Changes for page SDMX 2.1 Standards. Section 6. Technical Notes
Last modified by Artur on 2025/08/19 10:43
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- 1747854006117-843.png
- 1747854039499-443.png
- 1747854067769-691.png
- 1747854096778-844.png
- 1747854127303-270.png
- 1747854163928-581.png
- 1747854190641-364.png
- 1747854236732-512.png
- 1747854286398-614.png
- 1747854385465-132.png
- 1747854406014-782.png
- 1747854424488-855.png
- 1747854453895-524.png
- 1747854476631-125.png
- 1747854493363-776.png
Details
- Page properties
-
- Content
-
... ... @@ -409,7 +409,7 @@ 409 409 410 410 This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used. 411 411 412 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 413 413 414 414 === 4.2.6 Standard Reporting Period === 415 415 ... ... @@ -458,7 +458,7 @@ 458 458 Period Duration: P7D (seven days) 459 459 Limit per year: 53 460 460 Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 461 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 462 462 463 463 **Reporting Day**: 464 464 Period Indicator: D ... ... @@ -481,7 +481,7 @@ 481 481 ~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 482 482 Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 483 483 484 - 2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 485 485 Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 486 486 b) **Else:** 487 487 The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE] ... ... @@ -497,7 +497,7 @@ 497 497 g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 498 498 499 499 **3. Determine [PERIOD_START]:** 500 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 501 501 502 502 **4. Determine the [PERIOD_END]:** 503 503 Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END]. ... ... @@ -504,97 +504,79 @@ 504 504 505 505 For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59). 506 506 507 -**Examples: 508 -2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 507 +**Examples:** 509 509 509 +**2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 510 510 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 511 - 512 512 b) [REPORTING_YEAR_BASE] = 2010-07-01 513 - 514 -1. [PERIOD_DURATION] = P3M 515 -1. (2-1) * P3M = P3M 516 - 512 +[PERIOD_DURATION] = P3M 513 +(2-1) * P3M = P3M 517 517 2010-07-01 + P3M = 2010-10-01 518 - 519 519 [PERIOD_START] = 2010-10-01 520 - 521 521 4. 2 * P3M = P6M 522 - 523 523 2010-07-01 + P6M = 2010-13-01 = 2011-01-01 524 - 525 525 2011-01-01 + -P1D = 2010-12-31 526 - 527 527 [PERIOD_END] = 2011-12-31 528 528 529 529 The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 530 530 531 531 **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 532 - 533 533 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 534 - 535 535 a) 2011-07-01 = Friday 536 - 537 537 2011-07-01 + P3D = 2011-07-04 538 - 539 539 [REPORTING_YEAR_BASE] = 2011-07-04 540 - 541 -1. [PERIOD_DURATION] = P7D 542 -1. (36-1) * P7D = P245D 543 - 528 +2. [PERIOD_DURATION] = P7D 529 +3. (36-1) * P7D = P245D 544 544 2011-07-04 + P245D = 2012-03-05 545 - 546 546 [PERIOD_START] = 2012-03-05 547 - 548 548 4. 36 * P7D = P252D 549 - 550 550 2011-07-04 + P252D =2012-03-12 551 - 552 552 2012-03-12 + -P1D = 2012-03-11 553 - 554 554 [PERIOD_END] = 2012-03-11 555 555 556 556 The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59 557 557 558 -=== =4.2.7 Distinct Range ====539 +=== 4.2.7 Distinct Range === 559 559 560 560 In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive. 561 561 562 -=== =4.2.8 Time Format ====543 +=== 4.2.8 Time Format === 563 563 564 564 In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 565 565 566 -|**Code**|**Format** 567 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 568 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods 569 -|**GTP**|Superset of all Gregorian Time Periods and date-time 570 -|**RTP**|Superset of all Reporting Time Periods 571 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 572 -|**GY**|Gregorian Year (YYYY) 573 -|**GTM**|Gregorian Year Month (YYYY-MM) 574 -|**GD**|Gregorian Day (YYYY-MM-DD) 575 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 576 -|**RY**|Reporting Year (YYYY-A1) 577 -|**RS**|Reporting Semester (YYYY-Ss) 578 -|**RT**|Reporting Trimester (YYYY-Tt) 579 -|**RQ**|Reporting Quarter (YYYY-Qq) 580 -|**RM**|Reporting Month (YYYY-Mmm) 581 -|**Code**|**Format** 582 -|**RW**|Reporting Week (YYYY-Www) 583 -|**RD**|Reporting Day (YYYY-Dddd) 547 +(% style="width:1049.29px" %) 548 +|**Code**|(% style="width:926px" %)**Format** 549 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 550 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods 551 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time 552 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods 553 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 554 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY) 555 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM) 556 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD) 557 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 558 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1) 559 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss) 560 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt) 561 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq) 562 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm) 563 +|**Code**|(% style="width:926px" %)**Format** 564 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www) 565 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd) 584 584 585 - 567 +**Table 1: SDMX-ML Time Format Codes** 586 586 587 -=== =4.2.9 Transformation between SDMX-ML and SDMX-EDI ====569 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI === 588 588 589 589 When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT". 590 590 591 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations) 573 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations). 592 592 593 593 When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML. 594 594 595 595 When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq. 596 596 597 -=== =4.2.10=579 +=== 4.2.10 Time Zones === 598 598 599 599 In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold): 600 600 ... ... @@ -615,7 +615,7 @@ 615 615 616 616 According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message. 617 617 618 -=== =4.2.11=600 +=== 4.2.11 Representing Time Spans Elsewhere === 619 619 620 620 It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this: 621 621 ... ... @@ -625,30 +625,29 @@ 625 625 626 626 <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/> 627 627 628 -=== =4.2.12=610 +=== 4.2.12 Notes on Formats === 629 629 630 630 There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing. 631 631 632 -=== =4.2.13=614 +=== 4.2.13 Effect on Time Ranges === 633 633 634 634 All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value. 635 635 636 -=== =4.2.14 Time in Query Messages ====618 +=== 4.2.14 Time in Query Messages === 637 637 638 638 When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters. 639 639 640 640 Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter. 641 641 642 -|**Operator**|**Rule** 643 -|Greater Than|Any data after the last moment of the period 644 -|Less Than|Any data before the first moment of the period 645 -|Greater Than or Equal To|((( 646 -Any data on or after the first moment of 647 - 648 -the period 624 +(% style="width:1024.29px" %) 625 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule** 626 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period 627 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period 628 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)((( 629 +Any data on or after the first moment of the period 649 649 ))) 650 -|Less Than or Equal To|Any data on or before the last moment of the period 651 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period 631 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period 632 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period 652 652 653 653 Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any": 654 654 ... ... @@ -1191,7 +1191,7 @@ 1191 1191 1192 1192 == 10.1 Introduction == 1193 1193 1194 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1175 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1195 1195 1196 1196 * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones; 1197 1197 * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms); ... ... @@ -1215,7 +1215,7 @@ 1215 1215 1216 1216 In any case, the aliases used in the VTL transformations have to be mapped to the 1217 1217 1218 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1199 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1219 1219 1220 1220 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 1221 1221 ... ... @@ -1225,7 +1225,7 @@ 1225 1225 1226 1226 This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose. 1227 1227 1228 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1209 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1229 1229 1230 1230 * SDMXprefix 1231 1231 * SDMX-IM-package-name ... ... @@ -1233,7 +1233,7 @@ 1233 1233 * agency-id 1234 1234 * maintainedobject-id 1235 1235 * maintainedobject-version 1236 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1217 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1237 1237 * object-id 1238 1238 1239 1239 The generic structure of the URN is the following: ... ... @@ -1252,7 +1252,7 @@ 1252 1252 1253 1253 The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2). 1254 1254 1255 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1236 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1256 1256 1257 1257 * if the artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id); 1258 1258 * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to; ... ... @@ -1272,7 +1272,7 @@ 1272 1272 1273 1273 * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,) 1274 1274 1275 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1256 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1276 1276 1277 1277 ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ <- 1278 1278 ... ... @@ -1290,14 +1290,14 @@ 1290 1290 * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 1291 1291 ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, 1292 1292 ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist. 1293 -* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1294 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1274 +* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1275 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1295 1295 * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 1296 1296 ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the 1297 1297 1298 1298 SDMX structural definitions; o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted; 1299 1299 1300 -* 1281 +* 1301 1301 ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted; 1302 1302 ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted. 1303 1303 * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,, ... ... @@ -1318,11 +1318,11 @@ 1318 1318 1319 1319 DFR := DF1 + DF2 1320 1320 1321 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1302 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1322 1322 1323 1323 ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’ 1324 1324 1325 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1306 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1326 1326 1327 1327 CL_FREQ 1328 1328 ... ... @@ -1332,7 +1332,7 @@ 1332 1332 1333 1333 SECTOR 1334 1334 1335 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1316 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1336 1336 1337 1337 ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC] 1338 1338 ... ... @@ -1366,9 +1366,9 @@ 1366 1366 1367 1367 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 1368 1368 1369 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1350 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1370 1370 1371 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1352 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1372 1372 1373 1373 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature. 1374 1374 ... ... @@ -1382,15 +1382,15 @@ 1382 1382 1383 1383 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 1384 1384 1385 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1366 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1386 1386 1387 1387 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 1388 1388 1389 1389 === 10.3.2 General mapping of VTL and SDMX data structures === 1390 1390 1391 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1372 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1392 1392 1393 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1374 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1394 1394 1395 1395 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 1396 1396 ... ... @@ -1400,7 +1400,7 @@ 1400 1400 1401 1401 SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 1402 1402 1403 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1384 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1404 1404 1405 1405 As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 1406 1406 ... ... @@ -1464,7 +1464,7 @@ 1464 1464 1465 1465 The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension; 1466 1466 1467 -* 1448 +* 1468 1468 ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 1469 1469 ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 1470 1470 ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj ... ... @@ -1471,7 +1471,7 @@ 1471 1471 1472 1472 **10.3.3.3 From SDMX DataAttributes to VTL Measures ** 1473 1473 1474 -* 1455 +* 1475 1475 ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 1476 1476 1477 1477 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. ... ... @@ -1490,7 +1490,7 @@ 1490 1490 1491 1491 This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the 1492 1492 1493 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1474 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1494 1494 1495 1495 1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 1496 1496 ... ... @@ -1557,7 +1557,7 @@ 1557 1557 1558 1558 the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above 1559 1559 1560 -* 1541 +* 1561 1561 ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj) 1562 1562 ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set 1563 1563 ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above) ... ... @@ -1607,15 +1607,15 @@ 1607 1607 1608 1608 The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows). 1609 1609 1610 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1591 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1611 1611 1612 1612 Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 1613 1613 1614 1614 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set). 1615 1615 1616 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1597 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1617 1617 1618 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1599 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1619 1619 1620 1620 Given a SDMX Dataflow and some predefined Dimensions of its 1621 1621 ... ... @@ -1627,14 +1627,14 @@ 1627 1627 1628 1628 In practice, this kind mapping is obtained like follows: 1629 1629 1630 -* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1611 +* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1631 1631 * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 1632 1632 ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated 1633 1633 1634 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1615 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1635 1635 1636 -* 1637 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1617 +* 1618 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1638 1638 1639 1639 In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 1640 1640 ... ... @@ -1652,7 +1652,7 @@ 1652 1652 1653 1653 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 1654 1654 1655 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1636 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1656 1656 1657 1657 First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations. 1658 1658 ... ... @@ -1662,7 +1662,7 @@ 1662 1662 1663 1663 //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA. 1664 1664 1665 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1646 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1666 1666 1667 1667 In the example above, for all the datasets of the kind 1668 1668 ... ... @@ -1682,7 +1682,7 @@ 1682 1682 1683 1683 … … … 1684 1684 1685 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1666 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1686 1686 1687 1687 In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. 1688 1688 ... ... @@ -1705,12 +1705,12 @@ 1705 1705 1706 1706 For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY: 1707 1707 1708 -* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1709 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1689 +* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1690 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1710 1710 1711 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1692 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1712 1712 1713 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1694 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1714 1714 1715 1715 ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’ <- expression 1716 1716 ... ... @@ -1777,9 +1777,9 @@ 1777 1777 1778 1778 …); 1779 1779 1780 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1761 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1781 1781 1782 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1763 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1783 1783 1784 1784 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 1785 1785 ... ... @@ -1828,7 +1828,7 @@ 1828 1828 1829 1829 Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 1830 1830 1831 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1812 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1832 1832 1833 1833 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 1834 1834 ... ... @@ -2117,12 +2117,12 @@ 2117 2117 “true” or “false” 2118 2118 ))) 2119 2119 2120 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2121 2121 2122 -In case a different default conversion is desired, it can be achieved through the 2123 2123 2124 - CustomTypeSchemeand CustomTypeartefacts(see alsothe sectionTransformationsand Expressionsof theSDMX information model).2103 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2125 2125 2105 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 2106 + 2126 2126 The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table. 2127 2127 2128 2128 |(% colspan="2" %)**VTL special characters for the formatting masks** ... ... @@ -2173,7 +2173,7 @@ 2173 2173 |N|fixed number of digits used in the preceding textual representation of the month or the day 2174 2174 | | 2175 2175 2176 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2157 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2177 2177 2178 2178 === 10.4.5 Null Values === 2179 2179 ... ... @@ -2205,12 +2205,18 @@ 2205 2205 2206 2206 For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”. 2207 2207 2208 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2189 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2209 2209 2191 +[[image:1747854006117-843.png]] 2192 + 2210 2210 The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework. 2211 2211 2212 2212 Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below: 2213 2213 2197 +[[image:1747854039499-443.png]] 2198 + 2199 +[[image:1747854067769-691.png]] 2200 + 2214 2214 Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution. 2215 2215 2216 2216 == 11.2 Solution == ... ... @@ -2231,20 +2231,30 @@ 2231 2231 2232 2232 To understand how the **XmlAnyElement** attribute works we present the following two web methods: 2233 2233 2234 - In thismethod the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element.Since the attribute is notpassed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.2221 +[[image:1747854096778-844.png]] 2235 2235 2236 - Thedifferencebetween the two is that for thefirst method,**SubmitXml**,the2223 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter. 2237 2237 2238 - XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plugwhatever XML is included into the input parameter.The message style from ASP.NET Helpfor the two methods is shownbelow. First we look at the message for the method without the **XmlAnyElement** attribute.2225 +[[image:1747854127303-270.png]] 2239 2239 2227 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute. 2228 + 2229 +[[image:1747854163928-581.png]] 2230 + 2240 2240 Now we look at the message for the method that uses the **XmlAnyElement** attribute. 2241 2241 2233 +[[image:1747854190641-364.png]] 2234 + 2235 +[[image:1747854236732-512.png]] 2236 + 2242 2242 The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter. 2243 2243 2244 -For more information please consult: >>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[->>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[us/library/aa480498.aspx>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]]2239 +For more information please consult: [[http:~~/~~/msdn.microsoft.com/en-us/library/aa480498.aspx>>http://msdn.microsoft.com/en-us/library/aa480498.aspx]] 2245 2245 2246 2246 Furthermore at this point the problem with the different requests has been solved. However there is still the difference in the produced WSDL that has to be taken care. The automatic generated WSDL now doesn’t insert the extra element, but defines the content of the operation wrapper element as “xsd:any” type. 2247 2247 2243 +[[image:1747854286398-614.png]] 2244 + 2248 2248 Without a common WSDL still the solution doesn’t enforce interoperability. In order to 2249 2249 2250 2250 “fix” the WSDL, there two approaches. The first is to intervene in the generation process. This is a complicated approach, compared to the second approach, which overrides the generation process and returns the envisioned WSDL for the SDMX Web Service. ... ... @@ -2257,16 +2257,27 @@ 2257 2257 2258 2258 In the context of the SDMX Web Service, applying the above solution translates into the following: 2259 2259 2257 +[[image:1747854385465-132.png]] 2258 + 2260 2260 The SOAP request/response will then be as follows: 2261 2261 2262 2262 **GenericData Request** 2263 2263 2263 +[[image:1747854406014-782.png]] 2264 + 2264 2264 **GenericData Response** 2265 2265 2267 +[[image:1747854424488-855.png]] 2268 + 2266 2266 For overriding the automatically produced WSDL, in the solution explorer right click the project and select “Add” -> “New item…”. Then select the “Global Application Class”. This will create “.asax” class file in which the following code should replace the existing empty method: 2267 2267 2271 +[[image:1747854453895-524.png]] 2272 + 2273 +[[image:1747854476631-125.png]] 2274 + 2268 2268 The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains: 2269 2269 2277 +[[image:1747854493363-776.png]] 2270 2270 2271 2271 ---- 2272 2272
- 1747854006117-843.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.7 KB - Content
- 1747854039499-443.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.0 KB - Content
- 1747854067769-691.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.4 KB - Content
- 1747854096778-844.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.6 KB - Content
- 1747854127303-270.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +12.1 KB - Content
- 1747854163928-581.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +29.8 KB - Content
- 1747854190641-364.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.5 KB - Content
- 1747854236732-512.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 KB - Content
- 1747854286398-614.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854385465-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854406014-782.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854424488-855.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854453895-524.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854476631-125.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854493363-776.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content