688 -
689 689  Literal Interpretation: Any data where the start period occurs on after 2010-0101T00:00:00 (Note that in this case 2009-Q3 is converted to the explicit date range of 2010-01-01/2010-03-31 because of the reporting year start day value). Example Matches: Same as previous example
690 690  
691 691  **Reporting Period with "Any" start day**
692 -
693 693  Query Parameter: Greater than or equal to 2010-Q3, reporting year start day = "Any"
694 -
695 695  Literal Interpretation: Any data with a reporting period where the start period is on or after the start period of 2010-Q3 for the same reporting year start day, or and data where the start period is on or after 2010-07-01. Example Matches:
696 696  
697 697  * 2011 or later
... ... @@ -703,13 +703,10 @@
703 703  * 2010-T3 (any reporting year start day)
704 704  * 2010-Q3 or later (any reporting year start day)
705 705  * 2010-M07 or later (any reporting year start day)
706 -* 2010-W27 or later (reporting year start day ~-~-01-01)^^4^^  2010-D182 or later (reporting year start day ~-~-01-01)
707 -* 2010-W28 or later (reporting year start day ~-~-07-01)^^5^^
684 +* 2010-W27 or later (reporting year start day ~-~-01-01){{footnote}}2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.{{/footnote}}  2010-D182 or later (reporting year start day ~-~-01-01)
685 +* 2010-W28 or later (reporting year start day ~-~-07-01){{footnote}}2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.{{/footnote}}
686 +* 2010-D185 or later (reporting year start day ~-~-07-01)
708 708  
709 -^^4^^ 2010-Q3 (with a reporting year start day of ~-~-01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.
710 -
711 - 2010-D185 or later (reporting year start day ~-~-07-01)
712 -
713 713  == 4.3 Structural Metadata Querying Best Practices ==
714 714  
715 715  When querying for structural metadata, the ability to state how references should be resolved is quite powerful. However, this mechanism is not always necessary and can create an undue burden on the systems processing the queries if it is not used properly.
... ... @@ -726,8 +726,6 @@
726 726  
727 727  This mechanism is an “early binding” one – everything with a versioned identity is a known quantity, and will not change. It is worth pointing out that in some cases relationships are essentially one-way references: an illustrative case is that of Categories. While a Category may be referenced by many dataflows and metadata flows, the addition of more references from flow objects does not version the Category. This is because the flows are not properties of the Categories – they merely make references to it. If the name of a Category changed, or its subCategories changed, then versioning would be necessary.
728 728  
729 -^^5^^ 2010-Q3 (with a reporting year start day of ~-~-07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.
730 -
731 731  Versioning operates at the level of versionable and maintainable objects in the SDMX information model. If any of the children of objects at these levels change, then the objects themselves are versioned.
732 732  
733 733  One area which is much impacted by this versioning scheme is the ability to reference external objects. With the many dependencies within the various structural objects in SDMX, it is useful to have a scheme for external referencing. This is done at the level of maintainable objects (DSDs, code lists, concept schemes, etc.) In an SDMX-ML Structure Message, whenever an “isExternalReference” attribute is set to true, then the application must resolve the address provided in the associated “uri” attribute and use the SDMX-ML Structure Message stored at that location for the full definition of the object in question. Alternately, if a registry “urn” attribute has been provided, the registry can be used to supply the full details of the object.
... ... @@ -750,13 +750,13 @@
750 750  
751 751  [[image:1747836776649-282.jpeg]]
752 752  
753 -1. **1: Schematic of the Metadata Structure Definition**
726 +**Figure 1: Schematic of the Metadata Structure Definition**
754 754  
755 755  The MSD comprises the specification of the object types to which metadata can be reported in a Metadata Set (Metadata Target(s)), and the Report Structure(s) comprising the Metadata Attributes that identify the Concept for which metadata may be reported in the Metadata Set. Importantly, one Report Structure references the Metadata Target for which it is relevant. One Report Structure can reference many Metadata Target i.e. the same Report Structure can be used for different target objects.
756 756  
757 757  [[image:1747836776655-364.jpeg]]
758 758  
759 -1. **2: Example MSD showing Metadata Targets**
732 +**Figure 2: Example MSD showing Metadata Targets**
760 760  
761 761  Note that the SDMX-ML schemas have explicit XML elements for each identifiable object type because identifying, for instance, a Maintainable Object has different properties from an Identifiable Object which must also include the agencyId, version, and id of the Maintainable Object in which it resides.
762 762  
... ... @@ -766,8 +766,10 @@
766 766  
767 767  [[image:1747836776658-510.jpeg]]
768 768  
769 -**Figure 3: Example MSD showing specification of three Metadata Attributes **This example shows the following hierarchy of Metadata Attributes:
742 +**Figure 3: Example MSD showing specification of three Metadata Attributes**
770 770  
744 +This example shows the following hierarchy of Metadata Attributes:
745 +
771 771  Source – this is presentational and no metadata is expected to be reported at this level
772 772  
773 773  * Source Type
... ... @@ -781,10 +781,7 @@
781 781  
782 782   **Figure 4: Example Metadata Set **This example shows:
783 783  
784 -1. The reference to the MSD, Metadata Report, and Metadata Target
785 -
786 -(MetadataTargetValue)
787 -
759 +1. The reference to the MSD, Metadata Report, and Metadata Target (MetadataTargetValue)
788 788  1. The reported metadata attributes (AttributeValueSet)
789 789  
790 790  = 6 Maintenance Agencies =
... ... @@ -841,8 +841,9 @@
841 841  
842 842  The Information Model for this is shown below:
843 843  
816 +[[image:1747855024745-946.png]]
844 844  
845 - **Figure 8: Information Model Extract for Concept Role**
818 +**Figure 8: Information Model Extract for Concept Role**
846 846  
847 847  It is possible to specify zero or more concept roles for a Dimension, Measure Dimension and Data Attribute (but not the ReportingYearStartDay). The Time Dimension, Primary Measure, and the  Attribute ReportingYearStartDay have explicitly defined roles and cannot be further specified with additional concept roles.
848 848  
... ... @@ -862,13 +862,14 @@
862 862  
863 863  The Cross-Domain Concept Scheme maintained by SDMX contains concept role concepts (FREQ chosen as an example).
864 864  
865 -[[image:1747836776691-440.jpeg]]
838 +[[image:1747855054559-410.png]]
866 866  
840 +
867 867  Whether this is a role or not depends upon the application understanding that FREQ in the Cross-Domain Concept Scheme is a role of Frequency.
868 868  
869 869  Using a Concept Scheme that is not the Cross-Domain Concept Scheme where it is required to assign a role using the Cross-Domain Concept Scheme. Again FREQ is chosen as the example.
870 870  
871 -[[image:1747836776693-898.jpeg]]
845 +[[image:1747855075263-887.png]]
872 872  
873 873  
874 874  This explicitly states that this Dimension is playing a role identified by the FREQ concept in the Cross-Domain Concept Scheme. Again the application needs to understand what FREQ in the Cross-Domain Concept Scheme implies in terms of a role.
... ... @@ -918,7 +918,7 @@
918 918  
919 919  == 8.3 Rules for a Content Constraint ==
920 920  
921 -=== 8.3.1 Scope of a Content Constraint ===
895 +=== 8.3.1 (% style="color:inherit; font-family:inherit; font-size:max(21px, min(23px, 17.4444px + 0.462963vw))" %)Scope of a Content Constraint(%%) ===
922 922  
923 923  A Content Constraint is used specify the content of a data or metadata source in terms of the component values or the keys.
924 924  
... ... @@ -957,29 +957,29 @@
957 957  
958 958  In view of the flexibility of constraints attachment, clear rules on their usage are required. These are elaborated below.
959 959  
960 -=== 8.3.2 Multiple Content Constraints ===
934 +=== 8.3.2 Multiple Content Constraints ===
961 961  
962 962  There can be many Content Constraints for any Constrainable Artefact (e.g. DSD), subject to the following restrictions:
963 963  
964 -**8.3.2.1 Cube Region**
938 +==== 8.3.2.1 Cube Region ====
965 965  
966 966  1. The constraint can contain multiple Member Selections (e.g. Dimension) but:
967 967  1. A specific  Member Selection (e.g. Dimension FREQ)  can only be contained in one Content Constraint for any one attached object (e.g. a specific DSD or specific Dataflow)
968 968  
969 -**8.3.2.2 Key Set**
943 +==== 8.3.2.2 Key Set ====
970 970  
971 971  Key Sets will be processed in the order they appear in the Constraint and wildcards can be used (e.g. any key position not reference explicitly is deemed to be “all values”). As the Key Sets can be “included” or “excluded” it is recommended that Key Sets with wildcards are declared before KeySets with specific series keys. This will minimize the risk that keys are inadvertently included or excluded.  
972 972  
973 -=== 8.3.3 Inheritance of a Content Constraint ===
947 +=== 8.3.3 Inheritance of a Content Constraint ===
974 974  
975 -**8.3.3.1 Attachment levels of a Content Constraint**
949 +==== 8.3.3.1 Attachment levels of a Content Constraint ====
976 976  
977 977  There are three levels of constraint attachment for which these inheritance rules apply:
978 978  
979 - DSD/MSD – top level o Dataflow/Metadataflow – second level
953 +* DSD/MSD – top level
954 +** Dataflow/Metadataflow – second level
955 +*** Provision Agreement – third level
980 980  
981 -§ Provision Agreement – third level
982 -
983 983  Note that these rules do not apply to the Simple Datasoucre or Queryable Datasource: the Content Constraint(s) attached to these artefacts are resolved for this artefact only and do not take into account Constraints attached to other artefacts (e.g. Provision Agreement. Dataflow, DSD).
984 984  
985 985  It is not necessary for a Content Constraint to be attached to higher level artifact. e.g. it is valid to have a Content Constraint for a Provision Agreement where there are no constraints attached the relevant dataflow or DSD.
... ... @@ -1193,7 +1193,7 @@
1193 1193  
1194 1194  == 10.1 Introduction ==
1195 1195  
1196 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1170 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1197 1197  
1198 1198  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1199 1199  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1217,7 +1217,7 @@
1217 1217  
1218 1218  In any case, the aliases used in the VTL transformations have to be mapped to the
1219 1219  
1220 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1194 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1221 1221  
1222 1222  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1223 1223  
... ... @@ -1227,7 +1227,7 @@
1227 1227  
1228 1228  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1229 1229  
1230 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1204 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1231 1231  
1232 1232  * SDMXprefix                                                                                   
1233 1233  * SDMX-IM-package-name             
... ... @@ -1235,7 +1235,7 @@
1235 1235  * agency-id                                                                          
1236 1236  * maintainedobject-id
1237 1237  * maintainedobject-version
1238 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1212 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1239 1239  * object-id
1240 1240  
1241 1241  The generic structure of the URN is the following:
... ... @@ -1254,7 +1254,7 @@
1254 1254  
1255 1255  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1256 1256  
1257 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1231 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1258 1258  
1259 1259  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1260 1260  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1274,7 +1274,7 @@
1274 1274  
1275 1275  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1276 1276  
1277 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1251 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1278 1278  
1279 1279  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1280 1280  
... ... @@ -1292,14 +1292,14 @@
1292 1292  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1293 1293  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1294 1294  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1295 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1296 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1269 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1270 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1297 1297  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1298 1298  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1299 1299  
1300 1300  SDMX structural definitions;  o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted;
1301 1301  
1302 -*
1276 +*
1303 1303  ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted;
1304 1304  ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted.
1305 1305  * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,,
... ... @@ -1320,11 +1320,11 @@
1320 1320  
1321 1321  DFR  :=  DF1 + DF2
1322 1322  
1323 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1297 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1324 1324  
1325 1325  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1326 1326  
1327 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1301 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1328 1328  
1329 1329  CL_FREQ
1330 1330  
... ... @@ -1334,7 +1334,7 @@
1334 1334  
1335 1335  SECTOR
1336 1336  
1337 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1311 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1338 1338  
1339 1339  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1340 1340  
... ... @@ -1368,9 +1368,9 @@
1368 1368  
1369 1369  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1370 1370  
1371 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1345 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1372 1372  
1373 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1347 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1374 1374  
1375 1375  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1376 1376  
... ... @@ -1384,15 +1384,15 @@
1384 1384  
1385 1385  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1386 1386  
1387 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1361 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1388 1388  
1389 1389  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1390 1390  
1391 1391  === 10.3.2 General mapping of VTL and SDMX data structures ===
1392 1392  
1393 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1367 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1394 1394  
1395 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1369 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1396 1396  
1397 1397  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1398 1398  
... ... @@ -1402,7 +1402,7 @@
1402 1402  
1403 1403  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1404 1404  
1405 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1379 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1406 1406  
1407 1407  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1408 1408  
... ... @@ -1466,7 +1466,7 @@
1466 1466  
1467 1467   The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension;
1468 1468  
1469 -*
1443 +*
1470 1470  ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
1471 1471  ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
1472 1472  ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
... ... @@ -1473,7 +1473,7 @@
1473 1473  
1474 1474  **10.3.3.3 From SDMX DataAttributes to VTL Measures **
1475 1475  
1476 -*
1450 +*
1477 1477  ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the  two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
1478 1478  
1479 1479  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
... ... @@ -1492,7 +1492,7 @@
1492 1492  
1493 1493  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1494 1494  
1495 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1469 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1496 1496  
1497 1497  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1498 1498  
... ... @@ -1559,7 +1559,7 @@
1559 1559  
1560 1560   the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above
1561 1561  
1562 -*
1536 +*
1563 1563  ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj)
1564 1564  ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set
1565 1565  ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above)
... ... @@ -1609,15 +1609,15 @@
1609 1609  
1610 1610   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1611 1611  
1612 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1586 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1613 1613  
1614 1614  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1615 1615  
1616 1616  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1617 1617  
1618 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1592 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1619 1619  
1620 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1594 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1621 1621  
1622 1622   Given a SDMX Dataflow and some predefined Dimensions of its
1623 1623  
... ... @@ -1629,14 +1629,14 @@
1629 1629  
1630 1630  In practice, this kind mapping is obtained like follows:
1631 1631  
1632 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1606 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1633 1633  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1634 1634  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1635 1635  
1636 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1610 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1637 1637  
1638 -*
1639 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1612 +*
1613 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1640 1640  
1641 1641  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1642 1642  
... ... @@ -1654,7 +1654,7 @@
1654 1654  
1655 1655  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1656 1656  
1657 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1631 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1658 1658  
1659 1659  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1660 1660  
... ... @@ -1664,7 +1664,7 @@
1664 1664  
1665 1665  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1666 1666  
1667 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1641 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1668 1668  
1669 1669  In the example above, for all the datasets of the kind
1670 1670  
... ... @@ -1684,7 +1684,7 @@
1684 1684  
1685 1685  …   …   …
1686 1686  
1687 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1661 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1688 1688  
1689 1689  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1690 1690  
... ... @@ -1707,12 +1707,12 @@
1707 1707  
1708 1708  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1709 1709  
1710 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1711 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1684 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1685 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1712 1712  
1713 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1687 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1714 1714  
1715 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1689 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1716 1716  
1717 1717  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1718 1718  
... ... @@ -1779,9 +1779,9 @@
1779 1779  
1780 1780  …);
1781 1781  
1782 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1756 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1783 1783  
1784 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1758 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1785 1785  
1786 1786  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1787 1787  
... ... @@ -1830,7 +1830,7 @@
1830 1830  
1831 1831  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1832 1832  
1833 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1807 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1834 1834  
1835 1835  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1836 1836  
... ... @@ -2119,12 +2119,12 @@
2119 2119  “true” or “false”
2120 2120  )))
2121 2121  
2122 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2123 2123  
2124 -In case a different default conversion is desired, it can be achieved through the
2125 2125  
2126 -CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2098 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
2127 2127  
2100 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
2101 +
2128 2128  The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table.
2129 2129  
2130 2130  |(% colspan="2" %)**VTL special characters for the formatting masks**
... ... @@ -2175,7 +2175,7 @@
2175 2175  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2176 2176  | |
2177 2177  
2178 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2152 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2179 2179  
2180 2180  === 10.4.5 Null Values ===
2181 2181  
... ... @@ -2207,12 +2207,18 @@
2207 2207  
2208 2208  For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”.
2209 2209  
2210 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2184 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL:
2211 2211  
2186 +[[image:1747854006117-843.png]]
2187 +
2212 2212  The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework.
2213 2213  
2214 2214  Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below:
2215 2215  
2192 +[[image:1747854039499-443.png]]
2193 +
2194 +[[image:1747854067769-691.png]]
2195 +
2216 2216  Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution.
2217 2217  
2218 2218  == 11.2 Solution ==
... ... @@ -2233,20 +2233,30 @@
2233 2233  
2234 2234  To understand how the **XmlAnyElement** attribute works we present the following two web methods:
2235 2235  
2236 -In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2216 +[[image:1747854096778-844.png]]
2237 2237  
2238 -The difference between the two is that for the first method, **SubmitXml**, the
2218 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.
2239 2239  
2240 -XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2220 +[[image:1747854127303-270.png]]
2241 2241  
2222 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute.
2223 +
2224 +[[image:1747854163928-581.png]]
2225 +
2242 2242  Now we look at the message for the method that uses the **XmlAnyElement** attribute.
2243 2243  
2228 +[[image:1747854190641-364.png]]
2229 +
2230 +[[image:1747854236732-512.png]]
2231 +
2244 2244  The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter.
2245 2245  
2246 -For more information please consult:  [[http:~~/~~/msdn.microsoft.com/en>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[->>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[us/library/aa480498.aspx>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]]
2234 +For more information please consult: [[http:~~/~~/msdn.microsoft.com/en-us/library/aa480498.aspx>>http://msdn.microsoft.com/en-us/library/aa480498.aspx]]
2247 2247  
2248 2248  Furthermore at this point the problem with the different requests has been solved. However there is still the difference in the produced WSDL that has to be taken care. The automatic generated WSDL now doesn’t insert the extra element, but defines the content of the operation wrapper element as “xsd:any” type.
2249 2249  
2238 +[[image:1747854286398-614.png]]
2239 +
2250 2250  Without a common WSDL still the solution doesn’t enforce interoperability. In order to
2251 2251  
2252 2252  “fix” the WSDL, there two approaches. The first is to intervene in the generation process. This is a complicated approach, compared to the second approach, which overrides the generation process and returns the envisioned WSDL for the SDMX Web Service.
... ... @@ -2259,16 +2259,27 @@
2259 2259  
2260 2260  In the context of the SDMX Web Service, applying the above solution translates into the following:
2261 2261  
2252 +[[image:1747854385465-132.png]]
2253 +
2262 2262  The SOAP request/response will then be as follows:
2263 2263  
2264 2264  **GenericData Request**
2265 2265  
2258 +[[image:1747854406014-782.png]]
2259 +
2266 2266  **GenericData Response**
2267 2267  
2262 +[[image:1747854424488-855.png]]
2263 +
2268 2268  For overriding the automatically produced WSDL, in the solution explorer right click the project and select “Add” -> “New item…”. Then select the “Global Application Class”. This will create “.asax” class file in which the following code should replace the existing empty method:
2269 2269  
2266 +[[image:1747854453895-524.png]]
2267 +
2268 +[[image:1747854476631-125.png]]
2269 +
2270 2270  The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains:
2271 2271  
2272 +[[image:1747854493363-776.png]]
2272 2272  
2273 2273  ----
2274 2274  
... ... @@ -2361,3 +2361,5 @@
2361 2361  [[~[42~]>>path:#_ftnref42]] A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.
2362 2362  
2363 2363  [[~[43~]>>path:#_ftnref43]] The representation given in the DSD should obviously be compatible with the VTL data type.
2365 +
2366 +{{putFootnotes/}}
1747854006117-843.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +18.7 KB
Content
1747854039499-443.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +3.0 KB
Content
1747854067769-691.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +21.4 KB
Content
1747854096778-844.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.6 KB
Content
1747854127303-270.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +12.1 KB
Content
1747854163928-581.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +29.8 KB
Content
1747854190641-364.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +31.5 KB
Content
1747854236732-512.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 KB
Content
1747854286398-614.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854385465-132.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854406014-782.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854424488-855.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854453895-524.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854476631-125.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747854493363-776.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747855024745-946.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747855054559-410.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content
1747855075263-887.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +55.0 KB
Content