Changes for page SDMX 2.1 Standards. Section 6. Technical Notes
Last modified by Artur on 2025/08/19 10:43
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- 1747854006117-843.png
- 1747854039499-443.png
- 1747854067769-691.png
- 1747854096778-844.png
- 1747854127303-270.png
- 1747854163928-581.png
- 1747854190641-364.png
- 1747854236732-512.png
- 1747854286398-614.png
- 1747854385465-132.png
- 1747854406014-782.png
- 1747854424488-855.png
- 1747854453895-524.png
- 1747854476631-125.png
- 1747854493363-776.png
Details
- Page properties
-
- Content
-
... ... @@ -69,15 +69,13 @@ 69 69 70 70 To allow for applications which only understand time series data, variations of these formats have been introduced in the form of two data messages; //GenericTimeSeriesData// and //StructureSpecificTimeSeriesData//. It is important to note that these variations are built on the same root structure and can be processed in the same manner as the base format so that they do NOT introduce additional processing requirements. 71 71 72 -(% class="wikigeneratedid" id="HStructureDefinition" %) 73 -**//Structure Definition//** 72 +=== //Structure Definition// === 74 74 75 75 The SDMX-ML Structure Message supports the use of annotations to the structure, which is not supported by the SDMX-EDI syntax. 76 76 77 77 The SDMX-ML Structure Message allows for the structures on which a Data Structure Definition depends – that is, codelists and concepts – to be either included in the message or to be referenced by the message containing the data structure definition. XML syntax is designed to leverage URIs and other Internet-based referencing mechanisms, and these are used in the SDMX-ML message. This option is not available to those using the SDMX-EDI structure message. 78 78 79 -(% class="wikigeneratedid" id="HValidation" %) 80 -**//Validation//** 78 +=== //Validation// === 81 81 82 82 SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to dedicated applications (“validation” being the checking of syntax, data typing, and adherence of the data message to the structure as described in the structural definition.) 83 83 ... ... @@ -85,22 +85,19 @@ 85 85 86 86 The SDMX-ML DSD-specific messages will allow validation of XML syntax and datatyping to be performed with a generic XML parser, and enforce agreement between the structural definition and the data to a moderate degree with the same tool. 87 87 88 -(% class="wikigeneratedid" id="HUpdateandDeleteMessagesandDocumentationMessages" %) 89 -//Update and Delete Messages and Documentation Messages// 86 +=== //Update and Delete Messages and Documentation Messages// === 90 90 91 91 All SDMX data messages allow for both delete messages and messages consisting of only data or only documentation. 92 92 93 -(% class="wikigeneratedid" id="HCharacterEncodings" %) 94 -**//Character Encodings//** 90 +=== //Character Encodings// === 95 95 96 96 All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 8879-1 character encoding. There is a greater capacity with UTF-8 to express some character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa. 97 97 98 -(% class="wikigeneratedid" id="HDataTyping" %) 99 -**//Data Typing//** 94 +=== //Data Typing// === 100 100 101 101 The XML syntax and EDIFACT syntax have different data-typing mechanisms. The section below provides a set of conventions to be observed when support for messages in both syntaxes is required. For more information on the SDMX-ML representations of data, see below. 102 102 103 -=== 3.3.2 Data Types === 98 +==== 3.3.2 Data Types ==== 104 104 105 105 The XML syntax has a very different mechanism for data-typing than the EDIFACT syntax, and this difference may create some difficulties for applications which support both EDIFACT-based and XML-based SDMX data formats. This section provides a set of conventions for the expression in data in all formats, to allow for clean interoperability between them. 106 106 ... ... @@ -414,7 +414,7 @@ 414 414 415 415 This is used to unambiguously state that a date-time represents an observation at a single point in time. Therefore, if one wants to use SDMX for data which is measured at a distinct point in time rather than being reported over a period, the date-time representation can be used. 416 416 417 -Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]]412 +Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[1~]^^>>path:#_ftn1]] 418 418 419 419 === 4.2.6 Standard Reporting Period === 420 420 ... ... @@ -463,7 +463,7 @@ 463 463 Period Duration: P7D (seven days) 464 464 Limit per year: 53 465 465 Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 466 -Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods.461 +Notes: There are either 52 or 53 weeks in a reporting year. This is based on the ISO 8601 definition of a week (Monday - Saturday), where the first week of a reporting year is defined as the week with the first Thursday on or after the reporting year start day.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[2~]^^>>path:#_ftn2]](%%) The reporting week is always represented as two digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted chronologically using textual sorting methods. 467 467 468 468 **Reporting Day**: 469 469 Period Indicator: D ... ... @@ -486,7 +486,7 @@ 486 486 ~1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, or Sunday:** 487 487 Add^^3^^ (P3D, P2D, or P1D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 488 488 489 -2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 484 +2. **If [REPORTING_YEAR_START_DATE] is a Monday, Tuesday, Wednesday, or Thursday:** 490 490 Add^^3^^ (P0D, -P1D, -P2D, or -P3D respectively) to the [REPORTING_YEAR_START_DATE]. The result is the [REPORTING_YEAR_BASE]. 491 491 b) **Else:** 492 492 The [REPORTING_YEAR_START_DATE] is the [REPORTING_YEAR_BASE] ... ... @@ -502,7 +502,7 @@ 502 502 g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 503 503 504 504 **3. Determine [PERIOD_START]:** 505 -Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START].500 +Subtract one from the [PERIOD_VALUE] and multiply this by the [PERIOD_DURATION]. Add[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[3~]^^>>path:#_ftn3]](%%) this to the [REPORTING_YEAR_BASE]. The result is the [PERIOD_START]. 506 506 507 507 **4. Determine the [PERIOD_END]:** 508 508 Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add^^3^^ this to the [REPORTING_YEAR_BASE] add^^3^^ -P1D. The result is the [PERIOD_END]. ... ... @@ -526,62 +526,72 @@ 526 526 The actual calendar range covered by 2010-Q2 (assuming the reporting year begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 527 527 528 528 **2011-W36, REPORTING_YEAR_START_DAY = ~-~-07-01 (July 1)** 524 + 529 529 ~1. [REPORTING_YEAR_START_DATE] = 2010-07-01 526 + 530 530 a) 2011-07-01 = Friday 528 + 531 531 2011-07-01 + P3D = 2011-07-04 530 + 532 532 [REPORTING_YEAR_BASE] = 2011-07-04 533 -2. [PERIOD_DURATION] = P7D 534 -3. (36-1) * P7D = P245D 532 + 533 +1. [PERIOD_DURATION] = P7D 534 +1. (36-1) * P7D = P245D 535 + 535 535 2011-07-04 + P245D = 2012-03-05 537 + 536 536 [PERIOD_START] = 2012-03-05 539 + 537 537 4. 36 * P7D = P252D 541 + 538 538 2011-07-04 + P252D =2012-03-12 543 + 539 539 2012-03-12 + -P1D = 2012-03-11 545 + 540 540 [PERIOD_END] = 2012-03-11 541 541 542 542 The actual calendar range covered by 2011-W36 (assuming the reporting year begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59 543 543 544 -=== 4.2.7 Distinct Range === 550 +==== 4.2.7 Distinct Range ==== 545 545 546 546 In the case that the reporting period does not fit into one of the prescribe periods above, a distinct time range can be used. The value of these ranges is based on the ISO 8601 time interval format of start/duration. Start can be expressed as either an ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. However, the duration can only be postive. 547 547 548 -=== 4.2.8 Time Format === 554 +==== 4.2.8 Time Format ==== 549 549 550 550 In version 2.0 of SDMX there is a recommendation to use the time format attribute to gives additional information on the way time is represented in the message. Following an appraisal of its usefulness this is no longer required. However, it is still possible, if required , to include the time format attribute in SDMX-ML. 551 551 552 -(% style="width:1049.29px" %) 553 -|**Code**|(% style="width:926px" %)**Format** 554 -|**OTP**|(% style="width:926px" %)Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 555 -|**STP**|(% style="width:926px" %)Standard Time Period: Superset of Gregorian and Reporting Time Periods 556 -|**GTP**|(% style="width:926px" %)Superset of all Gregorian Time Periods and date-time 557 -|**RTP**|(% style="width:926px" %)Superset of all Reporting Time Periods 558 -|**TR**|(% style="width:926px" %)Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 559 -|**GY**|(% style="width:926px" %)Gregorian Year (YYYY) 560 -|**GTM**|(% style="width:926px" %)Gregorian Year Month (YYYY-MM) 561 -|**GD**|(% style="width:926px" %)Gregorian Day (YYYY-MM-DD) 562 -|**DT**|(% style="width:926px" %)Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 563 -|**RY**|(% style="width:926px" %)Reporting Year (YYYY-A1) 564 -|**RS**|(% style="width:926px" %)Reporting Semester (YYYY-Ss) 565 -|**RT**|(% style="width:926px" %)Reporting Trimester (YYYY-Tt) 566 -|**RQ**|(% style="width:926px" %)Reporting Quarter (YYYY-Qq) 567 -|**RM**|(% style="width:926px" %)Reporting Month (YYYY-Mmm) 568 -|**Code**|(% style="width:926px" %)**Format** 569 -|**RW**|(% style="width:926px" %)Reporting Week (YYYY-Www) 570 -|**RD**|(% style="width:926px" %)Reporting Day (YYYY-Dddd) 558 +|**Code**|**Format** 559 +|**OTP**|Observational Time Period: Superset of all SDMX time formats (Gregorian Time Period, Reporting Time Period, and Time Range) 560 +|**STP**|Standard Time Period: Superset of Gregorian and Reporting Time Periods 561 +|**GTP**|Superset of all Gregorian Time Periods and date-time 562 +|**RTP**|Superset of all Reporting Time Periods 563 +|**TR**|Time Range: Start time and duration (YYYY-MMDD(Thh:mm:ss)?/<duration>) 564 +|**GY**|Gregorian Year (YYYY) 565 +|**GTM**|Gregorian Year Month (YYYY-MM) 566 +|**GD**|Gregorian Day (YYYY-MM-DD) 567 +|**DT**|Distinct Point: date-time (YYYY-MM-DDThh:mm:ss) 568 +|**RY**|Reporting Year (YYYY-A1) 569 +|**RS**|Reporting Semester (YYYY-Ss) 570 +|**RT**|Reporting Trimester (YYYY-Tt) 571 +|**RQ**|Reporting Quarter (YYYY-Qq) 572 +|**RM**|Reporting Month (YYYY-Mmm) 573 +|**Code**|**Format** 574 +|**RW**|Reporting Week (YYYY-Www) 575 +|**RD**|Reporting Day (YYYY-Dddd) 571 571 572 -**Table 1: SDMX-ML Time Format Codes** 577 + **Table 1: SDMX-ML Time Format Codes** 573 573 574 -=== 4.2.9 Transformation between SDMX-ML and SDMX-EDI === 579 +==== 4.2.9 Transformation between SDMX-ML and SDMX-EDI ==== 575 575 576 576 When converting SDMX-ML data structure definitions to SDMX-EDI data structure definitions, only the identifier of the time format attribute will be retained. The representation of the attribute will be converted from the SDMX-ML format to the fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a time format attribute, then one will be automatically created with the identifier "TIME_FORMAT". 577 577 578 -When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations) .583 +When converting SDMX-ML data to SDMX-EDI, the source time format attribute will be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the target time format can be determined from the source time value directly. For example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 608/708 (depending on whether the target series contains one observation or a range of observations) 579 579 580 580 When converting a data structure definition originating in SDMX-EDI, the time format attribute should be ignored, as it serves no purpose in SDMX-ML. 581 581 582 582 When converting data from SDMX-EDI to SDMX-ML, the source time format is only necessary to determine the format of the target time value. For example, a source time format of will result in a target time in the format YYYY-Ss whereas a source format of will result in a target time value in the format YYYY-Qq. 583 583 584 -=== 4.2.10 Time Zones === 589 +==== 4.2.10 Time Zones ==== 585 585 586 586 In alignment with ISO 8601, SDMX allows the specification of a time zone on all time periods and on the reporting year start day. If a time zone is provided on a reporting year start day, then the same time zone (or none) should be reported for each reporting time period. If the reporting year start day and the reporting period time zone differ, the time zone of the reporting period will take precedence. Examples of each format with time zones are as follows (time zone indicated in bold): 587 587 ... ... @@ -602,7 +602,7 @@ 602 602 603 603 According to ISO 8601, a date without a time-zone is considered "local time". SDMX assumes that local time is that of the sender of the message. In this version of SDMX, an optional field is added to the sender definition in the header for specifying a time zone. This field has a default value of 'Z' (UTC). This determination of local time applies for all dates in a message. 604 604 605 -=== 4.2.11 Representing Time Spans Elsewhere === 610 +==== 4.2.11 Representing Time Spans Elsewhere ==== 606 606 607 607 It has been possible since SDMX 2.0 for a Component to specify a representation of a time span. Depending on the format of the data message, this resulted in either an element with 2 XML attributes for holding the start time and the duration or two separate XML attributes based on the underlying Component identifier. For example if REF_PERIOD were given a representation of time span, then in the Compact data format, it would be represented by two XML attributes; REF_PERIODStartTime (holding the start) and REF_PERIOD (holding the duration). If a new simple type is introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will no longer be necessary. What was represented as this: 608 608 ... ... @@ -612,29 +612,30 @@ 612 612 613 613 <Series REF_PERIOD="2000-01-01T00:00:00/P2M"/> 614 614 615 -=== 4.2.12 Notes on Formats === 620 +==== 4.2.12 Notes on Formats ==== 616 616 617 617 There is no ambiguity in these formats so that for any given value of time, the category of the period (and thus the intended time period range) is always clear. It should also be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the report periods, the values of time can easily be sorted chronologically without additional parsing. 618 618 619 -=== 4.2.13 Effect on Time Ranges === 624 +==== 4.2.13 Effect on Time Ranges ==== 620 620 621 621 All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-EDI if the Dimension at the observation level is time: the time period for the first observation can be stated and the rest of the observations can omit the time value as it can be derived from the start time and the frequency. Since the frequency can be determined based on the actual format of the time value for everything but distinct points in time and time ranges, this makes is even simpler to process as the interval between time ranges is known directly from the time value. 622 622 623 -=== 4.2.14 Time in Query Messages === 628 +==== 4.2.14 Time in Query Messages ==== 624 624 625 625 When querying for time values, the value of a time parameter can be provided as any of the Observational Time Period formats and must be paired with an operator. In addition, an explicit value for the reporting year start day can be provided, or this can be set to "Any". This section will detail how systems processing query messages should interpret these parameters. 626 626 627 627 Fundamental to processing a time value parameter in a query message is understanding that all time periods should be handled as a distinct range of time. Since the time parameter in the query is paired with an operator, this is also effectively represents a distinct range of time. Therefore, a system processing the query must simply match the data where the time period for requested parameter is encompassed by the time period resulting from value of the query parameter. The following table details how the operators should be interpreted for any time period provided as a parameter. 628 628 629 -(% style="width:1024.29px" %) 630 -|(% style="width:238px" %)**Operator**|(% style="width:782px" %)**Rule** 631 -|(% style="width:238px" %)Greater Than|(% style="width:782px" %)Any data after the last moment of the period 632 -|(% style="width:238px" %)Less Than|(% style="width:782px" %)Any data before the first moment of the period 633 -|(% style="width:238px" %)Greater Than or Equal To|(% style="width:782px" %)((( 634 -Any data on or after the first moment of the period 634 +|**Operator**|**Rule** 635 +|Greater Than|Any data after the last moment of the period 636 +|Less Than|Any data before the first moment of the period 637 +|Greater Than or Equal To|((( 638 +Any data on or after the first moment of 639 + 640 +the period 635 635 ))) 636 -| (% style="width:238px" %)Less Than or Equal To|(% style="width:782px" %)Any data on or before the last moment of the period637 -| (% style="width:238px" %)Equal To|(% style="width:782px" %)Any data which falls on or after the first moment of the period and before or on the last moment of the period642 +|Less Than or Equal To|Any data on or before the last moment of the period 643 +|Equal To|Any data which falls on or after the first moment of the period and before or on the last moment of the period 638 638 639 639 Reporting Time Periods as query parameters are handled based on whether the value of the reportingYearStartDay XML attribute is an explicit month and day or "Any": 640 640 ... ... @@ -647,7 +647,9 @@ 647 647 **Examples:** 648 648 649 649 **Gregorian Period** 656 + 650 650 Query Parameter: Greater than 2010 658 + 651 651 Literal Interpretation: Any data where the start period occurs after 2010-1231T23:59:59. 652 652 653 653 Example Matches: ... ... @@ -665,11 +665,15 @@ 665 665 * 2010-D185 or later (reporting year start day ~-~-07-01 or later) 666 666 667 667 **Reporting Period with explicit start day** 676 + 668 668 Query Parameter: Greater than or equal to 2009-Q3, reporting year start day = "-07-01" 678 + 669 669 Literal Interpretation: Any data where the start period occurs on after 2010-0101T00:00:00 (Note that in this case 2009-Q3 is converted to the explicit date range of 2010-01-01/2010-03-31 because of the reporting year start day value). Example Matches: Same as previous example 670 670 671 671 **Reporting Period with "Any" start day** 682 + 672 672 Query Parameter: Greater than or equal to 2010-Q3, reporting year start day = "Any" 684 + 673 673 Literal Interpretation: Any data with a reporting period where the start period is on or after the start period of 2010-Q3 for the same reporting year start day, or and data where the start period is on or after 2010-07-01. Example Matches: 674 674 675 675 * 2011 or later ... ... @@ -681,10 +681,13 @@ 681 681 * 2010-T3 (any reporting year start day) 682 682 * 2010-Q3 or later (any reporting year start day) 683 683 * 2010-M07 or later (any reporting year start day) 684 -* 2010-W27 or later (reporting year start day ~-~-01-01){{footnote}}2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27.{{/footnote}} 2010-D182 or later (reporting year start day ~-~-01-01) 685 -* 2010-W28 or later (reporting year start day ~-~-07-01){{footnote}}2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is day 6 of week 27, therefore the first week matched is week 28.{{/footnote}} 686 -* 2010-D185 or later (reporting year start day ~-~-07-01) 696 +* 2010-W27 or later (reporting year start day ~-~-01-01)^^4^^ 2010-D182 or later (reporting year start day ~-~-01-01) 697 +* 2010-W28 or later (reporting year start day ~-~-07-01)^^5^^ 687 687 699 +^^4^^ 2010-Q3 (with a reporting year start day of ~-~-01-01) starts on 2010-07-01. This is day 4 of week 26, therefore the first week matched is week 27. 700 + 701 + 2010-D185 or later (reporting year start day ~-~-07-01) 702 + 688 688 == 4.3 Structural Metadata Querying Best Practices == 689 689 690 690 When querying for structural metadata, the ability to state how references should be resolved is quite powerful. However, this mechanism is not always necessary and can create an undue burden on the systems processing the queries if it is not used properly. ... ... @@ -1168,7 +1168,7 @@ 1168 1168 1169 1169 == 10.1 Introduction == 1170 1170 1171 -The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the:1186 +The Validation and Transformation Language (VTL) supports the definition of Transformations, which are algorithms to calculate new data starting from already existing ones[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[4~]^^>>path:#_ftn4]](%%). The purpose of the VTL in the SDMX context is to enable the: 1172 1172 1173 1173 * definition of validation and transformation algorithms, in order to specify how to calculate new data from existing ones; 1174 1174 * exchange of the definition of VTL algorithms, also together the definition of the data structures of the involved data (for example, exchange the data structures of a reporting framework together with the validation rules to be applied, exchange the input and output data structures of a calculation task together with the VTL Transformations describing the calculation algorithms); ... ... @@ -1192,7 +1192,7 @@ 1192 1192 1193 1193 In any case, the aliases used in the VTL transformations have to be mapped to the 1194 1194 1195 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.1210 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL transformations, rulesets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[5~]^^>>path:#_ftn5]](%%) or user defined operators[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[6~]^^>>path:#_ftn6]](%%) to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 1196 1196 1197 1197 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 1198 1198 ... ... @@ -1202,7 +1202,7 @@ 1202 1202 1203 1203 This approach has the advantage that in the VTL code the URN of the referenced artefacts is directly intelligible by a human reader but has the drawback that the references are verbose. 1204 1204 1205 -The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^1220 +The SDMX URN[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[7~]^^>>path:#_ftn7]](%%) is the concatenation of the following parts, separated by special symbols like dot, equal, asterisk, comma, and parenthesis:^^ ^^ 1206 1206 1207 1207 * SDMXprefix 1208 1208 * SDMX-IM-package-name ... ... @@ -1210,7 +1210,7 @@ 1210 1210 * agency-id 1211 1211 * maintainedobject-id 1212 1212 * maintainedobject-version 1213 -* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]]1228 +* container-object-id [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[8~]^^>>path:#_ftn8]] 1214 1214 * object-id 1215 1215 1216 1216 The generic structure of the URN is the following: ... ... @@ -1229,7 +1229,7 @@ 1229 1229 1230 1230 The **agency-id** is the acronym of the agency that owns the definition of the artefact, for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can be composite (for example AgencyA.Dept1.Unit2). 1231 1231 1232 -The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact:1247 +The **maintainedobject-id** is the name of the maintained object which the artefact belongs to, and in case the artefact itself is maintainable[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[9~]^^>>path:#_ftn9]](%%), coincides with the name of the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 1233 1233 1234 1234 * if the artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the Dataflow name (dataflow-id); 1235 1235 * if the artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure or DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the name of the DataStructure (dataStructure-id) which the artefact belongs to; ... ... @@ -1249,7 +1249,7 @@ 1249 1249 1250 1250 * if the artefact is a ,,Concept ,,(the object-id is the name of the ,,Concept,,) 1251 1251 1252 -For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%):1267 +For example, by using the URN, the VTL transformation that sums two SDMX dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three dataflows, that their version is 1.0 and their Agency is AG, would be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[10~]^^>>path:#_ftn10]](%%): 1253 1253 1254 1254 ‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ <- 1255 1255 ... ... @@ -1267,14 +1267,14 @@ 1267 1267 * The **SDMX-IM-package-name **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 1268 1268 ** “datastructure” for the classes Dataflow, Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, 1269 1269 ** “conceptscheme” for the classes Concept and ConceptScheme o “codelist” for the class Codelist. 1270 -* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%).1271 -* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements).1285 +* The **class-name** can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[11~]^^>>path:#_ftn11]](%%), the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section “Mapping between VTL and SDMX” hereinafter)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[12~]^^>>path:#_ftn12]](%%). 1286 +* If the **agency-id** is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agency-id can be omitted if it is the same as the invoking T,,ransformationScheme,, and cannot be omitted if the artefact comes from another agency.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[13~]^^>>path:#_ftn13]](%%) Take also into account that, according to the VTL consistency rules, the agency of the result of a ,,Transformation,, must be the same as its ,,TransformationScheme,,, therefore the agency-id can be omitted for all the results (left part of ,,Transformation,, statements). 1272 1272 * As for the **maintainedobject-id**, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a ,,Dataflow,,, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 1273 1273 ** if the referenced artefact is a Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, DataAttribute, which are not maintainable and belong to the ,,DataStructure,, maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a ,,Dataflow,,, whose dataStructure-id can be deduced from the 1274 1274 1275 1275 SDMX structural definitions; o if the referenced artefact is a ,,Concept, ,,which is not maintainable and belong to the ,,ConceptScheme ,,maintainable class,,, ,,the maintained object is the conceptScheme-id and cannot be omitted; 1276 1276 1277 -* 1292 +* 1278 1278 ** if the referenced artefact is a ,,ConceptScheme, ,,which is a,, ,,maintainable class,,, ,,the maintained object is the ,,conceptScheme-id,, and obviously cannot be omitted; 1279 1279 ** if the referenced artefact is a ,,Codelist, ,,which is a maintainable class, the maintainedobject-id is the ,,codelist-id,, and obviously cannot be omitted. 1280 1280 * When the maintainedobject-id is omitted, the **maintainedobject-version** is omitted too. When the maintainedobject-id is not omitted and the maintainedobject-version is omitted, the version 1.0 is assumed by default.,, ,, ... ... @@ -1295,11 +1295,11 @@ 1295 1295 1296 1296 DFR := DF1 + DF2 1297 1297 1298 -The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%):1313 +The references to the ,,Codelists,, can be simplified similarly. For example, given the non-abbreviated reference to the ,,Codelist,, AG:CL_FREQ(1.0), which is[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[14~]^^>>path:#_ftn14]](%%): 1299 1299 1300 1300 ‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’ 1301 1301 1302 -if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%):1317 +if the ,,Codelist,, is referenced from a ruleset scheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[15~]^^>>path:#_ftn15]](%%): 1303 1303 1304 1304 CL_FREQ 1305 1305 ... ... @@ -1309,7 +1309,7 @@ 1309 1309 1310 1310 SECTOR 1311 1311 1312 -For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%):1327 +For example, the transformation for renaming the component SECTOR of the dataflow DF1 into SEC can be written as[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[16~]^^>>path:#_ftn16]](%%): 1313 1313 1314 1314 ‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC] 1315 1315 ... ... @@ -1343,9 +1343,9 @@ 1343 1343 1344 1344 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the rules. 1345 1345 1346 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%).1361 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist or to a SDMX ConceptScheme (for SDMX measure dimensions), while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[17~]^^>>path:#_ftn17]](%%). 1347 1347 1348 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%)1363 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called “valueDomain” and “variable” for the Datapoint Rulesets and “ruleValueDomain”, “ruleVariable”, “condValueDomain” “condVariable” for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific ruleset definition statement and cannot be mapped to SDMX.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[18~]^^>>path:#_ftn18]](%%) 1349 1349 1350 1350 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact which the Values are referred (Codelist, ConceptScheme, Concept) to can be deduced from the Ruleset signature. 1351 1351 ... ... @@ -1359,15 +1359,15 @@ 1359 1359 1360 1360 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 1361 1361 1362 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%).1377 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[19~]^^>>path:#_ftn19]](%%). 1363 1363 1364 1364 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the assignmentStatus and attributeRelationship for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 1365 1365 1366 1366 === 10.3.2 General mapping of VTL and SDMX data structures === 1367 1367 1368 -This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%).1383 +This section makes reference to the VTL “Model for data and their structure”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[20~]^^>>path:#_ftn20]](%%) and the correspondent SDMX “Data Structure Definition”[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[21~]^^>>path:#_ftn21]](%%). 1369 1369 1370 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%)1385 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[22~]^^>>path:#_ftn22]](%%) 1371 1371 1372 1372 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 1373 1373 ... ... @@ -1377,7 +1377,7 @@ 1377 1377 1378 1378 SDMX DimensionComponent can be a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be (optionally) distinguished in three sub-classes (Simple Identifier, Time Identifier, Measure Identifier) even if such a distinction is not evidenced in the VTL IM. 1379 1379 1380 -However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures.1395 +However, a VTL Data Structure can have any number of Identifiers, Measures and Attributes, while a SDMX 2.1 DataStructureDefinition can have any number of Dimensions and DataAttributes but just one PrimaryMeasure[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[23~]^^>>path:#_ftn23]](%%). This is due to a difference between SDMX 2.1 and VTL in the possible representation methods of the data that contain more measures. 1381 1381 1382 1382 As for SDMX, because the data structure cannot contain more than one measure component (i.e., the primaryMeasure), the representation of data having more measures is possible only by means of a particular dimension, called MeasureDimension, which is aimed at containing the name of the measure concepts, so that for each observation the value contained in the PrimaryMeasure component is the value of the measure concept reported in the MeasureDimension component. 1383 1383 ... ... @@ -1441,7 +1441,7 @@ 1441 1441 1442 1442 The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Concept Cj of the SDMX MeasureDimension; 1443 1443 1444 -* 1459 +* 1445 1445 ** The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 1446 1446 ** The value of the PrimaryMeasure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 1447 1447 ** For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj ... ... @@ -1448,7 +1448,7 @@ 1448 1448 1449 1449 **10.3.3.3 From SDMX DataAttributes to VTL Measures ** 1450 1450 1451 -* 1466 +* 1452 1452 ** In some cases it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain Attributes. 1453 1453 1454 1454 The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot methods, except that the final VTL components, which according to the Basic and Pivot methods would have had the role of Attribute, assume instead the role of Measure. ... ... @@ -1467,7 +1467,7 @@ 1467 1467 1468 1468 This mapping method cannot be applied for SDMX 2.1 if the VTL data structure has more than one measure component, given that the SDMX 2.1 DataStructureDefinition allows just one measure component (the 1469 1469 1470 -PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%)1485 +PrimaryMeasure). In this case it becomes mandatory to specify a different 1958 mapping method through the VtlMappingScheme and VtlDataflowMapping 1959 classes.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[24~]^^>>path:#_ftn24]](%%) 1471 1471 1472 1472 1960 Please note that the VTL measures can have any name while in SDMX 2.1 the 1961 MeasureComponent has the mandatory name “obs_value”, therefore the name of the VTL measure name must become “obs_value” in SDMX 2.1. 1473 1473 ... ... @@ -1534,7 +1534,7 @@ 1534 1534 1535 1535 the values of the VTL identifiers become the values of the corresponding SDMX Dimensions, for all the observations of the set above 1536 1536 1537 -* 1552 +* 1538 1538 ** the name of the j^^th^^ VTL measure (e.g. “Cj”) becomes the value of the SDMX MeasureDimension of the j^^th^^ observation of the set (i.e. the Concept Cj) 1539 1539 ** the value of the j^^th^^ VTL measure becomes the value of the SDMX PrimaryMeasure of the j^^th^^ observation of the set 1540 1540 ** the values of the VTL Attributes become the values of the corresponding SDMX DataAttributes (in principle for all the observations of the set above) ... ... @@ -1584,15 +1584,15 @@ 1584 1584 1585 1585 The VtlMappingScheme is a container for zero or more VtlDataflowMapping (besides possible mappings to artefacts other than dataflows). 1586 1586 1587 -=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) ===1602 +=== 10.3.6 Mapping dataflow subsets to distinct VTL data sets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^**~[25~]**^^>>path:#_ftn25]](%%) === 1588 1588 1589 1589 Until now it as been assumed to map one SMDX Dataflow to one VTL dataset and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL data set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 1590 1590 1591 1591 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL data set) or as the union of many sets of data observations (each one corresponding to a distinct VTL data set). 1592 1592 1593 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%)1608 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[26~]^^>>path:#_ftn26]](%%) 1594 1594 1595 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%)1610 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL data sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[27~]^^>>path:#_ftn27]](%%) 1596 1596 1597 1597 Given a SDMX Dataflow and some predefined Dimensions of its 1598 1598 ... ... @@ -1604,14 +1604,14 @@ 1604 1604 1605 1605 In practice, this kind mapping is obtained like follows: 1606 1606 1607 -* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY.1622 +* For a given SDMX dataflow, the user (VTL definer) declares the dimension components on which the mapping will be based, in a given order.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[28~]^^>>path:#_ftn28]](%%) Following the example above, imagine that the user declares the dimensions INDICATOR and COUNTRY. 1608 1608 * The VTL dataset is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 1609 1609 ** The reference to the SDMX dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated 1610 1610 1611 -URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]]1626 +URN or another alias); for example DF(1.0); o a slash (“/”) as a separator; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[29~]^^>>path:#_ftn29]] 1612 1612 1613 -* 1614 -** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.1628 +* 1629 +** The reference to a specific part of the SDMX dataflow above, expressed as the concatenation of the values that the SDMX dimensions declared above must have, separated by dots (“.”) and written in the order in which these dimensions are defined[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[30~]^^>>path:#_ftn30]](%%) . For example POPULATION.USA would mean that such a VTL dataset is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 1615 1615 1616 1616 In the VTL transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 1617 1617 ... ... @@ -1629,7 +1629,7 @@ 1629 1629 1630 1630 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 1631 1631 1632 -As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.1647 +As already said, the mapping from SDMX to VTL happens when the VTL datasets are operand of VTL transformations, instead the mapping from VTL to SDMX happens when the VTL datasets are result of VTL transformations[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[31~]^^>>path:#_ftn31]](%%) and need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 1633 1633 1634 1634 First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when parts of a SDMX dataflow (e.g. DF1(1.0)) need to be mapped to distinct VTL datasets that are operand of some VTL transformations. 1635 1635 ... ... @@ -1639,7 +1639,7 @@ 1639 1639 1640 1640 //COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ would contain all the observations of DF1(1.0) having INDICATOR = POPULATION and COUNTRY = USA. 1641 1641 1642 -In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …).1657 +In order to obtain the data structure of these VTL datasets from the SDMX one, it is assumed that the SDMX dimensions on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL datasets[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[32~]^^>>path:#_ftn32]](%%). After that, the mapping method from SDMX to VTL specified for the dataflow DF1(1.0) is applied (i.e. basic, pivot …). 1643 1643 1644 1644 In the example above, for all the datasets of the kind 1645 1645 ... ... @@ -1659,7 +1659,7 @@ 1659 1659 1660 1660 … … … 1661 1661 1662 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]]1677 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX dataflow to different VTL datasets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a dataflow. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[33~]^^>>path:#_ftn33]] 1663 1663 1664 1664 In the direction from SDMX to VTL it is allowed to omit the value of one or more Dimensions on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. 1665 1665 ... ... @@ -1682,12 +1682,12 @@ 1682 1682 1683 1683 For example, let us assume that the VTL programmer wants to calculate the SDMX dataflow DF2(1.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0) that have different combinations of values for INDICATOR and COUNTRY: 1684 1684 1685 -* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%)1686 -* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]]1700 +* each part is calculated as a VTL derived dataset, result of a dedicated VTL transformation; [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[34~]^^>>path:#_ftn34]](%%) 1701 +* the data structure of all these VTL datasets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[35~]^^>>path:#_ftn35]] 1687 1687 1688 -Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%).1703 +Under these hypothesis, such derived VTL datasets can be mapped to DF2(1.0) by declaring the Dimensions INDICATOR and COUNTRY as mapping dimensions[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[36~]^^>>path:#_ftn36]](%%). 1689 1689 1690 -The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]]1705 +The corresponding VTL transformations, assuming that the result needs to be persistent, would be of this kind:^^ ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[37~]^^>>path:#_ftn37]] 1691 1691 1692 1692 ‘DF2(1.0)///INDICATORvalue//.//COUNTRYvalue//’ <- expression 1693 1693 ... ... @@ -1754,9 +1754,9 @@ 1754 1754 1755 1755 …); 1756 1756 1757 -In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.1772 +In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent data sets are united and give the final result DF2(1.0)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[38~]^^>>path:#_ftn38]](%%), which can be mapped one-to-one to the homonymous SDMX dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 1758 1758 1759 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]]1774 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[39~]^^>>path:#_ftn39]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[40~]^^>>path:#_ftn40]] 1760 1760 1761 1761 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions). 1762 1762 ... ... @@ -1805,7 +1805,7 @@ 1805 1805 1806 1806 Domain) is not identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 1807 1807 1808 -As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.1823 +As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[41~]^^>>path:#_ftn41]](%%), while the SDMX Concepts can have different Representations in different DataStructures.[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[42~]^^>>path:#_ftn42]](%%) This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 1809 1809 1810 1810 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL data sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 1811 1811 ... ... @@ -2094,12 +2094,12 @@ 2094 2094 “true” or “false” 2095 2095 ))) 2096 2096 2097 - 2098 - 2099 2099 **Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 2100 2100 2101 -In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).2114 +In case a different default conversion is desired, it can be achieved through the 2102 2102 2116 +CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 2117 + 2103 2103 The custom output formats can be specified by means of the VTL formatting mask described in the section “Type Conversion and Formatting Mask” of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types “number”, “integer”, “date”, “time”, “time_period” and “duration” and gives examples. As for the types “string” and “boolean” the VTL conventions are extended with some other special characters as described in the following table. 2104 2104 2105 2105 |(% colspan="2" %)**VTL special characters for the formatting masks** ... ... @@ -2150,7 +2150,7 @@ 2150 2150 |N|fixed number of digits used in the preceding textual representation of the month or the day 2151 2151 | | 2152 2152 2153 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%).2168 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^~[43~]^^>>path:#_ftn43]](%%). 2154 2154 2155 2155 === 10.4.5 Null Values === 2156 2156 ... ... @@ -2182,18 +2182,12 @@ 2182 2182 2183 2183 For implementing an SDMX compliant Web Service the standardised WSDL file should be used that describes the expected request/response structure. The request message of the operation contains a wrapper element (e.g. “GetGenericData”) that wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML message that contains the query to be processed by the Web Service. In the same way the response is formulated in a wrapper element “GetGenericDataResponse”. 2184 2184 2185 -As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2200 +As defined in the SOAP specification, the root element of a SOAP message is the Envelope, which contains an optional Header and a mandatory Body. These are illustrated below along with the Body contents according to the WSDL: 2186 2186 2187 -[[image:1747854006117-843.png]] 2188 - 2189 2189 The problem that initiated the present analysis refers to the difference in the way SOAP requests are when trying to implement the aforementioned Web Service in .NET framework. 2190 2190 2191 2191 Building such a Web Service using the .NET framework is done by exposing a method (i.e. the getGenericData in the example) with an XML document argument (lets name it “Query”). **The difference that appears in Microsoft .Net implementations is that there is a need for an extra XML container around the SDMX GenericDataQuery.** This is the expected behavior since the framework is let to publish automatically the Web Service as a remote procedure call, thus wraps each parameter into an extra element. The .NET request is illustrated below: 2192 2192 2193 -[[image:1747854039499-443.png]] 2194 - 2195 -[[image:1747854067769-691.png]] 2196 - 2197 2197 Furthermore this extra element is also inserted in the automatically generated WSDL from the framework. Therefore this particularity requires custom clients for the .NET Web Services that is not an interoperable solution. 2198 2198 2199 2199 == 11.2 Solution == ... ... @@ -2214,30 +2214,20 @@ 2214 2214 2215 2215 To understand how the **XmlAnyElement** attribute works we present the following two web methods: 2216 2216 2217 - [[image:1747854096778-844.png]]2226 +In this method the **input** parameter is decorated with the **XmlAnyElement** parameter. This is a hint that this parameter will be de-serialized from an **xsd:any** element. Since the attribute is not passed any parameters, it means that the entire XML element for this parameter in the SOAP message will be in the Infoset that is represented by this **XmlElement** parameter. 2218 2218 2219 - In this methodthe **input** parameteris decoratedwith the**XmlAnyElement** parameter. This is a hint that this parameterwill bede-serialized from an**xsd:any** element. Since theattribute is notpassed any parameters,it means thatthe entire XML elementfor this parameterintheSOAPmessage will be inthe Infoset that is representedby this**XmlElement**parameter.2228 +The difference between the two is that for the first method, **SubmitXml**, the 2220 2220 2221 - [[image:1747854127303-270.png]]2230 +XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute. 2222 2222 2223 -The difference between the two is that for the first method, **SubmitXml**, the XmlSerializer will expect an element named **input** to be an immediate child of the **SubmitXml** element in the SOAP body. The second method, **SubmitXmlAny**, will not care what the name of the child of the **SubmitXmlAny** element is. It will plug whatever XML is included into the input parameter. The message style from ASP.NET Help for the two methods is shown below. First we look at the message for the method without the **XmlAnyElement** attribute. 2224 - 2225 -[[image:1747854163928-581.png]] 2226 - 2227 2227 Now we look at the message for the method that uses the **XmlAnyElement** attribute. 2228 2228 2229 -[[image:1747854190641-364.png]] 2230 - 2231 -[[image:1747854236732-512.png]] 2232 - 2233 2233 The method decorated with the **XmlAnyElement** attribute has one fewer wrapping elements. Only an element with the name of the method wraps what is passed to the **input** parameter. 2234 2234 2235 -For more information please consult: [[http:~~/~~/msdn.microsoft.com/en-us/library/aa480498.aspx>>http://msdn.microsoft.com/en-us/library/aa480498.aspx]] 2236 +For more information please consult: [[http:~~/~~/msdn.microsoft.com/en>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[->>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[us/library/aa480498.aspx>>url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]][[url:http://msdn.microsoft.com/en-us/library/aa480498.aspx]] 2236 2236 2237 2237 Furthermore at this point the problem with the different requests has been solved. However there is still the difference in the produced WSDL that has to be taken care. The automatic generated WSDL now doesn’t insert the extra element, but defines the content of the operation wrapper element as “xsd:any” type. 2238 2238 2239 -[[image:1747854286398-614.png]] 2240 - 2241 2241 Without a common WSDL still the solution doesn’t enforce interoperability. In order to 2242 2242 2243 2243 “fix” the WSDL, there two approaches. The first is to intervene in the generation process. This is a complicated approach, compared to the second approach, which overrides the generation process and returns the envisioned WSDL for the SDMX Web Service. ... ... @@ -2250,27 +2250,16 @@ 2250 2250 2251 2251 In the context of the SDMX Web Service, applying the above solution translates into the following: 2252 2252 2253 -[[image:1747854385465-132.png]] 2254 - 2255 2255 The SOAP request/response will then be as follows: 2256 2256 2257 2257 **GenericData Request** 2258 2258 2259 -[[image:1747854406014-782.png]] 2260 - 2261 2261 **GenericData Response** 2262 2262 2263 -[[image:1747854424488-855.png]] 2264 - 2265 2265 For overriding the automatically produced WSDL, in the solution explorer right click the project and select “Add” -> “New item…”. Then select the “Global Application Class”. This will create “.asax” class file in which the following code should replace the existing empty method: 2266 2266 2267 -[[image:1747854453895-524.png]] 2268 - 2269 -[[image:1747854476631-125.png]] 2270 - 2271 2271 The SDMX_WSDL.wsdl should reside in the in the root directory of the application. After applying this solution the returned WSDL is the envisioned. Thus in the request message definition contains: 2272 2272 2273 -[[image:1747854493363-776.png]] 2274 2274 2275 2275 ---- 2276 2276 ... ... @@ -2363,5 +2363,3 @@ 2363 2363 [[~[42~]>>path:#_ftnref42]] A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept. 2364 2364 2365 2365 [[~[43~]>>path:#_ftnref43]] The representation given in the DSD should obviously be compatible with the VTL data type. 2366 - 2367 -{{putFootnotes/}}
- 1747854006117-843.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -18.7 KB - Content
- 1747854039499-443.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -3.0 KB - Content
- 1747854067769-691.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -21.4 KB - Content
- 1747854096778-844.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.6 KB - Content
- 1747854127303-270.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -12.1 KB - Content
- 1747854163928-581.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -29.8 KB - Content
- 1747854190641-364.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -31.5 KB - Content
- 1747854236732-512.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 KB - Content
- 1747854286398-614.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content
- 1747854385465-132.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content
- 1747854406014-782.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content
- 1747854424488-855.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content
- 1747854453895-524.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content
- 1747854476631-125.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content
- 1747854493363-776.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -55.0 KB - Content