Last modified by Helena on 2025/09/10 11:19

From version 5.10
edited by Helena
on 2025/05/16 08:34
Change comment: There is no comment for this version
To version 6.9
edited by Helena
on 2025/05/16 12:37
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,10 +14,8 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
18 18  
19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 -
21 21  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
22 22  
23 23  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -28,10 +28,8 @@
28 28  
29 29  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
30 30  
31 -In any case, the aliases used in the VTL Transformations have to be mapped to the
29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
32 32  
33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 -
35 35  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
36 36  
37 37  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -118,7 +118,7 @@
118 118  
119 119  'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)'
120 120  
121 -if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^:
117 +if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply{{footnote}}Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
122 122  
123 123  CL_FREQ
124 124  
... ... @@ -132,7 +132,7 @@
132 132  
133 133  SECTOR
134 134  
135 -For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:
131 +For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as{{footnote}}The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR is called SEC{{/footnote}}:
136 136  
137 137  'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC]
138 138  
... ... @@ -164,9 +164,9 @@
164 164  
165 165  The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the Rules.
166 166  
167 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^18^^>>path:#sdfootnote18sym||name="sdfootnote18anc"]](%%)^^.
163 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation{{footnote}}Rulesets of this kind cannot be reused when the referenced Concept has a different representation.{{/footnote}}.
168 168  
169 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^19^^>>path:#sdfootnote19sym||name="sdfootnote19anc"]](%%)^^
165 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX.{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}}
170 170  
171 171  In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature.
172 172  
... ... @@ -178,15 +178,15 @@
178 178  
179 179  Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition.
180 180  
181 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^20^^>>path:#sdfootnote20sym||name="sdfootnote20anc"]](%%)^^.
177 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged{{footnote}}If a calculated artefact is persistent, it needs a persistent definition, i.e. a SDMX definition in a SDMX environment. In addition, possible calculated artefact that are not persistent may require a SDMX definition, for example when the result of a non-persistent calculation is disseminated through SDMX tools (like an inquiry tool).{{/footnote}}.
182 182  
183 183  The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the ‘usage’ and ‘attributeRelationship’ for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part).
184 184  
185 185  === 12.3.2 General mapping of VTL and SDMX data structures ===
186 186  
187 -This section makes reference to the VTL "Model for data and their structure"^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^21^^>>path:#sdfootnote21sym||name="sdfootnote21anc"]](%%)^^ and the correspondent SDMX "Data Structure Definition"^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^22^^>>path:#sdfootnote22sym||name="sdfootnote22anc"]](%%)^^.
183 +This section makes reference to the VTL "Model for data and their structure"{{footnote}}See the VTL 2.0 User Manual{{/footnote}} and the correspondent SDMX "Data Structure Definition"{{footnote}}See the SDMX Standards Section 2 Information Model{{/footnote}}.
188 188  
189 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^23^^>>path:#sdfootnote23sym||name="sdfootnote23anc"]](%%)^^
185 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).{{footnote}}Besides the mapping between one SDMX Dataflow and one VTL Data Set, it is also possible to map distinct parts of a SDMX Dataflow to different VTL Data Set, as explained in a following paragraph.{{/footnote}}
190 190  
191 191  While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets.
192 192  
... ... @@ -202,70 +202,56 @@
202 202  
203 203  === 12.3.3 Mapping from SDMX to VTL data structures ===
204 204  
205 -**12.3.3.1 Basic Mapping**
201 +==== 12.3.3.1 Basic Mapping ====
206 206  
207 207  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
208 208  
209 -|**SDMX**|**VTL**
210 -|Dimension|(Simple) Identifier
211 -|TimeDimension|(Time) Identifier
205 +(% style="width:529.294px" %)
206 +|(% style="width:151px" %)**SDMX**|(% style="width:375px" %)**VTL**
207 +|(% style="width:151px" %)Dimension|(% style="width:375px" %)(Simple) Identifier
208 +|(% style="width:151px" %)TimeDimension|(% style="width:375px" %)(Time) Identifier
209 +|(% style="width:151px" %)Measure|(% style="width:375px" %)Measure
210 +|(% style="width:151px" %)DataAttribute|(% style="width:375px" %)Attribute
212 212  
213 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape4" height="1" width="192"]]
214 -
215 -|Measure|Measure
216 -|DataAttribute|Attribute
217 -
218 218  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
219 219  
220 -With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point.
214 +With the Basic mapping, one SDMX observation{{footnote}}Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.{{/footnote}} generates one VTL data point.
221 221  
222 -**12.3.3.2 Pivot Mapping**
216 +==== 12.3.3.2 Pivot Mapping ====
223 223  
224 224  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
225 225  
226 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
220 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
227 227  
228 -MeasureDimensions considered as a joint variable^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^24^^>>path:#sdfootnote24sym||name="sdfootnote24anc"]](%%)^^.
229 -
230 230  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
231 231  
232 232  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
233 233  
234 -^^27^^ Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.
226 +Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.
235 235  
236 236  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
237 237  
238 238  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
239 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
240 -
241 -Component;
242 -
231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
243 243  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
244 244  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
245 245  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
246 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
247 -
248 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
249 -
250 -*
235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
251 251  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
252 252  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
253 253  
254 254  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
255 255  
256 -|**SDMX**|**VTL**
257 -|Dimension|(Simple) Identifier
258 -|TimeDimension|(Time) Identifier
259 -|MeasureDimension & one Measure|(((
260 -One Measure for each Code of the
261 -
262 -SDMX MeasureDimension
241 +(% style="width:769.294px" %)
242 +|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL**
243 +|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier
244 +|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier
245 +|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)(((
246 +One Measure for each Code of the SDMX MeasureDimension
263 263  )))
264 -|DataAttribute not depending on the MeasureDimension|Attribute
265 -|DataAttribute depending on the MeasureDimension|(((
266 -One Attribute for each Code of the
267 -
268 -SDMX MeasureDimension
248 +|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute
249 +|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)(((
250 +One Attribute for each Code of the SDMX MeasureDimension
269 269  )))
270 270  
271 271  Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure.
... ... @@ -273,14 +273,11 @@
273 273  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
274 274  
275 275  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
276 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
277 -
278 -Identifiers, (time) Identifier and Attributes.
279 -
258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
280 280  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
281 281  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
282 282  
283 -**12.3.3.3 From SDMX DataAttributes to VTL Measures**
262 +==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
284 284  
285 285  * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
286 286  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  === 12.3.4 Mapping from VTL to SDMX data structures ===
294 294  
295 -**12.3.4.1 Basic Mapping**
274 +==== 12.3.4.1 Basic Mapping ====
296 296  
297 297  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
298 298  
... ... @@ -302,11 +302,12 @@
302 302  
303 303  Mapping table:
304 304  
305 -|**VTL**|**SDMX**
306 -|(Simple) Identifier|Dimension
307 -|(Time) Identifier|TimeDimension
308 -|Measure|Measure
309 -|Attribute|DataAttribute
284 +(% style="width:667.294px" %)
285 +|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX**
286 +|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension
287 +|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension
288 +|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure
289 +|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute
310 310  
311 311  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
312 312  
... ... @@ -316,7 +316,7 @@
316 316  
317 317  As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
318 318  
319 -**12.3.4.2 Unpivot Mapping**
299 +==== 12.3.4.2 Unpivot Mapping ====
320 320  
321 321  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.
322 322  
... ... @@ -340,11 +340,12 @@
340 340  
341 341  The summary mapping table of the **unpivot** mapping method is the following:
342 342  
343 -|**VTL**|**SDMX**
344 -|(Simple) Identifier|Dimension
345 -|(Time) Identifier|TimeDimension
346 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
347 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
323 +(% style="width:994.294px" %)
324 +|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX**
325 +|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension
326 +|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension
327 +|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
328 +|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
348 348  
349 349  At observation / data point level:
350 350  
... ... @@ -358,7 +358,7 @@
358 358  
359 359  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
360 360  
361 -**12.3.4.3 From VTL Measures to SDMX Data Attributes**
342 +==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ====
362 362  
363 363  More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
364 364  
... ... @@ -366,12 +366,13 @@
366 366  
367 367  The mapping table is the following:
368 368  
369 -|VTL|SDMX
370 -|(Simple) Identifier|Dimension
371 -|(Time) Identifier|TimeDimension
372 -|Some Measures|Measure
373 -|Other Measures|DataAttribute
374 -|Attribute|DataAttribute
350 +(% style="width:689.294px" %)
351 +|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
352 +|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
353 +|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
354 +|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
355 +|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute
356 +|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute
375 375  
376 376  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
377 377  
... ... @@ -389,20 +389,20 @@
389 389  
390 390  Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
391 391  
392 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^
374 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}}
393 393  
394 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^
376 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}}
395 395  
396 396  Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets.
397 397  
398 398  For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows:
399 399  
400 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^ Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.
382 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.{{footnote}}This definition is made through the ToVtlSubspace and ToVtlSpaceKey classes and/or the FromVtlSuperspace and FromVtlSpaceKey classes, depending on the direction of the mapping (“key” means “dimension”). The mapping of Dataflow subsets can be applied independently in the two directions, also according to different Dimensions. When no Dimension is declared for a given direction, it is assumed that the option of mapping different parts of a SDMX Dataflow to different VTL Data Sets is not used.{{/footnote}} Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.
401 401  * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts:
402 402  ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0);
403 -** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^
385 +** a slash (“/”) as a separator;{{footnote}}As a consequence of this formalism, a slash in the name of the VTL Data Set assumes the specific meaning of separator between the name of the Dataflow and the values of some of its Dimensions.{{/footnote}}
404 404  
405 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
387 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined{{footnote}}This is the order in which the dimensions are defined in the ToVtlSpaceKey class or in the FromVtlSpaceKey class, depending on the direction of the mapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
406 406  
407 407  In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
408 408  
... ... @@ -418,7 +418,7 @@
418 418  
419 419  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
420 420  
421 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^ need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
403 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations{{footnote}}It should be remembered that, according to the VTL consistency rules, a given VTL dataset cannot be the result of more than one VTL Transformation.{{/footnote}} need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
422 422  
423 423  First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations.
424 424  
... ... @@ -426,28 +426,16 @@
426 426  
427 427  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
428 428  
429 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
411 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
430 430  
431 -basic, pivot …).
413 +In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 432  
433 -In the example above, for all the datasets of the kind
434 -
435 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
436 -
437 437  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
438 438  
439 -‘DF1(1.0.0)/POPULATION.USA’ :=
417 +[[image:1747388275998-621.png]]
440 440  
441 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
419 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
442 442  
443 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
444 -
445 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
446 -
447 -… … …
448 -
449 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^
450 -
451 451  In the direction from SDMX to VTL it is allowed to omit the value of one or more
452 452  
453 453  DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
... ... @@ -456,10 +456,8 @@
456 456  
457 457  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
458 458  
459 -‘DF1(1.0.0)/POPULATION.’ :=
429 +[[image:1747388244829-693.png]]
460 460  
461 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
462 -
463 463  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
464 464  
465 465  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different
... ... @@ -474,70 +474,34 @@
474 474  
475 475  Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY:
476 476  
477 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^
478 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^
445 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation;{{footnote}}If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one SDMX Dataflow to many VTL datasets) does not apply.{{/footnote}}
446 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.{{footnote}}This is possible as each VTL dataset corresponds to one particular combination of values of INDICATOR and COUNTRY.{{/footnote}}
479 479  
480 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^.
448 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions{{footnote}}The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the VtlDataflowMapping relevant to DF2(1.0).{{/footnote}}.
481 481  
482 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^
450 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
483 483  
484 484  ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
485 485  
486 486  Some examples follow, for some specific values of INDICATOR and COUNTRY:
487 487  
488 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
456 +[[image:1747388222879-916.png]]
489 489  
490 -… … …
458 +[[image:1747388206717-256.png]]
491 491  
492 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
493 -
494 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
495 -
496 -… … …
497 -
498 498  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
499 499  
500 -VTL dataset INDICATOR value COUNTRY value
462 +[[image:1747388148322-387.png]]
501 501  
502 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
503 -
504 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
505 -
506 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
507 -
508 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
509 -
510 -… … …
511 -
512 512  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
513 513  
514 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
466 +[[image:1747388179021-814.png]]
515 515  
516 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
517 -
518 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
519 -
520 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
521 -
522 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
523 -
524 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
525 -
526 -DF2bis_GDPPERCAPITA_CANADA’,
527 -
528 -… ,
529 -
530 -DF2bis_POPGROWTH_USA’,
531 -
532 -DF2bis_POPGROWTH_CANADA’
533 -
534 -…);
535 -
536 536  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
537 537  
538 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
470 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
539 539  
540 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^
472 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
541 541  
542 542  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
543 543  
... ... @@ -545,52 +545,51 @@
545 545  
546 546  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
547 547  
548 -|VTL|SDMX
549 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
550 -|**Represented Variable**|(((
480 +(% style="width:1170.29px" %)
481 +|**VTL**|(% style="width:754px" %)**SDMX**
482 +|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
483 +|**Represented Variable**|(% style="width:754px" %)(((
551 551  **Concept** with a definite
552 552  
553 553  Representation
554 554  )))
555 -|**Value Domain**|(((
488 +|**Value Domain**|(% style="width:754px" %)(((
556 556  **Representation** (see the Structure
557 557  
558 558  Pattern in the Base Package)
559 559  )))
560 -|**Enumerated Value Domain / Code List**|**Codelist**
561 -|**Code**|(((
493 +|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
494 +|**Code**|(% style="width:754px" %)(((
562 562  **Code** (for enumerated
563 563  
564 564  DimensionComponent, Measure, DataAttribute)
565 565  )))
566 -|**Described Value Domain**|(((
567 -non-enumerated** &nbsp;&nbsp;&nbsp;Representation**
499 +|**Described Value Domain**|(% style="width:754px" %)(((
500 +non-enumerated** Representation**
568 568  
569 569  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
570 570  )))
571 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
572 -| |(((
573 -to a valid **value &nbsp;&nbsp;&nbsp;**(for non-enumerated** &nbsp;&nbsp;&nbsp;**
574 -
575 -Representations)
504 +|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
505 +| |(% style="width:754px" %)(((
506 +to a valid **value **(for non-enumerated** **Representations)
576 576  )))
577 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
578 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
579 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
580 -|**Set list**|This abstraction does not exist in SDMX
508 +|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
509 +|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
510 +|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
511 +|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
581 581  
582 582  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
583 583  
584 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
515 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
585 585  
586 586  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
587 587  
588 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
519 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
589 589  
521 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
522 +
590 590  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
591 591  
592 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
593 -
594 594  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
595 595  
596 596  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -605,7 +605,8 @@
605 605  
606 606  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
607 607  
608 -==== Figure 22 – VTL Data Types ====
539 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
540 +**Figure 22 – VTL Data Types**
609 609  
610 610  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
611 611  
... ... @@ -612,131 +612,12 @@
612 612  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
613 613  
614 614  
547 +**Figure 23 – VTL Basic Scalar Types**
615 615  
616 616  (((
617 -//n//
618 -
619 -//a//
620 -
621 -//e//
622 -
623 -//l//
624 -
625 -//o//
626 -
627 -//o//
628 -
629 -//B//
630 -
631 -//n//
632 -
633 -//o//
634 -
635 -//i//
636 -
637 -//t//
638 -
639 -//a//
640 -
641 -//r//
642 -
643 -//u//
644 -
645 -//D//
646 -
647 -//d//
648 -
649 -//o//
650 -
651 -//i//
652 -
653 -//r//
654 -
655 -//e//
656 -
657 -//p//
658 -
659 -//_//
660 -
661 -//e//
662 -
663 -//m//
664 -
665 -//i//
666 -
667 -//T//
668 -
669 -//e//
670 -
671 -//t//
672 -
673 -//a//
674 -
675 -//D//
676 -
677 -//e//
678 -
679 -//m//
680 -
681 -//i//
682 -
683 -//T//
684 -
685 -//r//
686 -
687 -//e//
688 -
689 -//g//
690 -
691 -//e//
692 -
693 -//t//
694 -
695 -//n//
696 -
697 -//I//
698 -
699 -//r//
700 -
701 -//e//
702 -
703 -//b//
704 -
705 -//m//
706 -
707 -//u//
708 -
709 -//N//
710 -
711 -//g//
712 -
713 -//n//
714 -
715 -//i//
716 -
717 -//r//
718 -
719 -//t//
720 -
721 -//S//
722 -
723 -//r//
724 -
725 -//a//
726 -
727 -//l//
728 -
729 -//a//
730 -
731 -//c//
732 -
733 -//S//
734 -
735 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
550 +
736 736  )))
737 737  
738 -==== Figure 23 – VTL Basic Scalar Types ====
739 -
740 740  === 12.4.2 VTL basic scalar types and SDMX data types ===
741 741  
742 742  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -759,204 +759,159 @@
759 759  
760 760  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
761 761  
762 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
763 -|(((
575 +(% style="width:823.294px" %)
576 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
577 +|(% style="width:509px" %)(((
764 764  String
765 -
766 766  (string allowing any character)
767 -)))|string
768 -|(((
580 +)))|(% style="width:312px" %)string
581 +|(% style="width:509px" %)(((
769 769  Alpha
770 -
771 771  (string which only allows A-z)
772 -)))|string
773 -|(((
584 +)))|(% style="width:312px" %)string
585 +|(% style="width:509px" %)(((
774 774  AlphaNumeric
775 -
776 776  (string which only allows A-z and 0-9)
777 -)))|string
778 -|(((
588 +)))|(% style="width:312px" %)string
589 +|(% style="width:509px" %)(((
779 779  Numeric
780 -
781 781  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
782 -)))|string
783 -|(((
592 +)))|(% style="width:312px" %)string
593 +|(% style="width:509px" %)(((
784 784  BigInteger
785 -
786 786  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
787 -)))|integer
788 -|(((
596 +)))|(% style="width:312px" %)integer
597 +|(% style="width:509px" %)(((
789 789  Integer
790 -
791 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
792 -
793 -(inclusive))
794 -)))|integer
795 -|(((
599 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
600 +)))|(% style="width:312px" %)integer
601 +|(% style="width:509px" %)(((
796 796  Long
797 -
798 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
799 -
800 -+9223372036854775807 (inclusive))
801 -)))|integer
802 -|(((
603 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
604 +)))|(% style="width:312px" %)integer
605 +|(% style="width:509px" %)(((
803 803  Short
804 -
805 805  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
806 -)))|integer
807 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
808 -|(((
608 +)))|(% style="width:312px" %)integer
609 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
610 +|(% style="width:509px" %)(((
809 809  Float
810 -
811 811  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
812 -)))|number
813 -|(((
613 +)))|(% style="width:312px" %)number
614 +|(% style="width:509px" %)(((
814 814  Double
815 -
816 816  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
817 -)))|number
818 -|(((
617 +)))|(% style="width:312px" %)number
618 +|(% style="width:509px" %)(((
819 819  Boolean
620 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
621 +)))|(% style="width:312px" %)boolean
820 820  
821 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
822 -
823 -binary-valued logic: {true, false})
824 -)))|boolean
825 -
826 -| |(% colspan="2" %)(((
623 +(% style="width:822.294px" %)
624 +|(% colspan="2" style="width:507px" %)(((
827 827  URI
828 -
829 829  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
830 -)))|(% colspan="2" %)string
831 -| |(% colspan="2" %)(((
627 +)))|(% colspan="1" style="width:311px" %)string
628 +|(% colspan="2" style="width:507px" %)(((
832 832  Count
833 -
834 834  (an integer following a sequential pattern, increasing by 1 for each occurrence)
835 -)))|(% colspan="2" %)integer
836 -| |(% colspan="2" %)(((
631 +)))|(% colspan="1" style="width:311px" %)integer
632 +|(% colspan="2" style="width:507px" %)(((
837 837  InclusiveValueRange
838 -
839 839  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
840 -)))|(% colspan="2" %)number
841 -| |(% colspan="2" %)(((
635 +)))|(% colspan="1" style="width:311px" %)number
636 +|(% colspan="2" style="width:507px" %)(((
842 842  ExclusiveValueRange
843 -
844 844  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
845 -)))|(% colspan="2" %)number
846 -| |(% colspan="2" %)(((
639 +)))|(% colspan="1" style="width:311px" %)number
640 +|(% colspan="2" style="width:507px" %)(((
847 847  Incremental
848 -
849 849  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
850 -)))|(% colspan="2" %)number
851 -| |(% colspan="2" %)(((
643 +)))|(% colspan="1" style="width:311px" %)number
644 +|(% colspan="2" style="width:507px" %)(((
852 852  ObservationalTimePeriod
853 -
854 854  (superset of StandardTimePeriod and TimeRange)
855 -)))|(% colspan="2" %)time
856 -| |(% colspan="2" %)(((
647 +)))|(% colspan="1" style="width:311px" %)time
648 +|(% colspan="2" style="width:507px" %)(((
857 857  StandardTimePeriod
858 -
859 -(superset of BasicTimePeriod and
860 -
861 -ReportingTimePeriod)
862 -)))|(% colspan="2" %)time
863 -| |(% colspan="2" %)(((
650 +(superset of BasicTimePeriod and ReportingTimePeriod)
651 +)))|(% colspan="1" style="width:311px" %)time
652 +|(% colspan="2" style="width:507px" %)(((
864 864  BasicTimePeriod
865 -
866 866  (superset of GregorianTimePeriod and DateTime)
867 -)))|(% colspan="2" %)date
868 -| |(% colspan="2" %)(((
655 +)))|(% colspan="1" style="width:311px" %)date
656 +|(% colspan="2" style="width:507px" %)(((
869 869  GregorianTimePeriod
870 -
871 871  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
872 -)))|(% colspan="2" %)date
873 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
874 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
875 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
876 -| |(% colspan="2" %)(((
659 +)))|(% colspan="1" style="width:311px" %)date
660 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
661 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
662 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
663 +|(% colspan="2" style="width:507px" %)(((
877 877  ReportingTimePeriod
878 -
879 -(superset of RepostingYear, ReportingSemester,
880 -
881 -ReportingTrimester, ReportingQuarter,
882 -
883 -ReportingMonth, ReportingWeek, ReportingDay)
884 -)))|(% colspan="2" %)time_period
885 -| |(% colspan="2" %)(((
665 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
666 +)))|(% colspan="1" style="width:311px" %)time_period
667 +|(% colspan="2" style="width:507px" %)(((
886 886  ReportingYear
887 -
888 888  (YYYY-A1 – 1 year period)
889 -)))|(% colspan="2" %)time_period
890 -| |(% colspan="2" %)(((
670 +)))|(% colspan="1" style="width:311px" %)time_period
671 +|(% colspan="2" style="width:507px" %)(((
891 891  ReportingSemester
892 -
893 893  (YYYY-Ss – 6 month period)
894 -)))|(% colspan="2" %)time_period
895 -| |(% colspan="2" %)(((
674 +)))|(% colspan="1" style="width:311px" %)time_period
675 +|(% colspan="2" style="width:507px" %)(((
896 896  ReportingTrimester
897 -
898 898  (YYYY-Tt – 4 month period)
899 -)))|(% colspan="2" %)time_period
900 -| |(% colspan="2" %)(((
678 +)))|(% colspan="1" style="width:311px" %)time_period
679 +|(% colspan="2" style="width:507px" %)(((
901 901  ReportingQuarter
902 -
903 903  (YYYY-Qq – 3 month period)
904 -)))|(% colspan="2" %)time_period
905 -| |(% colspan="2" %)(((
682 +)))|(% colspan="1" style="width:311px" %)time_period
683 +|(% colspan="2" style="width:507px" %)(((
906 906  ReportingMonth
907 -
908 908  (YYYY-Mmm – 1 month period)
909 -)))|(% colspan="2" %)time_period
910 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
911 -| |(% colspan="2" %) |(% colspan="2" %)
912 -| |(% colspan="2" %) |(% colspan="2" %)
913 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
914 -|(% colspan="2" %)(((
686 +)))|(% colspan="1" style="width:311px" %)time_period
687 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
688 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
689 +|(% colspan="1" style="width:507px" %)(((
915 915  ReportingDay
916 -
917 917  (YYYY-Dddd – 1 day period)
918 -)))|(% colspan="2" %)time_period|
919 -|(% colspan="2" %)(((
692 +)))|(% colspan="2" style="width:312px" %)time_period
693 +|(% colspan="1" style="width:507px" %)(((
920 920  DateTime
921 -
922 922  (YYYY-MM-DDThh:mm:ss)
923 -)))|(% colspan="2" %)date|
924 -|(% colspan="2" %)(((
696 +)))|(% colspan="2" style="width:312px" %)date
697 +|(% colspan="1" style="width:507px" %)(((
925 925  TimeRange
926 -
927 927  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
928 -)))|(% colspan="2" %)time|
929 -|(% colspan="2" %)(((
700 +)))|(% colspan="2" style="width:312px" %)time
701 +|(% colspan="1" style="width:507px" %)(((
930 930  Month
931 -
932 932  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
933 -)))|(% colspan="2" %)string|
934 -|(% colspan="2" %)(((
704 +)))|(% colspan="2" style="width:312px" %)string
705 +|(% colspan="1" style="width:507px" %)(((
935 935  MonthDay
936 -
937 937  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
938 -)))|(% colspan="2" %)string|
939 -|(% colspan="2" %)(((
708 +)))|(% colspan="2" style="width:312px" %)string
709 +|(% colspan="1" style="width:507px" %)(((
940 940  Day
941 -
942 942  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
943 -)))|(% colspan="2" %)string|
944 -|(% colspan="2" %)(((
712 +)))|(% colspan="2" style="width:312px" %)string
713 +|(% colspan="1" style="width:507px" %)(((
945 945  Time
946 -
947 947  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
948 -)))|(% colspan="2" %)string|
949 -|(% colspan="2" %)(((
716 +)))|(% colspan="2" style="width:312px" %)string
717 +|(% colspan="1" style="width:507px" %)(((
950 950  Duration
951 -
952 952  (corresponds to XML Schema xs:duration datatype)
953 -)))|(% colspan="2" %)duration|
954 -|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
955 -|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
956 -|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
957 -|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
720 +)))|(% colspan="2" style="width:312px" %)duration
721 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
722 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
723 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
724 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
958 958  
959 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
726 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
727 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
960 960  
961 961  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
962 962  
... ... @@ -964,39 +964,32 @@
964 964  
965 965  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
966 966  
967 -|(((
968 -VTL basic
969 -
970 -scalar type
971 -)))|(((
972 -Default SDMX data type
973 -
974 -(BasicComponentDataType
975 -
976 -)
977 -)))|Default output format
978 -|String|String|Like XML (xs:string)
979 -|Number|Float|Like XML (xs:float)
980 -|Integer|Integer|Like XML (xs:int)
981 -|Date|DateTime|YYYY-MM-DDT00:00:00Z
982 -|Time|StandardTimePeriod|<date>/<date> (as defined above)
983 -|time_period|(((
735 +(% style="width:1073.29px" %)
736 +|(% style="width:207px" %)(((
737 +**VTL basic scalar type**
738 +)))|(% style="width:462px" %)(((
739 +**Default SDMX data type (BasicComponentDataType)**
740 +)))|(% style="width:402px" %)**Default output format**
741 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
742 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
743 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
744 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
745 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
746 +|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
984 984  ReportingTimePeriod
985 -
986 986  (StandardReportingPeriod)
987 -)))|(((
749 +)))|(% style="width:402px" %)(((
988 988  YYYY-Pppp
989 -
990 990  (according to SDMX )
991 991  )))
992 -|Duration|Duration|(((
753 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
993 993  Like XML (xs:duration)
994 -
995 995  PnYnMnDTnHnMnS
996 996  )))
997 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
757 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
998 998  
999 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
759 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
760 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
1000 1000  
1001 1001  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
1002 1002  
... ... @@ -1050,7 +1050,7 @@
1050 1050  |N|fixed number of digits used in the preceding textual representation of the month or the day
1051 1051  | |
1052 1052  
1053 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
814 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1054 1054  
1055 1055  === 12.4.5 Null Values ===
1056 1056  
... ... @@ -1068,10 +1068,8 @@
1068 1068  
1069 1069  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
1070 1070  
1071 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
832 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1072 1072  
1073 -TransformationScheme.
1074 -
1075 1075  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
1076 1076  
1077 1077  {{putFootnotes/}}
1747388148322-387.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
1747388179021-814.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +66.2 KB
Content
1747388206717-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.3 KB
Content
1747388222879-916.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +9.9 KB
Content
1747388244829-693.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +7.4 KB
Content
1747388275998-621.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +19.2 KB
Content