Last modified by Artur on 2025/08/19 10:43

From version 6.1
edited by Helena
on 2025/05/21 21:55
Change comment: There is no comment for this version
To version 4.6
edited by Helena
on 2025/05/21 21:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -132,8 +132,9 @@
132 132  
133 133  **6. Uncoded statistical concept** text values are:
134 134  
135 -* Maximum 1050 characters;
136 -* From ISO 8859-1 character set.
135 +*
136 +** Maximum 1050 characters;
137 +** From ISO 8859-1 character set.
137 137  
138 138  **7. Time series keys**:
139 139  
... ... @@ -141,23 +141,20 @@
141 141  
142 142  == 3.4 SDMX-ML and SDMX-EDI Best Practices ==
143 143  
144 -=== 3.4.1 Reporting and Dissemination Guidelines ===
145 +=== 3.4.1 Reporting and Dissemination Guidelines ===
145 145  
146 -==== 3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges ====
147 +**3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges **Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
147 147  
148 -Central institutions are the organisations to which other partner institutions "report" statistics. These statistics are used by central institutions either to compile aggregates and/or they are put together and made available in a uniform manner (e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions receive data from other institutions and, usually, they also "disseminate" data to individual and/or institutions for end-use.  Within a country, a NSI or a national central bank (NCB) plays, of course, a central institution role as it collects data from other entities and it disseminates statistical information to end users. In SDMX the role of central institution is very important: every statistical message is based on underlying structural definitions (statistical concepts, code lists, DSDs) which have been devised by a particular agency, usually a central institution. Such an institution plays the role of the reference "structural definitions maintenance agency" for the corresponding messages which are exchanged. Of course, two institutions could exchange data using/referring to structural information devised by a third institution.
149 -
150 150  Central institutions can play a double role:
151 151  
152 152  * collecting and further disseminating statistics;
153 153  * devising structural definitions for use in data exchanges.
154 154  
155 -==== 3.4.1.2 Defining Data Structure Definitions (DSDs) ====
154 +**3.4.1.2 Defining Data Structure Definitions (DSDs)**
156 156  
157 157  The following guidelines are suggested for building a DSD. However, it is expected that these guidelines will be considered by central institutions when devising new DSDs.
158 158  
159 -(% class="wikigeneratedid" id="HDimensions2CAttributesandCodeLists" %)
160 -__Dimensions, Attributes and Code Lists__
158 +=== Dimensions, Attributes and Code Lists ===
161 161  
162 162  **//Avoid dimensions that are not appropriate for all the series in the data structure definition.//**  If some dimensions are not applicable (this is evident from the need to have a code in a code list which is marked as “not applicable”, “not relevant” or “total”) for some series then consider moving these series to a new data structure definition in which these dimensions are dropped from the key structure. This is a judgement call as it is sometimes difficult to achieve this without increasing considerably the number of DSDs.
163 163  
... ... @@ -187,8 +187,7 @@
187 187  
188 188  The same code list can be used for several statistical concepts, within a data structure definition or across DSDs. Note that SDMX has recognised that these classifications are often quite large and the usage of codes in any one DSD is only a small extract of the full code list. In this version of the standard it is possible to exchange and disseminate a **partial code list** which is extracted from the full code list and which supports the dimension values valid for a particular DSD.
189 189  
190 -(% class="wikigeneratedid" id="HDataStructureDefinitionStructure" %)
191 -__Data Structure Definition Structure__
188 +=== Data Structure Definition Structure ===
192 192  
193 193  The following items have to be specified by a structural definitions maintenance agency when defining a new data structure definition:
194 194  
... ... @@ -218,7 +218,7 @@
218 218  * code list name
219 219  * code values and descriptions
220 220  
221 -Definition of data flow definitions. Two (or more) partners performing data exchanges in a certain context need to agree on:
218 +Definition of data flow definitions.  Two (or more) partners performing data exchanges in a certain context need to agree on:
222 222  
223 223  * the list of data set identifiers they will be using;
224 224  * for each data flow:
... ... @@ -225,12 +225,10 @@
225 225  * its content and description
226 226  * the relevant DSD that defines the structure of the data reported or disseminated according the the dataflow definition
227 227  
228 -==== 3.4.1.3 Exchanging Attributes ====
225 +**3.4.1.3 Exchanging Attributes**
229 229  
230 -===== //3.4.1.3.1 Attributes on series, sibling and data set level // =====
227 +**//3.4.1.3.1 Attributes on series, sibling and data set level //**//Static properties//.
231 231  
232 -//Static properties//.
233 -
234 234  * Upon creation of a series the sender has to provide to the receiver values for all mandatory attributes. In case they are available, values for conditional attributes  should also be provided. Whereas initially this information may be provided by means other than SDMX-ML or SDMX-EDI messages (e.g. paper, telephone) it is expected that partner institutions will be in a position to provide this information in SDMX-ML or SDMX-EDI format over time.
235 235  * A centre may agree with its data exchange partners special procedures for authorising the setting of attributes' initial values.
236 236  * Attribute values at a data set level are set and maintained exclusively by the centre administrating the exchanged data set.
... ... @@ -247,21 +247,21 @@
247 247  * If the “observation status” changes and the observation remains unchanged, both components would have to be reported.
248 248  * For Data Structure Definitions having also the observation level attributes “observation confidentiality” and "observation pre-break" defined, this rule applies to these attribute as well: if an institution receives from another institution an observation with an observation status attribute only attached, this means that the associated observation confidentiality and prebreak observation attributes either never existed or from now they do not have a value for this observation.
249 249  
250 -=== 3.4.2 Best Practices for Batch Data Exchange ===
245 +==== 3.4.2 Best Practices for Batch Data Exchange ====
251 251  
252 -==== 3.4.2.1 Introduction ====
247 +**3.4.2.1 Introduction**
253 253  
254 254  Batch data exchange is the exchange and maintenance of entire databases between counterparties. It is an activity that often employs SDMX-EDI formats, and might also use the SDMX-ML DSD-specific data set. The following points apply equally to both formats.
255 255  
256 -==== 3.4.2.2 Positioning of the Dimension "Frequency" ====
251 +**3.4.2.2 Positioning of the Dimension "Frequency"**
257 257  
258 258  The position of the “frequency” dimension is unambiguously identified in the data structure definition. Moreover, most central institutions devising structural definitions have decided to assign to this dimension the first position in the key structure. This facilitates the easy identification of this dimension, something that it is necessary to frequency's crucial role in several database systems and in attaching attributes at the “sibling” group level.
259 259  
260 -==== 3.4.2.3 Identification of Data Structure Definitions (DSDs) ====
255 +**3.4.2.3 Identification of Data Structure Definitions (DSDs)**
261 261  
262 262  In order to facilitate the easy and immediate recognition of the structural definition maintenance agency that defined a data structure definition, most central institutions devising structural definitions use the first characters of the data structure definition identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, ECB_BOP1, etc.
263 263  
264 -==== 3.4.2.4 Identification of the Data Flows ====
259 +**3.4.2.4 Identification of the Data Flows**
265 265  
266 266  In order to facilitate the easy and immediate recognition of the institution administrating a data flow definitions, many central institutions prefer to use the first characters of the data flow definition identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set plays the role of the data flow definition (see //DataSet //in the SDMX-IM//)//.
267 267  
... ... @@ -269,7 +269,7 @@
269 269  
270 270  Note that the role of the Data Flow (called //DataflowDefintion// in the model) and Data Set is very specific in the model, and the terminology used may not be the same as used in all organisations, and specifically the term Data Set is used differently in SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to describe the "container" for an instance of the data.
271 271  
272 -==== 3.4.2.5 Special Issues ====
267 +**3.4.2.5 Special Issues**
273 273  
274 274  ===== 3.4.2.5.1 "Frequency" related issues =====
275 275  
... ... @@ -280,6 +280,7 @@
280 280  
281 281  **//Tick data.//** The issue of data collected at irregular intervals at a higher than daily frequency (e.g. tick-by-tick data) is not discussed here either. However, for data exchange purposes, such series can already be exchanged in the SDMX-EDI format by using the option to send observations with the associated time stamp.
282 282  
278 +
283 283  = 4 General Notes for Implementers =
284 284  
285 285  This section discusses a number of topics other than the exchange of data sets in SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the use of the reference metadata mechanism in SDMX, the use of Structure Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, and some of the conventional mechanisms within the SDMX-ML Structure message regarding versioning and external referencing.
... ... @@ -290,31 +290,39 @@
290 290  
291 291  There are several different representations in SDMX-ML, taken from XML Schemas and common programming languages. The table below describes the various representations which are found in SDMX-ML, and their equivalents.
292 292  
293 -(% style="width:912.294px" %)
294 -|(% style="width:172px" %)**SDMX-ML Data Type**|(% style="width:204px" %)**XML Schema Data Type**|(% style="width:189px" %)**.NET Framework Type**|(% style="width:342px" %)(((
295 -**Java Data Type **
289 +|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
290 +**Java Data Type**
291 +
292 +**~ **
296 296  )))
297 -|(% style="width:172px" %)String|(% style="width:204px" %)xsd:string|(% style="width:189px" %)System.String|(% style="width:342px" %)java.lang.String
298 -|(% style="width:172px" %)Big Integer|(% style="width:204px" %)xsd:integer|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigInteg er
299 -|(% style="width:172px" %)Integer|(% style="width:204px" %)xsd:int|(% style="width:189px" %)System.Int32|(% style="width:342px" %)int
300 -|(% style="width:172px" %)Long|(% style="width:204px" %)xsd.long|(% style="width:189px" %)System.Int64|(% style="width:342px" %)long
301 -|(% style="width:172px" %)Short|(% style="width:204px" %)xsd:short|(% style="width:189px" %)System.Int16|(% style="width:342px" %)short
302 -|(% style="width:172px" %)Decimal|(% style="width:204px" %)xsd:decimal|(% style="width:189px" %)System.Decimal|(% style="width:342px" %)java.math.BigDecim al
303 -|(% style="width:172px" %)Float|(% style="width:204px" %)xsd:float|(% style="width:189px" %)System.Single|(% style="width:342px" %)float
304 -|(% style="width:172px" %)Double|(% style="width:204px" %)xsd:double|(% style="width:189px" %)System.Double|(% style="width:342px" %)double
305 -|(% style="width:172px" %)Boolean|(% style="width:204px" %)xsd:boolean|(% style="width:189px" %)System.Boolean|(% style="width:342px" %)boolean
306 -|(% style="width:172px" %)URI|(% style="width:204px" %)xsd:anyURI|(% style="width:189px" %)System.Uri|(% style="width:342px" %)Java.net.URI or java.lang.String
307 -|(% style="width:172px" %)DateTime|(% style="width:204px" %)xsd:dateTime|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
308 -|(% style="width:172px" %)Time|(% style="width:204px" %)xsd:time|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
309 -|(% style="width:172px" %)GregorianYear|(% style="width:204px" %)xsd:gYear|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
310 -|(% style="width:172px" %)GregorianMonth|(% style="width:204px" %)xsd:gYearMonth|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
311 -|(% style="width:172px" %)GregorianDay|(% style="width:204px" %)xsd:date|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
312 -|(% style="width:172px" %)(((
313 -Day, MonthDay, Month
314 -)))|(% style="width:204px" %)xsd:g*|(% style="width:189px" %)System.DateTime|(% style="width:342px" %)javax.xml.datatype .XMLGregorianCalen dar
315 -|(% style="width:172px" %)Duration|(% style="width:204px" %)xsd:duration |(% style="width:189px" %)System.TimeSpa|(% style="width:342px" %)javax.xml.datatype
316 -|(% style="width:172px" %) |(% style="width:204px" %) |(% style="width:189px" %)n|(% style="width:342px" %).Duration
294 +|String|xsd:string|System.String|java.lang.String
295 +|Big Integer|xsd:integer|System.Decimal|java.math.BigInteg er
296 +|Integer|xsd:int|System.Int32|int
297 +|Long|xsd.long|System.Int64|long
298 +|Short|xsd:short|System.Int16|short
299 +|Decimal|xsd:decimal|System.Decimal|java.math.BigDecim al
300 +|Float|xsd:float|System.Single|float
301 +|Double|xsd:double|System.Double|double
302 +|Boolean|xsd:boolean|System.Boolean|boolean
303 +|URI|xsd:anyURI|System.Uri|Java.net.URI or java.lang.String
304 +|DateTime|xsd:dateTime|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
305 +|Time|xsd:time|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
306 +|GregorianYear|xsd:gYear|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
307 +|GregorianMont h|xsd:gYearMont h|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
308 +|GregorianDay|xsd:date|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
309 +|(((
310 +Day,
317 317  
312 +MonthDay, Month
313 +)))|xsd:g*|System.DateTim e|javax.xml.datatype .XMLGregorianCalen dar
314 +|Duration|xsd:duration |System.TimeSpa|javax.xml.datatype
315 +|**SDMX-ML Data Type**|**XML Schema Data Type**|**.NET Framework Type**|(((
316 +**Java Data Type**
317 +
318 +**~ **
319 +)))
320 +| | |n|.Duration
321 +
318 318  There are also a number of SDMX-ML data types which do not have these direct correspondences, often because they are composite representations or restrictions of a broader data type. For most of these, there are simple types which can be referenced from the SDMX schemas, for others a derived simple type will be necessary:
319 319  
320 320  * AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-9)
... ... @@ -340,8 +340,10 @@
340 340  * KeyValues (common:DataKeyType)
341 341  * IdentifiableReference (types for each identifiable object)
342 342  * DataSetReference (common:DataSetReferenceType)
343 -* AttachmentConstraintReference (common:AttachmentConstraintReferenceType)
347 +* AttachmentConstraintReference
344 344  
349 +(common:AttachmentConstraintReferenceType)
350 +
345 345  Data types also have a set of facets:
346 346  
347 347  * isSequence = true | false (indicates a sequentially increasing value)
... ... @@ -363,7 +363,7 @@
363 363  
364 364  == 4.2 Time and Time Format ==
365 365  
366 -=== 4.2.1 Introduction ===
372 +==== 4.2.1 Introduction ====
367 367  
368 368  First, it is important to recognize that most observation times are a period. SDMX specifies precisely how Time is handled.
369 369  
... ... @@ -371,47 +371,50 @@
371 371  
372 372  The hierarchy of time formats is as follows (**bold** indicates a category which is made up of multiple formats, //italic// indicates a distinct format):
373 373  
374 -* **Observational Time Period**
375 -** **Standard Time Period**
376 -*** **Basic Time Period**
377 -**** **Gregorian Time Period**
378 -**** //Date Time//
379 -*** **Reporting Time Period**
380 -** //Time Range//
380 +* **Observational Time Period **o **Standard Time Period**
381 381  
382 + § **Basic Time Period**
383 +
384 +* **Gregorian Time Period**
385 +* //Date Time//
386 +
387 +§ **Reporting Time Period **o //Time Range//
388 +
382 382  The details of these time period categories and of the distinct formats which make them up are detailed in the sections to follow.
383 383  
384 -=== 4.2.2 Observational Time Period ===
391 +==== 4.2.2 Observational Time Period ====
385 385  
386 386  This is the superset of all time representations in SDMX. This allows for time to be expressed as any of the allowable formats.
387 387  
388 -=== 4.2.3 Standard Time Period ===
395 +==== 4.2.3 Standard Time Period ====
389 389  
390 390  This is the superset of any predefined time period or a distinct point in time. A time period consists of a distinct start and end point. If the start and end of a period are expressed as date instead of a complete date time, then it is implied that the start of the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is the end of the end day (i.e. 23:59:59).
391 391  
392 -=== 4.2.4 Gregorian Time Period ===
399 +==== 4.2.4 Gregorian Time Period ====
393 393  
394 394  A Gregorian time period is always represented by a Gregorian year, year-month, or day. These are all based on ISO 8601 dates. The representation in SDMX-ML messages and the period covered by each of the Gregorian time periods are as follows:
395 395  
396 -**Gregorian Year:**
403 +**Gregorian Year:**
404 +
397 397  Representation: xs:gYear (YYYY)
398 -Period: the start of January 1 to the end of December 31
399 399  
400 -**Gregorian Year Month**:
407 +Period: the start of January 1 to the end of December 31 **Gregorian Year Month**:
408 +
401 401  Representation: xs:gYearMonth (YYYY-MM)
402 -Period: the start of the first day of the month to end of the last day of the month
403 403  
404 -**Gregorian Day**:
411 +Period: the start of the first day of the month to end of the last day of the month **Gregorian Day**:
412 +
405 405  Representation: xs:date (YYYY-MM-DD)
414 +
406 406  Period: the start of the day (00:00:00) to the end of the day (23:59:59)
407 407  
408 -=== 4.2.5 Date Time ===
417 +==== 4.2.5 Date Time ====
409 409  
410 410  This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used.
411 411  
412 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
421 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]
413 413  
414 -=== 4.2.6 Standard Reporting Period ===
423 +==== 4.2.6 Standard Reporting Period ====
415 415  
416 416  Standard reporting periods are periods of time in relation to a reporting year. Each of these standard reporting periods has a duration (based on the ISO 8601 definition) associated with it. The general format of a reporting period is as follows:
417 417  
... ... @@ -418,52 +418,75 @@
418 418  [REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE]
419 419  
420 420  Where:
430 +
421 421  REPORTING_YEAR represents the reporting year as four digits (YYYY) PERIOD_INDICATOR identifies the type of period which determines the duration of the period
432 +
422 422  PERIOD_VALUE indicates the actual period within the year
423 423  
424 424  The following section details each of the standard reporting periods defined in SDMX:
425 425  
426 -**Reporting Year**:
427 -Period Indicator: A
437 +**Reporting Year**:
438 +
439 + Period Indicator: A
440 +
428 428  Period Duration: P1Y (one year)
442 +
429 429  Limit per year: 1
430 -Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1)
431 431  
432 -**Reporting Semester:**
433 -Period Indicator: S
445 +Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) **Reporting Semester:**
446 +
447 + Period Indicator: S
448 +
434 434  Period Duration: P6M (six months)
450 +
435 435  Limit per year: 2
436 -Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2)
437 437  
438 -**Reporting Trimester:**
439 -Period Indicator: T
453 +Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) **Reporting Trimester:**
454 +
455 + Period Indicator: T
456 +
440 440  Period Duration: P4M (four months)
458 +
441 441  Limit per year: 3
442 -Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3)
443 443  
444 -**Reporting Quarter:**
445 -Period Indicator: Q
461 +Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) **Reporting Quarter:**
462 +
463 + Period Indicator: Q
464 +
446 446  Period Duration: P3M (three months)
466 +
447 447  Limit per year: 4
448 -Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4)
449 449  
450 -**Reporting Month**:
469 +Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) **Reporting Month**:
470 +
451 451  Period Indicator: M
472 +
452 452  Period Duration: P1M (one month)
474 +
453 453  Limit per year: 1
476 +
454 454  Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) Notes: The reporting month is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
455 455  
456 456  **Reporting Week**:
480 +
457 457  Period Indicator: W
482 +
458 458  Period Duration: P7D (seven days)
484 +
459 459  Limit per year: 53
486 +
460 460  Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53)
461 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
462 462  
489 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.
490 +
463 463  **Reporting Day**:
492 +
464 464  Period Indicator: D
494 +
465 465  Period Duration: P1D (one day)
496 +
466 466  Limit per year: 366
498 +
467 467  Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) Notes: There are either 365 or 366 days in a reporting year, depending on whether the reporting year includes leap day (February 29). The reporting day is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001).
468 468  
469 469  This allows the values to be sorted chronologically using textual sorting methods.
... ... @@ -474,109 +474,143 @@
474 474  
475 475  Since the duration and the reporting year start day are known for any reporting period, it is possible to relate any reporting period to a distinct calendar period. The actual Gregorian calendar period covered by the reporting period can be computed as follows (based on the standard format of [REPROTING_YEAR][PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as [REPORTING_YEAR_START_DAY]):
476 476  
477 -**~1. Determine [REPORTING_YEAR_BASE]:**
509 +1. **Determine [REPORTING_YEAR_BASE]:**
510 +
478 478  Combine [REPORTING_YEAR] of the reporting period value (YYYY) with [REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD).
512 +
479 479  This is the [REPORTING_YEAR_START_DATE]
480 -**a) If the [PERIOD_INDICATOR] is W:
481 -~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
514 +
515 +**a) If the [PERIOD_INDICATOR] is W:**
516 +
517 +1.
518 +11.
519 +111.
520 +1111. **If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:**
521 +
482 482  Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
483 483  
484 -​​​​​​​2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
524 +1.
525 +11.
526 +111.
527 +1111. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:**
528 +
485 485  Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE].
486 -b) **Else:** 
487 -The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE]
488 488  
489 -**2. Determine [PERIOD_DURATION]:**
531 +b) **Else:**
490 490  
491 -a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
492 -b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
493 -c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
494 -d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
495 -e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
496 -f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
497 -g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
533 +The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE].
498 498  
499 -**3. Determine [PERIOD_START]:**
500 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
535 +1. **Determine [PERIOD_DURATION]:**
536 +11.
537 +111. If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y.
538 +111. If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M.
539 +111. If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M.
540 +111. If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M.
541 +111. If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M.
542 +111. If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D.
543 +111. If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D.
544 +1. **Determine [PERIOD_START]:**
501 501  
502 -**4. Determine the [PERIOD_END]:**
546 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].
547 +
548 +1. **Determine the [PERIOD_END]:**
549 +
503 503  Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END].
504 504  
505 505  For all of these ranges, the bounds include the beginning of the [PERIOD_START] (i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59).
506 506  
507 -**Examples:**
554 +**Examples: **
508 508  
509 509  **2010-Q2, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
557 +
510 510  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
559 +
511 511  b) [REPORTING_YEAR_BASE] = 2010-07-01
512 -[PERIOD_DURATION] = P3M
513 -(2-1) * P3M = P3M
561 +
562 +1. [PERIOD_DURATION] = P3M
563 +1. (2-1) * P3M = P3M
564 +
514 514  2010-07-01 + P3M = 2010-10-01
566 +
515 515  [PERIOD_START] = 2010-10-01
568 +
516 516  4. 2 * P3M = P6M
570 +
517 517  2010-07-01 + P6M = 2010-13-01 = 2011-01-01
572 +
518 518  2011-01-01 + -P1D = 2010-12-31
574 +
519 519  [PERIOD_END] = 2011-12-31
520 520  
521 521  The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59
522 522  
523 523  **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)**
580 +
524 524  ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01
582 +
525 525  a) 2011-07-01 = Friday
584 +
526 526  2011-07-01 + P3D = 2011-07-04
586 +
527 527  [REPORTING_YEAR_BASE] = 2011-07-04
528 -2. [PERIOD_DURATION] = P7D
529 -3. (36-1) * P7D = P245D
588 +
589 +1. [PERIOD_DURATION] = P7D
590 +1. (36-1) * P7D = P245D
591 +
530 530  2011-07-04 + P245D = 2012-03-05
593 +
531 531  [PERIOD_START] = 2012-03-05
595 +
532 532  4. 36 * P7D = P252D
597 +
533 533  2011-07-04 + P252D =2012-03-12
599 +
534 534  2012-03-12 + -P1D = 2012-03-11
601 +
535 535  [PERIOD_END] = 2012-03-11
536 536  
537 537  The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59
538 538  
539 -=== 4.2.7 Distinct Range ===
606 +==== 4.2.7 Distinct Range ====
540 540  
541 541  In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive.
542 542  
543 -=== 4.2.8 Time Format ===
610 +==== 4.2.8 Time Format ====
544 544  
545 545  In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 
546 546  
547 -(% style="width:1049.29px" %)
548 -|**Code**|(% style="width:926px" %)**Format**
549 -|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
550 -|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods
551 -|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time
552 -|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods
553 -|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
554 -|**GY**|(% style="width:926px" %)Gregorian Year (YYYY)
555 -|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM)
556 -|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD)
557 -|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
558 -|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1)
559 -|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss)
560 -|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt)
561 -|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq)
562 -|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm)
563 -|**Code**|(% style="width:926px" %)**Format**
564 -|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www)
565 -|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd)
614 +|**Code**|**Format**
615 +|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range)
616 +|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods
617 +|**GTP**|Superset of all Gregorian Time Periods and date-time
618 +|**RTP**|Superset of all Reporting Time Periods
619 +|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>)
620 +|**GY**|Gregorian Year (YYYY)
621 +|**GTM**|Gregorian Year Month (YYYY-MM)
622 +|**GD**|Gregorian Day (YYYY-MM-DD)
623 +|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)
624 +|**RY**|Reporting Year (YYYY-A1)
625 +|**RS**|Reporting Semester (YYYY-Ss)
626 +|**RT**|Reporting Trimester (YYYY-Tt)
627 +|**RQ**|Reporting Quarter (YYYY-Qq)
628 +|**RM**|Reporting Month (YYYY-Mmm)
629 +|**Code**|**Format**
630 +|**RW**|Reporting Week (YYYY-Www)
631 +|**RD**|Reporting Day (YYYY-Dddd)
566 566  
567 -**Table 1: SDMX-ML Time Format Codes**
633 + **Table 1: SDMX-ML Time Format Codes**
568 568  
569 -=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ===
635 +==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ====
570 570  
571 571  When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT".
572 572  
573 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations).
639 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations)
574 574  
575 575  When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML.
576 576  
577 577  When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq.
578 578  
579 -=== 4.2.10 Time Zones ===
645 +==== 4.2.10 Time Zones ====
580 580  
581 581  In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold):
582 582  
... ... @@ -597,7 +597,7 @@
597 597  
598 598  According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message.
599 599  
600 -=== 4.2.11 Representing Time Spans Elsewhere ===
666 +==== 4.2.11 Representing Time Spans Elsewhere ====
601 601  
602 602  It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this:
603 603  
... ... @@ -607,29 +607,30 @@
607 607  
608 608  <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/>
609 609  
610 -=== 4.2.12 Notes on Formats ===
676 +==== 4.2.12 Notes on Formats ====
611 611  
612 612  There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing.
613 613  
614 -=== 4.2.13 Effect on Time Ranges ===
680 +==== 4.2.13 Effect on Time Ranges ====
615 615  
616 616  All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value.
617 617  
618 -=== 4.2.14 Time in Query Messages ===
684 +==== 4.2.14 Time in Query Messages ====
619 619  
620 620  When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters.
621 621  
622 622  Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter.
623 623  
624 -(% style="width:1024.29px" %)
625 -|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule**
626 -|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period
627 -|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period
628 -|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)(((
629 -Any data on or after the first moment of the period
690 +|**Operator**|**Rule**
691 +|Greater Than|Any data after the last moment of the period
692 +|Less Than|Any data before the first moment of the period
693 +|Greater Than or Equal To|(((
694 +Any data on or after the first moment of
695 +
696 +the period
630 630  )))
631 -|(% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period
632 -|(% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period
698 +|Less Than or Equal To|Any data on or before the last moment of the period
699 +|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period
633 633  
634 634  Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any":
635 635  
... ... @@ -1172,7 +1172,7 @@
1172 1172  
1173 1173  == 10.1 Introduction ==
1174 1174  
1175 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1242 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:
1176 1176  
1177 1177  * definition of validation and transformation algorithms, in order to specify how to calculate new data  from existing ones;
1178 1178  * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms);
... ... @@ -1196,7 +1196,7 @@
1196 1196  
1197 1197  In any case, the aliases used in the VTL transformations have to be mapped to the
1198 1198  
1199 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1266 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%)  to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 
1200 1200  
1201 1201  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias  identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
1202 1202  
... ... @@ -1206,7 +1206,7 @@
1206 1206  
1207 1207  This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose.
1208 1208  
1209 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1276 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^
1210 1210  
1211 1211  * SDMXprefix                                                                                   
1212 1212  * SDMX-IM-package-name             
... ... @@ -1214,7 +1214,7 @@
1214 1214  * agency-id                                                                          
1215 1215  * maintainedobject-id
1216 1216  * maintainedobject-version
1217 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1284 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]
1218 1218  * object-id
1219 1219  
1220 1220  The generic structure of the URN is the following:
... ... @@ -1233,7 +1233,7 @@
1233 1233  
1234 1234  The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2).
1235 1235  
1236 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1303 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:
1237 1237  
1238 1238  * if the artefact is a ,,Dataflow,,, which is a maintainable class,  the maintainedobject-id is the Dataflow name (dataflow-id);
1239 1239  * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to;
... ... @@ -1253,7 +1253,7 @@
1253 1253  
1254 1254  * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,)
1255 1255  
1256 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1323 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2  and  DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):
1257 1257  
1258 1258  ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’  <-
1259 1259  
... ... @@ -1271,14 +1271,14 @@
1271 1271  * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 -  Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 
1272 1272  ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute,  
1273 1273  ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist.
1274 -* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1275 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1341 +* The **class-name** can be omitted as it can be deduced from the VTL invocation.  In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain),  which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).
1342 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%)  Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).
1276 1276  * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted;
1277 1277  ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the
1278 1278  
1279 1279  SDMX structural definitions;  o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted;
1280 1280  
1281 -*
1348 +*
1282 1282  ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted;
1283 1283  ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted.
1284 1284  * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,,
... ... @@ -1299,11 +1299,11 @@
1299 1299  
1300 1300  DFR  :=  DF1 + DF2
1301 1301  
1302 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1369 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,,  AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):
1303 1303  
1304 1304  ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’
1305 1305  
1306 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1373 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):
1307 1307  
1308 1308  CL_FREQ
1309 1309  
... ... @@ -1313,7 +1313,7 @@
1313 1313  
1314 1314  SECTOR
1315 1315  
1316 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1383 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):
1317 1317  
1318 1318  ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC]
1319 1319  
... ... @@ -1347,9 +1347,9 @@
1347 1347  
1348 1348  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 
1349 1349  
1350 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1417 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).
1351 1351  
1352 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1419 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)
1353 1353  
1354 1354  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact  which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature.
1355 1355  
... ... @@ -1363,15 +1363,15 @@
1363 1363  
1364 1364  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 
1365 1365  
1366 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1433 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place.  The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).
1367 1367  
1368 1368  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition,  more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 
1369 1369  
1370 1370  === 10.3.2 General mapping of VTL and SDMX data structures ===
1371 1371  
1372 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1439 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).
1373 1373  
1374 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1441 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)
1375 1375  
1376 1376  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems).  As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
1377 1377  
... ... @@ -1381,7 +1381,7 @@
1381 1381  
1382 1382  SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 
1383 1383  
1384 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1451 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.
1385 1385  
1386 1386  As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 
1387 1387  
... ... @@ -1445,7 +1445,7 @@
1445 1445  
1446 1446   The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension;
1447 1447  
1448 -*
1515 +*
1449 1449  ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
1450 1450  ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
1451 1451  ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
... ... @@ -1452,7 +1452,7 @@
1452 1452  
1453 1453  **10.3.3.3 From SDMX DataAttributes to VTL Measures **
1454 1454  
1455 -*
1522 +*
1456 1456  ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the  two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes.
1457 1457  
1458 1458  The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure.
... ... @@ -1471,7 +1471,7 @@
1471 1471  
1472 1472  This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the
1473 1473  
1474 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1541 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)
1475 1475  
1476 1476  1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 
1477 1477  
... ... @@ -1538,7 +1538,7 @@
1538 1538  
1539 1539   the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above
1540 1540  
1541 -*
1608 +*
1542 1542  ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj)
1543 1543  ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set
1544 1544  ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above)
... ... @@ -1588,15 +1588,15 @@
1588 1588  
1589 1589   The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows).
1590 1590  
1591 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1658 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===
1592 1592  
1593 1593  Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page
1594 1594  
1595 1595  24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set).
1596 1596  
1597 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1664 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)
1598 1598  
1599 -Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1666 +Therefore, in order to make the coding of  VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)
1600 1600  
1601 1601   Given a SDMX Dataflow and some predefined Dimensions of its
1602 1602  
... ... @@ -1608,14 +1608,14 @@
1608 1608  
1609 1609  In practice, this kind mapping is obtained like follows:
1610 1610  
1611 -* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1678 +* For a given SDMX dataflow, the user (VTL definer) declares  the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.
1612 1612  * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 
1613 1613  ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated
1614 1614  
1615 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1682 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]
1616 1616  
1617 -*
1618 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1684 +*
1685 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example  POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension  //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
1619 1619  
1620 1620  In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
1621 1621  
... ... @@ -1633,7 +1633,7 @@
1633 1633  
1634 1634  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
1635 1635  
1636 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1703 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
1637 1637  
1638 1638  First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations.
1639 1639  
... ... @@ -1643,7 +1643,7 @@
1643 1643  
1644 1644  //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA.
1645 1645  
1646 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1713 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 
1647 1647  
1648 1648  In the example above, for all the datasets of the kind
1649 1649  
... ... @@ -1663,7 +1663,7 @@
1663 1663  
1664 1664  …   …   …
1665 1665  
1666 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1733 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]
1667 1667  
1668 1668  In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
1669 1669  
... ... @@ -1686,12 +1686,12 @@
1686 1686  
1687 1687  For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY:
1688 1688  
1689 -* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1690 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1756 +* each part is calculated as a  VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)
1757 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]
1691 1691  
1692 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1759 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).
1693 1693  
1694 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1761 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]
1695 1695  
1696 1696  ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’  <-  expression
1697 1697  
... ... @@ -1758,9 +1758,9 @@
1758 1758  
1759 1759  …);
1760 1760  
1761 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1828 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
1762 1762  
1763 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1830 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]
1764 1764  
1765 1765  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
1766 1766  
... ... @@ -1809,7 +1809,7 @@
1809 1809  
1810 1810  Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 
1811 1811  
1812 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1879 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are  represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
1813 1813  
1814 1814  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL).   For example, it is possible to obtain correct results from the VTL expression
1815 1815  
... ... @@ -2154,7 +2154,7 @@
2154 2154  |N|fixed number of digits used in the preceding  textual representation of the month or the day
2155 2155  | |
2156 2156  
2157 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2224 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).
2158 2158  
2159 2159  === 10.4.5 Null Values ===
2160 2160