Changes for page SDMX 2.1 Standards. Section 6. Technical Notes
Last modified by Artur on 2025/08/19 10:43
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1747854006117-843.png
- 1747854039499-443.png
- 1747854067769-691.png
- 1747854096778-844.png
- 1747854127303-270.png
- 1747854163928-581.png
- 1747854190641-364.png
- 1747854236732-512.png
- 1747854286398-614.png
- 1747854385465-132.png
- 1747854406014-782.png
- 1747854424488-855.png
- 1747854453895-524.png
- 1747854476631-125.png
- 1747854493363-776.png
- 1747855024745-946.png
- 1747855054559-410.png
- 1747855075263-887.png
- 1747855402867-579.png
- 1747855462293-368.png
- 1747855493531-357.png
Details
- Page properties
-
- Content
-
... ... @@ -69,13 +69,15 @@ 69 69 70 70 To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements. 71 71 72 -=== //Structure Definition// === 72 +(% class="wikigeneratedid" id="HStructureDefinition" %) 73 +**//Structure Definition//** 73 73 74 74 The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax. 75 75 76 76 The SDMX-ML Structure Message allows for the structures on which a Data Structure Definition depends – that is, codelists and concepts – to be either included in the message or to be referenced by the message containing the data structure definition. XML syntax is designed to leverage URIs and other Internet-based referencing mechanisms, and these are used in the SDMX-ML message. This option is not available to those using the SDMX-EDI structure message. 77 77 78 -=== //Validation// === 79 +(% class="wikigeneratedid" id="HValidation" %) 80 +**//Validation//** 79 79 80 80 SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.) 81 81 ... ... @@ -83,19 +83,22 @@ 83 83 84 84 The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool. 85 85 86 -=== //Update and Delete Messages and Documentation Messages// === 88 +(% class="wikigeneratedid" id="HUpdateandDeleteMessagesandDocumentationMessages" %) 89 +//Update and Delete Messages and Documentation Messages// 87 87 88 88 All SDMX data messages allow for both delete messages and messages consisting of only data or only documentation. 89 89 90 -=== //Character Encodings// === 93 +(% class="wikigeneratedid" id="HCharacterEncodings" %) 94 +**//Character Encodings//** 91 91 92 92 All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa. 93 93 94 -=== //Data Typing// === 98 +(% class="wikigeneratedid" id="HDataTyping" %) 99 +**//Data Typing//** 95 95 96 96 The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below. 97 97 98 -=== =3.3.2 Data Types ====103 +=== 3.3.2 Data Types === 99 99 100 100 The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them. 101 101 ... ... @@ -409,7 +409,7 @@ 409 409 410 410 This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used. 411 411 412 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 417 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 413 413 414 414 === 4.2.6 Standard Reporting Period === 415 415 ... ... @@ -458,7 +458,7 @@ 458 458 Period Duration: P7D (seven days) 459 459 Limit per year: 53 460 460 Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 461 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 466 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 462 462 463 463 **Reporting Day**: 464 464 Period Indicator: D ... ... @@ -481,7 +481,7 @@ 481 481 ~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 482 482 Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 483 483 484 - 2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**489 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 485 485 Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 486 486 b) **Else:** 487 487 The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE] ... ... @@ -497,7 +497,7 @@ 497 497 g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 498 498 499 499 **3. Determine [PERIOD_START]:** 500 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 505 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 501 501 502 502 **4. Determine the [PERIOD_END]:** 503 503 Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END]. ... ... @@ -504,97 +504,79 @@ 504 504 505 505 For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59). 506 506 507 -**Examples: 508 -2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 512 +**Examples:** 509 509 514 +**2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 510 510 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 511 - 512 512 b) [REPORTING_YEAR_BASE] = 2010-07-01 513 - 514 -1. [PERIOD_DURATION] = P3M 515 -1. (2-1) * P3M = P3M 516 - 517 +[PERIOD_DURATION] = P3M 518 +(2-1) * P3M = P3M 517 517 2010-07-01 + P3M = 2010-10-01 518 - 519 519 [PERIOD_START] = 2010-10-01 520 - 521 521 4. 2 * P3M = P6M 522 - 523 523 2010-07-01 + P6M = 2010-13-01 = 2011-01-01 524 - 525 525 2011-01-01 + -P1D = 2010-12-31 526 - 527 527 [PERIOD_END] = 2011-12-31 528 528 529 529 The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 530 530 531 531 **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 532 - 533 533 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 534 - 535 535 a) 2011-07-01 = Friday 536 - 537 537 2011-07-01 + P3D = 2011-07-04 538 - 539 539 [REPORTING_YEAR_BASE] = 2011-07-04 540 - 541 -1. [PERIOD_DURATION] = P7D 542 -1. (36-1) * P7D = P245D 543 - 533 +2. [PERIOD_DURATION] = P7D 534 +3. (36-1) * P7D = P245D 544 544 2011-07-04 + P245D = 2012-03-05 545 - 546 546 [PERIOD_START] = 2012-03-05 547 - 548 548 4. 36 * P7D = P252D 549 - 550 550 2011-07-04 + P252D =2012-03-12 551 - 552 552 2012-03-12 + -P1D = 2012-03-11 553 - 554 554 [PERIOD_END] = 2012-03-11 555 555 556 556 The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59 557 557 558 -=== =4.2.7 Distinct Range ====544 +=== 4.2.7 Distinct Range === 559 559 560 560 In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive. 561 561 562 -=== =4.2.8 Time Format ====548 +=== 4.2.8 Time Format === 563 563 564 564 In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 565 565 566 -|**Code**|**Format** 567 -|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 568 -|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods 569 -|**GTP**|Superset of all Gregorian Time Periods and date-time 570 -|**RTP**|Superset of all Reporting Time Periods 571 -|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 572 -|**GY**|Gregorian Year (YYYY) 573 -|**GTM**|Gregorian Year Month (YYYY-MM) 574 -|**GD**|Gregorian Day (YYYY-MM-DD) 575 -|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 576 -|**RY**|Reporting Year (YYYY-A1) 577 -|**RS**|Reporting Semester (YYYY-Ss) 578 -|**RT**|Reporting Trimester (YYYY-Tt) 579 -|**RQ**|Reporting Quarter (YYYY-Qq) 580 -|**RM**|Reporting Month (YYYY-Mmm) 581 -|**Code**|**Format** 582 -|**RW**|Reporting Week (YYYY-Www) 583 -|**RD**|Reporting Day (YYYY-Dddd) 552 +(% style="width:1049.29px" %) 553 +|**Code**|(% style="width:926px" %)**Format** 554 +|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 555 +|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods 556 +|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time 557 +|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods 558 +|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 559 +|**GY**|(% style="width:926px" %)Gregorian Year (YYYY) 560 +|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM) 561 +|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD) 562 +|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 563 +|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1) 564 +|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss) 565 +|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt) 566 +|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq) 567 +|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm) 568 +|**Code**|(% style="width:926px" %)**Format** 569 +|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www) 570 +|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd) 584 584 585 - 572 +**Table 1: SDMX-ML Time Format Codes** 586 586 587 -=== =4.2.9 Transformation between SDMX-ML and SDMX-EDI ====574 +=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI === 588 588 589 589 When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT". 590 590 591 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations) 578 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations). 592 592 593 593 When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML. 594 594 595 595 When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq. 596 596 597 -=== =4.2.10=584 +=== 4.2.10 Time Zones === 598 598 599 599 In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold): 600 600 ... ... @@ -615,7 +615,7 @@ 615 615 616 616 According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message. 617 617 618 -=== =4.2.11=605 +=== 4.2.11 Representing Time Spans Elsewhere === 619 619 620 620 It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this: 621 621 ... ... @@ -625,30 +625,29 @@ 625 625 626 626 <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/> 627 627 628 -=== =4.2.12=615 +=== 4.2.12 Notes on Formats === 629 629 630 630 There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing. 631 631 632 -=== =4.2.13=619 +=== 4.2.13 Effect on Time Ranges === 633 633 634 634 All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value. 635 635 636 -=== =4.2.14 Time in Query Messages ====623 +=== 4.2.14 Time in Query Messages === 637 637 638 638 When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters. 639 639 640 640 Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter. 641 641 642 -|**Operator**|**Rule** 643 -|Greater Than|Any data after the last moment of the period 644 -|Less Than|Any data before the first moment of the period 645 -|Greater Than or Equal To|((( 646 -Any data on or after the first moment of 647 - 648 -the period 629 +(% style="width:1024.29px" %) 630 +|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule** 631 +|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period 632 +|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period 633 +|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)((( 634 +Any data on or after the first moment of the period 649 649 ))) 650 -|Less Than or Equal To|Any data on or before the last moment of the period 651 -|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period 636 +|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period 637 +|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period 652 652 653 653 Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any": 654 654 ... ... @@ -661,9 +661,7 @@ 661 661 **Examples:** 662 662 663 663 **Gregorian Period** 664 - 665 665 Query Parameter: Greater than 2010 666 - 667 667 Literal Interpretation: Any data where the start period occurs after 2010-1231T23:59:59. 668 668 669 669 Example Matches: ... ... @@ -681,15 +681,11 @@ 681 681 * 2010-D185 or later (reporting year start day ~-~-07-01 or later) 682 682 683 683 **Reporting Period with explicit start day** 684 - 685 685 Query Parameter: Greater than or equal to 2009-Q3, reporting year start day = "-07-01" 686 - 687 687 Literal Interpretation: Any data where the start period occurs on after 2010-0101T00:00:00 (Note that in this case 2009-Q3 is converted to the explicit date range of 2010-01-01/2010-03-31 because of the reporting year start day value). Example Matches: Same as previous example 688 688 689 689 **Reporting Period with "Any" start day** 690 - 691 691 Query Parameter: Greater than or equal to 2010-Q3, reporting year start day = "Any" 692 - 693 693 Literal Interpretation: Any data with a reporting period where the start period is on or after the start period of 2010-Q3 for the same reporting year start day, or and data where the start period is on or after 2010-07-01. Example Matches: 694 694 695 695 * 2011 or later ... ... @@ -701,13 +701,10 @@ 701 701 * 2010-T3 (any reporting year start day) 702 702 * 2010-Q3 or later (any reporting year start day) 703 703 * 2010-M07 or later (any reporting year start day) 704 -* 2010-W27 or later (reporting year start day ~-~-01-01)^^4^^ 2010-D182 or later (reporting year start day ~-~-01-01) 705 -* 2010-W28 or later (reporting year start day ~-~-07-01)^^5^^ 684 +* 2010-W27 or later (reporting year start day ~-~-01-01){{footnote}}2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.{{/footnote}} 2010-D182 or later (reporting year start day ~-~-01-01) 685 +* 2010-W28 or later (reporting year start day ~-~-07-01){{footnote}}2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.{{/footnote}} 686 +* 2010-D185 or later (reporting year start day ~-~-07-01) 706 706 707 -^^4^^ 2010-Q3 (with a reporting year start day of ~-~-01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27. 708 - 709 - 2010-D185 or later (reporting year start day ~-~-07-01) 710 - 711 711 == 4.3 Structural Metadata Querying Best Practices == 712 712 713 713 When querying for structural metadata, the ability to state how references should be resolved is quite powerful. However, this mechanism is not always necessary and can create an undue burden on the systems processing the queries if it is not used properly. ... ... @@ -724,8 +724,6 @@ 724 724 725 725 This mechanism is an “early binding” one – everything with a versioned identity is a known quantity, and will not change. It is worth pointing out that in some cases relationships are essentially one-way references: an illustrative case is that of Categories. While a Category may be referenced by many dataflows and metadata flows, the addition of more references from flow objects does not version the Category. This is because the flows are not properties of the Categories – they merely make references to it. If the name of a Category changed, or its subCategories changed, then versioning would be necessary. 726 726 727 -^^5^^ 2010-Q3 (with a reporting year start day of ~-~-07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28. 728 - 729 729 Versioning operates at the level of versionable and maintainable objects in the SDMX information model. If any of the children of objects at these levels change, then the objects themselves are versioned. 730 730 731 731 One area which is much impacted by this versioning scheme is the ability to reference external objects. With the many dependencies within the various structural objects in SDMX, it is useful to have a scheme for external referencing. This is done at the level of maintainable objects (DSDs, code lists, concept schemes, etc.) In an SDMX-ML Structure Message, whenever an “isExternalReference” attribute is set to true, then the application must resolve the address provided in the associated “uri” attribute and use the SDMX-ML Structure Message stored at that location for the full definition of the object in question. Alternately, if a registry “urn” attribute has been provided, the registry can be used to supply the full details of the object. ... ... @@ -748,13 +748,13 @@ 748 748 749 749 [[image:1747836776649-282.jpeg]] 750 750 751 - 1.**1: Schematic of the Metadata Structure Definition**726 +**Figure 1: Schematic of the Metadata Structure Definition** 752 752 753 753 The MSD comprises the specification of the object types to which metadata can be reported in a Metadata Set (Metadata Target(s)), and the Report Structure(s) comprising the Metadata Attributes that identify the Concept for which metadata may be reported in the Metadata Set. Importantly, one Report Structure references the Metadata Target for which it is relevant. One Report Structure can reference many Metadata Target i.e. the same Report Structure can be used for different target objects. 754 754 755 755 [[image:1747836776655-364.jpeg]] 756 756 757 - 1.**2: Example MSD showing Metadata Targets**732 +**Figure 2: Example MSD showing Metadata Targets** 758 758 759 759 Note that the SDMX-ML schemas have explicit XML elements for each identifiable object type because identifying, for instance, a Maintainable Object has different properties from an Identifiable Object which must also include the agencyId, version, and id of the Maintainable Object in which it resides. 760 760 ... ... @@ -764,8 +764,10 @@ 764 764 765 765 [[image:1747836776658-510.jpeg]] 766 766 767 -**Figure 3: Example MSD showing specification of three Metadata Attributes This example shows the following hierarchy of Metadata Attributes:742 +**Figure 3: Example MSD showing specification of three Metadata Attributes** 768 768 744 +This example shows the following hierarchy of Metadata Attributes: 745 + 769 769 Source – this is presentational and no metadata is expected to be reported at this level 770 770 771 771 * Source Type ... ... @@ -779,10 +779,7 @@ 779 779 780 780 **Figure 4: Example Metadata Set **This example shows: 781 781 782 -1. The reference to the MSD, Metadata Report, and Metadata Target 783 - 784 -(MetadataTargetValue) 785 - 759 +1. The reference to the MSD, Metadata Report, and Metadata Target (MetadataTargetValue) 786 786 1. The reported metadata attributes (AttributeValueSet) 787 787 788 788 = 6 Maintenance Agencies = ... ... @@ -839,8 +839,9 @@ 839 839 840 840 The Information Model for this is shown below: 841 841 816 +[[image:1747855024745-946.png]] 842 842 843 - 818 +**Figure 8: Information Model Extract for Concept Role** 844 844 845 845 It is possible to specify zero or more concept roles for a Dimension, Measure Dimension and Data Attribute (but not the ReportingYearStartDay). The Time Dimension, Primary Measure, and the Attribute ReportingYearStartDay have explicitly defined roles and cannot be further specified with additional concept roles. 846 846 ... ... @@ -860,13 +860,14 @@ 860 860 861 861 The Cross-Domain Concept Scheme maintained by SDMX contains concept role concepts (FREQ chosen as an example). 862 862 863 -[[image:17478 36776691-440.jpeg]]838 +[[image:1747855054559-410.png]] 864 864 840 + 865 865 Whether this is a role or not depends upon the application understanding that FREQ in the Cross-Domain Concept Scheme is a role of Frequency. 866 866 867 867 Using a Concept Scheme that is not the Cross-Domain Concept Scheme where it is required to assign a role using the Cross-Domain Concept Scheme. Again FREQ is chosen as the example. 868 868 869 -[[image:17478 36776693-898.jpeg]]845 +[[image:1747855075263-887.png]] 870 870 871 871 872 872 This explicitly states that this Dimension is playing a role identified by the FREQ concept in the Cross-Domain Concept Scheme. Again the application needs to understand what FREQ in the Cross-Domain Concept Scheme implies in terms of a role. ... ... @@ -916,7 +916,7 @@ 916 916 917 917 == 8.3 Rules for a Content Constraint == 918 918 919 -=== 8.3.1 Scope of a Content Constraint === 895 +=== 8.3.1 (% style="color:inherit; font-family:inherit; font-size:max(21px, min(23px, 17.4444px + 0.462963vw))" %)Scope of a Content Constraint(%%) === 920 920 921 921 A Content Constraint is used specify the content of a data or metadata source in terms of the component values or the keys. 922 922 ... ... @@ -955,54 +955,54 @@ 955 955 956 956 In view of the flexibility of constraints attachment, clear rules on their usage are required. These are elaborated below. 957 957 958 -=== 8.3.2 934 +=== 8.3.2 Multiple Content Constraints === 959 959 960 960 There can be many Content Constraints for any Constrainable Artefact (e.g. DSD), subject to the following restrictions: 961 961 962 - **8.3.2.1 Cube Region**938 +==== 8.3.2.1 Cube Region ==== 963 963 964 964 1. The constraint can contain multiple Member Selections (e.g. Dimension) but: 965 965 1. A specific Member Selection (e.g. Dimension FREQ) can only be contained in one Content Constraint for any one attached object (e.g. a specific DSD or specific Dataflow) 966 966 967 - **8.3.2.2 Key Set**943 +==== 8.3.2.2 Key Set ==== 968 968 969 969 Key Sets will be processed in the order they appear in the Constraint and wildcards can be used (e.g. any key position not reference explicitly is deemed to be “all values”). As the Key Sets can be “included” or “excluded” it is recommended that Key Sets with wildcards are declared before KeySets with specific series keys. This will minimize the risk that keys are inadvertently included or excluded. 970 970 971 -=== 8.3.3 947 +=== 8.3.3 Inheritance of a Content Constraint === 972 972 973 - **8.3.3.1 Attachment levels of a Content Constraint**949 +==== 8.3.3.1 Attachment levels of a Content Constraint ==== 974 974 975 975 There are three levels of constraint attachment for which these inheritance rules apply: 976 976 977 - DSD/MSD – top level o Dataflow/Metadataflow – second level 953 +* DSD/MSD – top level 954 +** Dataflow/Metadataflow – second level 955 +*** Provision Agreement – third level 978 978 979 -§ Provision Agreement – third level 980 - 981 981 Note that these rules do not apply to the Simple Datasoucre or Queryable Datasource: the Content Constraint(s) attached to these artefacts are resolved for this artefact only and do not take into account Constraints attached to other artefacts (e.g. Provision Agreement. Dataflow, DSD). 982 982 983 983 It is not necessary for a Content Constraint to be attached to higher level artifact. e.g. it is valid to have a Content Constraint for a Provision Agreement where there are no constraints attached the relevant dataflow or DSD. 984 984 985 - **8.3.3.2 Cascade rules for processing Constraints**961 +==== 8.3.3.2 Cascade rules for processing Constraints ==== 986 986 987 987 The processing of the constraints on either Dataflow/Metadataflow or Provision Agreement must take into account the constraints declared at higher levels. The rules for the lower level constraints (attached to Dataflow/ Metadataflow and Provision Agreement) are detailed below. 988 988 989 989 Note that there can be a situation where a constraint is specified at a lower level before a constraint is specified at a higher level. Therefore, it is possible that a higher level constraint makes a lower level constraint invalid. SDMX makes no rules on how such a conflict should be handled when processing the constraint for attachment. However, the cascade rules on evaluating constraints for usage are clear - the higher level constraint takes precedence in any conflicts that result in a less restrictive specification at the lower level. 990 990 991 - **8.3.3.3 Cube Region**967 +==== 8.3.3.3 Cube Region ==== 992 992 993 993 1. It is not necessary to have a constraint on the higher level artifact (e.g. DSD referenced by the Dataflow) but if there is such a constraint at the higher level(s) then: 994 - 11. The lower level constraint cannot be less restrictive than the constraint specified for the same Member Selection (e.g. Dimension) at the next higher level which constraints that Member Selection (e.g. if the Dimension FREQ is constrained to A, Q in a DSD then the constraint at the Dataflow or Provision Agreement cannot be A, Q, M or even just M – it can only further constrain A,Q).995 - 11. The constraint at the lower level for any one Member Selection further constrains the content for the same Member Selection at the higher level(s).970 +a. The lower level constraint cannot be less restrictive than the constraint specified for the same Member Selection (e.g. Dimension) at the next higher level which constraints that Member Selection (e.g. if the Dimension FREQ is constrained to A, Q in a DSD then the constraint at the Dataflow or Provision Agreement cannot be A, Q, M or even just M – it can only further constrain A,Q). 971 +b. The constraint at the lower level for any one Member Selection further constrains the content for the same Member Selection at the higher level(s). 996 996 1. Any Member Selection which is not referenced in a Content Constraint is deemed to be constrained according to the Content Constraint specified at the next higher level which constraints that Member Selection. 997 997 1. If there is a conflict when resolving the constraint in terms of a lower-level constraint being less restrictive than a higher-level constraint then the constraint at the higher-level is used. 998 998 999 999 Note that it is possible for a Content Constraint at a higher level to constrain, say, four Dimensions in a single constraint, and a Content Constraint at a lower level to constrain the same four in two, three, or four Content Constraints. 1000 1000 1001 - **8.3.3.4 Key Set**977 +==== 8.3.3.4 Key Set ==== 1002 1002 1003 1003 1. It is not necessary to have a constraint on the higher level artefact (e.g. DSD referenced by the Dataflow) but if there is such a constraint at the higher level(s) then: 1004 - 11.1005 - 11.980 +a. The lower level constraint cannot be less restrictive than the constraint specified at the higher level. 981 +b. The constraint at the lower level for any one Member Selection further constrains the keys specified at the higher level(s). 1006 1006 1. Any Member Selection which is not referenced in a Content Constraint is deemed to be constrained according to the Content Constraint specified at the next higher level which constraints that Member Selection. 1007 1007 1. If there is a conflict when resolving the keys in the constraint at two levels, in terms of a lower-level constraint being less restrictive than a higher-level constraint, then the offending keys specified at the lower level are not deemed part of the constraint. 1008 1008 ... ... @@ -1016,11 +1016,12 @@ 1016 1016 1. At the lower level inherit all keys that match with the higher level constraint. 1017 1017 1. If there are keys in the lower level constraint that are not inherited then the key is invalid (i.e. it is less restrictive). 1018 1018 1019 - **8.3.4**995 +=== 8.3.4 Constraints Examples === 1020 1020 1021 1021 The following scenario is used. 1022 1022 1023 -=== DSD === 999 +(% class="wikigeneratedid" id="HDSD" %) 1000 +__DSD__ 1024 1024 1025 1025 This contains the following Dimensions: 1026 1026 ... ... @@ -1032,111 +1032,47 @@ 1032 1032 In the DSD common code lists are used and the requirement is to restrict these at various levels to specify the actual code that are valid for the object to which the Content Constraint is attached. 1033 1033 1034 1034 1035 -|((( 1036 - 1037 -))) 1012 +[[image:1747855493531-357.png]] 1038 1038 1039 -|((( 1040 - 1041 -))) 1014 +**Figure 10: Example Scenario for Constraints** 1042 1042 1043 -|((( 1044 - 1045 -))) 1046 - 1047 -|((( 1048 -**Figure** 1049 -))) 1050 - 1051 -|((( 1052 -**10** 1053 -))) 1054 - 1055 -|((( 1056 -**:** 1057 -))) 1058 - 1059 -|((( 1060 -**~ Example Sce** 1061 -))) 1062 - 1063 -|((( 1064 -**nario for Constraints** 1065 -))) 1066 - 1067 -|((( 1068 -**~ ** 1069 -))) 1070 - 1071 - 1072 - 1073 1073 Constraints are declared as follows: 1074 1074 1018 +[[image:1747855462293-368.png]] 1075 1075 1076 -|((( 1077 - 1078 -))) 1020 +**Figure 11: Example Content Constraints** 1079 1079 1080 -|((( 1081 - 1082 -))) 1083 - 1084 -|((( 1085 - 1086 -))) 1087 - 1088 -|((( 1089 -**Figure** 1090 -))) 1091 - 1092 -|((( 1093 -**11** 1094 -))) 1095 - 1096 -|((( 1097 -**:** 1098 -))) 1099 - 1100 -|((( 1101 -**~ Example Content Constraints** 1102 -))) 1103 - 1104 -|((( 1105 -**~ ** 1106 -))) 1107 - 1108 - 1109 - 1110 1110 **Notes:** 1111 1111 1112 -1. AGE is constrained for the DSD and is further restricted for the Dataflow 1113 - 1114 -CENSUS_CUBE1. 1115 - 1024 +1. AGE is constrained for the DSD and is further restricted for the Dataflow CENSUS_CUBE1. 1116 1116 1. The same Constraint applies to both Provision Agreements. 1117 1117 1118 1118 The cascade rules elaborated above result as follows: 1119 1119 1120 -DSD 1029 +__DSD__ 1121 1121 1122 1122 ~1. Constrained by eliminating code 001 from the code list for the AGE Dimension. 1123 1123 1124 -=== Dataflow CENSUS_CUBE1 === 1033 +(% class="wikigeneratedid" id="HDataflowCENSUS_CUBE1" %) 1034 +__Dataflow CENSUS_CUBE1__ 1125 1125 1126 1126 1. Constrained by restricting the code list for the AGE Dimension to codes 002 and 003(note that this is a more restrictive constraint than that declared for the DSD which specifies all codes except code 001). 1127 1127 1. Restricts the CAS codes to 003 and 004. 1128 1128 1129 -=== Dataflow CENSUS_CUBE2 === 1039 +(% class="wikigeneratedid" id="HDataflowCENSUS_CUBE2" %) 1040 +__Dataflow CENSUS_CUBE2__ 1130 1130 1131 1131 1. Restricts the code list for the CAS Dimension to codes TOT and NAP. 1132 1132 1. Inherits the AGE constraint applied at the level of the DSD. 1133 1133 1134 -=== Provision Agreements CENSUS_CUBE1_IT === 1045 +(% class="wikigeneratedid" id="HProvisionAgreementsCENSUS_CUBE1_IT" %) 1046 +__Provision Agreements CENSUS_CUBE1_IT__ 1135 1135 1136 1136 1. Restricts the codes for the GEO Dimension to IT and its children. 1137 1137 1. Inherits the constraints from Dataflow CENSUS_CUBE1 for the AGE and CAS Dimensions. 1138 1138 1139 -=== Provision Agreements CENSUS_CUBE2_IT === 1051 +(% class="wikigeneratedid" id="HProvisionAgreementsCENSUS_CUBE2_IT" %) 1052 +__Provision Agreements CENSUS_CUBE2_IT__ 1140 1140 1141 1141 1. Restricts the codes for the GEO Dimension to IT and its children. 1142 1142 1. Inherits the constraints from Dataflow CENSUS_CUBE2 for the CAS Dimension. ... ... @@ -1144,17 +1144,20 @@ 1144 1144 1145 1145 The constraints are defined as follows: 1146 1146 1147 -=== DSD Constraint === 1060 +(% class="wikigeneratedid" id="HDSDConstraint" %) 1061 +__DSD Constraint__ 1148 1148 1149 1149 [[image:1747836776698-720.jpeg]] 1150 1150 1151 -=== Dataflow Constraints === 1065 +(% class="wikigeneratedid" id="HDataflowConstraints" %) 1066 +__Dataflow Constraints__ 1152 1152 1153 1153 [[image:1747836776701-360.jpeg]] 1154 1154 1155 1155 === [[image:1747836776707-834.jpeg]] === 1156 1156 1157 -=== Provision Agreement Constraint === 1072 +(% class="wikigeneratedid" id="HProvisionAgreementConstraint" %) 1073 +__Provision Agreement Constraint__ 1158 1158 1159 1159 [[image:1747836776710-262.jpeg]] 1160 1160 ... ... @@ -1166,7 +1166,7 @@ 1166 1166 1167 1167 == 9.2 Groups and Dimension Groups == 1168 1168 1169 -=== 9.2.1 1085 +=== 9.2.1 Issue === 1170 1170 1171 1171 Version 2.1 introduces a more granular mechanism for specifying the relationship between a Data Attribute and the Dimensions to which the attribute applies. The technical construct for this is the Dimension Group. This Dimension Group has no direct equivalent in versions 2.0 and 1.0 and so the application transforming data from a version 2.1 data set to a version 2.0 or version 1.0 data set must decide to which construct the attribute value, whose Attribute is declared in a Dimension Group, should be attached. The closest construct is the “Series” attachment level and in many cases this is the correct construct to use. 1172 1172 ... ... @@ -1179,7 +1179,7 @@ 1179 1179 1180 1180 If the conditions defined in 9.2.1are true then on conversion to a version 2.0 or 1.0 DSD (Key Family) the Component/Attribute.attachmentLevel must be set to “Group” and the Component/Attribute/AttachmentGroup” is used to identify the Group. Note that under rule(1) in 1.2.1 this group will have been defined in the V 2.1 DSD and so will be present in the V 2.0 transformation. 1181 1181 1182 -=== 9.2.3 1098 +=== 9.2.3 Data === 1183 1183 1184 1184 If the conditions defined in 9.2.1are true then, on conversion from a 2.1 data set to a 2.0 or 1.0 dataset the attribute value will be placed in the relevant <Group>. If these conditions are not true then the attribute value will be placed in the <Series>. 1185 1185 ... ... @@ -1191,7 +1191,7 @@ 1191 1191 1192 1192 == 10.1 Introduction == 1193 1193 1194 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1110 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1195 1195 1196 1196 * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones; 1197 1197 * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms); ... ... @@ -1213,10 +1213,8 @@ 1213 1213 1214 1214 The alias of a SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 1215 1215 1216 -In any case, the aliases used in the VTL transformations have to be mapped to the 1132 +In any case, the aliases used in the VTL transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1217 1217 1218 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1219 - 1220 1220 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 1221 1221 1222 1222 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -1225,7 +1225,7 @@ 1225 1225 1226 1226 This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose. 1227 1227 1228 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1142 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1229 1229 1230 1230 * SDMXprefix 1231 1231 * SDMX-IM-package-name ... ... @@ -1233,7 +1233,7 @@ 1233 1233 * agency-id 1234 1234 * maintainedobject-id 1235 1235 * maintainedobject-version 1236 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1150 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1237 1237 * object-id 1238 1238 1239 1239 The generic structure of the URN is the following: ... ... @@ -1252,13 +1252,13 @@ 1252 1252 1253 1253 The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2). 1254 1254 1255 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1169 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1256 1256 1257 -* if the artefact is a ,,Dataflow,,,which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id);1258 -* if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,,maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;1259 -* if the artefact is a ,,Concept,,,which is not maintainable and belongs to the ConceptScheme maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id) which the artefact belongs to;1260 -* if the artefact is a ,,ConceptScheme,,,which is a maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id);1261 -* if the artefact is a ,,Codelist,,,which is a maintainable class, the maintainedobject-id is the Codelist name (codelist-id).1171 +* if the artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id); 1172 +* if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to; 1173 +* if the artefact is a Concept, which is not maintainable and belongs to the ConceptScheme maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id) which the artefact belongs to; 1174 +* if the artefact is a ConceptScheme, which is a maintainable class, ,, ,,the maintainedobject-id is the name of the ConceptScheme (conceptScheme-id); 1175 +* if the artefact is a Codelist, which is a maintainable class, the maintainedobject-id is the Codelist name (codelist-id). 1262 1262 1263 1263 The **maintainedobject-version** is the version of the maintained object which the artefact belongs to (for example, possible versions are 1.0, 2.1, 3.1.2). 1264 1264 ... ... @@ -1272,7 +1272,7 @@ 1272 1272 1273 1273 * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,) 1274 1274 1275 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1189 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1276 1276 1277 1277 ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ <- 1278 1278 ... ... @@ -1290,14 +1290,14 @@ 1290 1290 * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 1291 1291 ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, 1292 1292 ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist. 1293 -* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1294 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1207 +* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1208 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1295 1295 * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 1296 1296 ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the 1297 1297 1298 1298 SDMX structural definitions; o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted; 1299 1299 1300 -* 1214 +* 1301 1301 ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted; 1302 1302 ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted. 1303 1303 * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,, ... ... @@ -1318,11 +1318,11 @@ 1318 1318 1319 1319 DFR := DF1 + DF2 1320 1320 1321 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1235 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1322 1322 1323 1323 ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’ 1324 1324 1325 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1239 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1326 1326 1327 1327 CL_FREQ 1328 1328 ... ... @@ -1332,7 +1332,7 @@ 1332 1332 1333 1333 SECTOR 1334 1334 1335 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1249 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1336 1336 1337 1337 ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC] 1338 1338 ... ... @@ -1366,9 +1366,9 @@ 1366 1366 1367 1367 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 1368 1368 1369 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1283 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1370 1370 1371 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1285 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1372 1372 1373 1373 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature. 1374 1374 ... ... @@ -1382,15 +1382,15 @@ 1382 1382 1383 1383 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 1384 1384 1385 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1299 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1386 1386 1387 1387 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 1388 1388 1389 1389 === 10.3.2 General mapping of VTL and SDMX data structures === 1390 1390 1391 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1305 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1392 1392 1393 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1307 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1394 1394 1395 1395 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 1396 1396 ... ... @@ -1400,7 +1400,7 @@ 1400 1400 1401 1401 SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 1402 1402 1403 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1317 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1404 1404 1405 1405 As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 1406 1406 ... ... @@ -1464,7 +1464,7 @@ 1464 1464 1465 1465 The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension; 1466 1466 1467 -* 1381 +* 1468 1468 ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 1469 1469 ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 1470 1470 ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj ... ... @@ -1471,7 +1471,7 @@ 1471 1471 1472 1472 **10.3.3.3 From SDMX DataAttributes to VTL Measures ** 1473 1473 1474 -* 1388 +* 1475 1475 ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 1476 1476 1477 1477 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. ... ... @@ -1490,7 +1490,7 @@ 1490 1490 1491 1491 This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the 1492 1492 1493 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1407 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1494 1494 1495 1495 1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 1496 1496 ... ... @@ -1557,7 +1557,7 @@ 1557 1557 1558 1558 the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above 1559 1559 1560 -* 1474 +* 1561 1561 ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj) 1562 1562 ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set 1563 1563 ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above) ... ... @@ -1607,15 +1607,15 @@ 1607 1607 1608 1608 The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows). 1609 1609 1610 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1524 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1611 1611 1612 1612 Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 1613 1613 1614 1614 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set). 1615 1615 1616 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1530 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1617 1617 1618 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1532 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1619 1619 1620 1620 Given a SDMX Dataflow and some predefined Dimensions of its 1621 1621 ... ... @@ -1627,14 +1627,14 @@ 1627 1627 1628 1628 In practice, this kind mapping is obtained like follows: 1629 1629 1630 -* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1544 +* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1631 1631 * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 1632 1632 ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated 1633 1633 1634 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1548 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1635 1635 1636 -* 1637 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1550 +* 1551 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1638 1638 1639 1639 In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 1640 1640 ... ... @@ -1652,7 +1652,7 @@ 1652 1652 1653 1653 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 1654 1654 1655 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1569 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1656 1656 1657 1657 First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations. 1658 1658 ... ... @@ -1662,7 +1662,7 @@ 1662 1662 1663 1663 //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA. 1664 1664 1665 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1579 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1666 1666 1667 1667 In the example above, for all the datasets of the kind 1668 1668 ... ... @@ -1682,7 +1682,7 @@ 1682 1682 1683 1683 … … … 1684 1684 1685 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1599 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1686 1686 1687 1687 In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. 1688 1688 ... ... @@ -1705,12 +1705,12 @@ 1705 1705 1706 1706 For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY: 1707 1707 1708 -* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1709 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1622 +* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1623 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1710 1710 1711 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1625 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1712 1712 1713 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1627 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1714 1714 1715 1715 ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’ <- expression 1716 1716 ... ... @@ -1777,9 +1777,9 @@ 1777 1777 1778 1778 …); 1779 1779 1780 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1694 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1781 1781 1782 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1696 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1783 1783 1784 1784 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 1785 1785 ... ... @@ -1828,7 +1828,7 @@ 1828 1828 1829 1829 Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 1830 1830 1831 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1745 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1832 1832 1833 1833 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 1834 1834 ... ... @@ -2117,12 +2117,12 @@ 2117 2117 “true” or “false” 2118 2118 ))) 2119 2119 2120 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2121 2121 2122 -In case a different default conversion is desired, it can be achieved through the 2123 2123 2124 - CustomTypeSchemeand CustomTypeartefacts(see alsothe sectionTransformationsand Expressionsof theSDMX information model).2036 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2125 2125 2038 +In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 2039 + 2126 2126 The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table. 2127 2127 2128 2128 |(% colspan="2" %)**VTL special characters for the formatting masks** ... ... @@ -2173,7 +2173,7 @@ 2173 2173 |N|fixed number of digits used in the preceding textual representation of the month or the day 2174 2174 | | 2175 2175 2176 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2090 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2177 2177 2178 2178 === 10.4.5 Null Values === 2179 2179 ... ... @@ -2205,12 +2205,18 @@ 2205 2205 2206 2206 For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”. 2207 2207 2208 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2122 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2209 2209 2124 +[[image:1747854006117-843.png]] 2125 + 2210 2210 The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework. 2211 2211 2212 2212 Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below: 2213 2213 2130 +[[image:1747854039499-443.png]] 2131 + 2132 +[[image:1747854067769-691.png]] 2133 + 2214 2214 Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution. 2215 2215 2216 2216 == 11.2 Solution == ... ... @@ -2231,20 +2231,30 @@ 2231 2231 2232 2232 To understand how the **XmlAnyElement** attribute works we present the following two web methods: 2233 2233 2234 - In thismethod the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element.Since the attribute is notpassed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter.2154 +[[image:1747854096778-844.png]] 2235 2235 2236 - Thedifferencebetween the two is that for thefirst method,**SubmitXml**,the2156 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter. 2237 2237 2238 - XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plugwhatever XML is included into the input parameter.The message style from ASP.NET Helpfor the two methods is shownbelow. First we look at the message for the method without the **XmlAnyElement** attribute.2158 +[[image:1747854127303-270.png]] 2239 2239 2160 +The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute. 2161 + 2162 +[[image:1747854163928-581.png]] 2163 + 2240 2240 Now we look at the message for the method that uses the **XmlAnyElement** attribute. 2241 2241 2166 +[[image:1747854190641-364.png]] 2167 + 2168 +[[image:1747854236732-512.png]] 2169 + 2242 2242 The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter. 2243 2243 2244 -For more information please consult: >>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[->>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[us/library/aa480498.aspx>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]]2172 +For more information please consult: [[http:~~/~~/msdn.microsoft.com/en-us/library/aa480498.aspx>>http://msdn.microsoft.com/en-us/library/aa480498.aspx]] 2245 2245 2246 2246 Furthermore at this point the problem with the different requests has been solved. However there is still the difference in the produced WSDL that has to be taken care. The automatic generated WSDL now doesn’t insert the extra element, but defines the content of the operation wrapper element as “xsd:any” type. 2247 2247 2176 +[[image:1747854286398-614.png]] 2177 + 2248 2248 Without a common WSDL still the solution doesn’t enforce interoperability. In order to 2249 2249 2250 2250 “fix” the WSDL, there two approaches. The first is to intervene in the generation process. This is a complicated approach, compared to the second approach, which overrides the generation process and returns the envisioned WSDL for the SDMX Web Service. ... ... @@ -2257,16 +2257,27 @@ 2257 2257 2258 2258 In the context of the SDMX Web Service, applying the above solution translates into the following: 2259 2259 2190 +[[image:1747854385465-132.png]] 2191 + 2260 2260 The SOAP request/response will then be as follows: 2261 2261 2262 2262 **GenericData Request** 2263 2263 2196 +[[image:1747854406014-782.png]] 2197 + 2264 2264 **GenericData Response** 2265 2265 2200 +[[image:1747854424488-855.png]] 2201 + 2266 2266 For overriding the automatically produced WSDL, in the solution explorer right click the project and select “Add” -> “New item…”. Then select the “Global Application Class”. This will create “.asax” class file in which the following code should replace the existing empty method: 2267 2267 2204 +[[image:1747854453895-524.png]] 2205 + 2206 +[[image:1747854476631-125.png]] 2207 + 2268 2268 The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains: 2269 2269 2210 +[[image:1747854493363-776.png]] 2270 2270 2271 2271 ---- 2272 2272 ... ... @@ -2359,3 +2359,5 @@ 2359 2359 [[~[42~]>>path:#_ftnref42]] A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept. 2360 2360 2361 2361 [[~[43~]>>path:#_ftnref43]] The representation given in the DSD should obviously be compatible with the VTL data type. 2303 + 2304 +{{putFootnotes/}}
- 1747854006117-843.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.7 KB - Content
- 1747854039499-443.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.0 KB - Content
- 1747854067769-691.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.4 KB - Content
- 1747854096778-844.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.6 KB - Content
- 1747854127303-270.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +12.1 KB - Content
- 1747854163928-581.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +29.8 KB - Content
- 1747854190641-364.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.5 KB - Content
- 1747854236732-512.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 KB - Content
- 1747854286398-614.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854385465-132.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854406014-782.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854424488-855.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854453895-524.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854476631-125.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747854493363-776.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747855024745-946.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747855054559-410.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747855075263-887.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747855402867-579.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747855462293-368.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content
- 1747855493531-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.0 KB - Content