Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,10 +14,8 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 18 18 19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 - 21 21 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 22 22 23 23 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -28,10 +28,8 @@ 28 28 29 29 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 30 30 31 -In any case, the aliases used in the VTL Transformations have to be mapped to the 29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 32 32 33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 - 35 35 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 36 36 37 37 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -202,7 +202,7 @@ 202 202 203 203 === 12.3.3 Mapping from SDMX to VTL data structures === 204 204 205 - **12.3.3.1 Basic Mapping**201 +==== 12.3.3.1 Basic Mapping ==== 206 206 207 207 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 208 208 ... ... @@ -232,36 +232,26 @@ 232 232 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 233 233 234 234 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 - 237 -Component; 238 - 231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 239 239 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 240 240 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 241 241 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 - 244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 - 246 -* 235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 247 247 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 248 248 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 249 249 250 250 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 251 251 252 -|**SDMX**|**VTL** 253 -|Dimension|(Simple) Identifier 254 -|TimeDimension|(Time) Identifier 255 -|MeasureDimension & one Measure|((( 256 -One Measure for each Code of the 257 - 258 -SDMX MeasureDimension 241 +(% style="width:769.294px" %) 242 +|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL** 243 +|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier 244 +|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier 245 +|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)((( 246 +One Measure for each Code of the SDMX MeasureDimension 259 259 ))) 260 -|DataAttribute not depending on the MeasureDimension|Attribute 261 -|DataAttribute depending on the MeasureDimension|((( 262 -One Attribute for each Code of the 263 - 264 -SDMX MeasureDimension 248 +|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute 249 +|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)((( 250 +One Attribute for each Code of the SDMX MeasureDimension 265 265 ))) 266 266 267 267 Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure. ... ... @@ -269,14 +269,11 @@ 269 269 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 270 270 271 271 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 272 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 273 - 274 -Identifiers, (time) Identifier and Attributes. 275 - 258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 276 276 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 277 277 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 278 278 279 - **12.3.3.3 From SDMX DataAttributes to VTL Measures**262 +==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ==== 280 280 281 281 * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 282 282 ... ... @@ -288,7 +288,7 @@ 288 288 289 289 === 12.3.4 Mapping from VTL to SDMX data structures === 290 290 291 - **12.3.4.1 Basic Mapping**274 +==== 12.3.4.1 Basic Mapping ==== 292 292 293 293 The main mapping method **from VTL to SDMX** is called **Basic **mapping as well. 294 294 ... ... @@ -298,11 +298,12 @@ 298 298 299 299 Mapping table: 300 300 301 -|**VTL**|**SDMX** 302 -|(Simple) Identifier|Dimension 303 -|(Time) Identifier|TimeDimension 304 -|Measure|Measure 305 -|Attribute|DataAttribute 284 +(% style="width:667.294px" %) 285 +|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX** 286 +|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension 287 +|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension 288 +|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure 289 +|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute 306 306 307 307 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 308 308 ... ... @@ -312,7 +312,7 @@ 312 312 313 313 As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 314 314 315 - **12.3.4.2 Unpivot Mapping**299 +==== 12.3.4.2 Unpivot Mapping ==== 316 316 317 317 An alternative mapping method from VTL to SDMX is the **Unpivot **mapping. 318 318 ... ... @@ -336,11 +336,12 @@ 336 336 337 337 The summary mapping table of the **unpivot** mapping method is the following: 338 338 339 -|**VTL**|**SDMX** 340 -|(Simple) Identifier|Dimension 341 -|(Time) Identifier|TimeDimension 342 -|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 343 -|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 323 +(% style="width:994.294px" %) 324 +|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX** 325 +|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension 326 +|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension 327 +|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 328 +|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 344 344 345 345 At observation / data point level: 346 346 ... ... @@ -354,7 +354,7 @@ 354 354 355 355 In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 356 356 357 - **12.3.4.3 From VTL Measures to SDMX Data Attributes**342 +==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ==== 358 358 359 359 More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”). 360 360 ... ... @@ -362,12 +362,13 @@ 362 362 363 363 The mapping table is the following: 364 364 365 -|VTL|SDMX 366 -|(Simple) Identifier|Dimension 367 -|(Time) Identifier|TimeDimension 368 -|Some Measures|Measure 369 -|Other Measures|DataAttribute 370 -|Attribute|DataAttribute 350 +(% style="width:689.294px" %) 351 +|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX** 352 +|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 353 +|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 354 +|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure 355 +|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute 356 +|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute 371 371 372 372 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 373 373 ... ... @@ -385,20 +385,20 @@ 385 385 386 386 Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set). 387 387 388 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole. ^^[[(% class="wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink"%)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^374 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}} 389 389 390 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below. ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink"%)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^376 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union” …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}} 391 391 392 392 Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets. 393 393 394 394 For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows: 395 395 396 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order. ^^[[(% class="wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink"%)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.382 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.{{footnote}}This definition is made through the ToVtlSubspace and ToVtlSpaceKey classes and/or the FromVtlSuperspace and FromVtlSpaceKey classes, depending on the direction of the mapping (“key” means “dimension”). The mapping of Dataflow subsets can be applied independently in the two directions, also according to different Dimensions. When no Dimension is declared for a given direction, it is assumed that the option of mapping different parts of a SDMX Dataflow to different VTL Data Sets is not used.{{/footnote}} Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY. 397 397 * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 398 398 ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0); 399 -** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^385 +** a slash (“/”) as a separator;{{footnote}}As a consequence of this formalism, a slash in the name of the VTL Data Set assumes the specific meaning of separator between the name of the Dataflow and the values of some of its Dimensions.{{/footnote}} 400 400 401 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink"%)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.387 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined{{footnote}}This is the order in which the dimensions are defined in the ToVtlSpaceKey class or in the FromVtlSpaceKey class, depending on the direction of the mapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 402 402 403 403 In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 404 404 ... ... @@ -414,7 +414,7 @@ 414 414 415 415 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 416 416 417 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.403 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations{{footnote}}It should be remembered that, according to the VTL consistency rules, a given VTL dataset cannot be the result of more than one VTL Transformation.{{/footnote}} need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 418 418 419 419 First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations. 420 420 ... ... @@ -422,27 +422,20 @@ 422 422 423 423 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 424 424 425 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets ^^[[(%class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink"%)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.411 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 426 426 427 -basi c, pivot…).413 +In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 428 428 429 -In the example above, for all the datasets of the kind 430 - 431 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 432 - 433 433 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 434 434 435 435 ‘DF1(1.0.0)/POPULATION.USA’ := 436 - 437 437 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 438 438 439 439 ‘DF1(1.0.0)/POPULATION.CANADA’ := 440 - 441 441 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 442 - 443 443 … … … 444 444 445 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink"%)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^424 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 446 446 447 447 In the direction from SDMX to VTL it is allowed to omit the value of one or more 448 448 ... ... @@ -453,7 +453,6 @@ 453 453 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 454 454 455 455 ‘DF1(1.0.0)/POPULATION.’ := 456 - 457 457 DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 458 458 459 459 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. ... ... @@ -470,12 +470,12 @@ 470 470 471 471 Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY: 472 472 473 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink"%)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^474 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers. ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^451 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation;{{footnote}}If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one SDMX Dataflow to many VTL datasets) does not apply.{{/footnote}} 452 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.{{footnote}}This is possible as each VTL dataset corresponds to one particular combination of values of INDICATOR and COUNTRY.{{/footnote}} 475 475 476 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink"%)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^.454 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions{{footnote}}The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the VtlDataflowMapping relevant to DF2(1.0).{{/footnote}}. 477 477 478 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind: ^^ [[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^456 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}} 479 479 480 480 ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 481 481 ... ... @@ -484,11 +484,8 @@ 484 484 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 485 485 486 486 … … … 487 - 488 488 ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 489 - 490 490 ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 491 - 492 492 … … … 493 493 494 494 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: ... ... @@ -496,44 +496,30 @@ 496 496 VTL dataset INDICATOR value COUNTRY value 497 497 498 498 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 499 - 500 500 ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 501 - 502 502 ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 503 - 504 504 ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 505 - 506 506 … … … 507 507 508 508 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 509 509 510 510 DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 511 - 512 512 DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 513 - 514 514 DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 515 - 516 516 [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 517 - 518 518 DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 519 - 520 520 DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 521 - 522 522 DF2bis_GDPPERCAPITA_CANADA’, 523 - 524 524 … , 525 - 526 526 DF2bis_POPGROWTH_USA’, 527 - 528 528 DF2bis_POPGROWTH_CANADA’ 529 - 530 530 …); 531 531 532 532 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 533 533 534 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0) ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.495 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 535 535 536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink"%)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(%class="wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink"%)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^497 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} 537 537 538 538 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 539 539 ... ... @@ -541,52 +541,51 @@ 541 541 542 542 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 543 543 544 -|VTL|SDMX 545 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 546 -|**Represented Variable**|((( 505 +(% style="width:1170.29px" %) 506 +|**VTL**|(% style="width:754px" %)**SDMX** 507 +|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 508 +|**Represented Variable**|(% style="width:754px" %)((( 547 547 **Concept** with a definite 548 548 549 549 Representation 550 550 ))) 551 -|**Value Domain**|((( 513 +|**Value Domain**|(% style="width:754px" %)((( 552 552 **Representation** (see the Structure 553 553 554 554 Pattern in the Base Package) 555 555 ))) 556 -|**Enumerated Value Domain / Code List**|**Codelist** 557 -|**Code**|((( 518 +|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist** 519 +|**Code**|(% style="width:754px" %)((( 558 558 **Code** (for enumerated 559 559 560 560 DimensionComponent, Measure, DataAttribute) 561 561 ))) 562 -|**Described Value Domain**|((( 563 -non-enumerated** Representation**524 +|**Described Value Domain**|(% style="width:754px" %)((( 525 +non-enumerated** Representation** 564 564 565 565 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 566 566 ))) 567 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 568 -| |((( 569 -to a valid **value **(for non-enumerated** ** 570 - 571 -Representations) 529 +|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 530 +| |(% style="width:754px" %)((( 531 +to a valid **value **(for non-enumerated** **Representations) 572 572 ))) 573 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 574 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 575 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 576 -|**Set list**|This abstraction does not exist in SDMX 533 +|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX 534 +|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX 535 +|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX 536 +|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX 577 577 578 578 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 579 579 580 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink"%)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.540 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 581 581 582 582 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 583 583 584 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.544 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 585 585 546 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 547 + 586 586 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 587 587 588 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 589 - 590 590 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 591 591 592 592 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -601,7 +601,8 @@ 601 601 602 602 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 603 603 604 -==== Figure 22 – VTL Data Types ==== 564 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 565 +**Figure 22 – VTL Data Types** 605 605 606 606 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 607 607 ... ... @@ -608,131 +608,12 @@ 608 608 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 609 609 610 610 572 +**Figure 23 – VTL Basic Scalar Types** 611 611 612 612 ((( 613 -//n// 614 - 615 -//a// 616 - 617 -//e// 618 - 619 -//l// 620 - 621 -//o// 622 - 623 -//o// 624 - 625 -//B// 626 - 627 -//n// 628 - 629 -//o// 630 - 631 -//i// 632 - 633 -//t// 634 - 635 -//a// 636 - 637 -//r// 638 - 639 -//u// 640 - 641 -//D// 642 - 643 -//d// 644 - 645 -//o// 646 - 647 -//i// 648 - 649 -//r// 650 - 651 -//e// 652 - 653 -//p// 654 - 655 -//_// 656 - 657 -//e// 658 - 659 -//m// 660 - 661 -//i// 662 - 663 -//T// 664 - 665 -//e// 666 - 667 -//t// 668 - 669 -//a// 670 - 671 -//D// 672 - 673 -//e// 674 - 675 -//m// 676 - 677 -//i// 678 - 679 -//T// 680 - 681 -//r// 682 - 683 -//e// 684 - 685 -//g// 686 - 687 -//e// 688 - 689 -//t// 690 - 691 -//n// 692 - 693 -//I// 694 - 695 -//r// 696 - 697 -//e// 698 - 699 -//b// 700 - 701 -//m// 702 - 703 -//u// 704 - 705 -//N// 706 - 707 -//g// 708 - 709 -//n// 710 - 711 -//i// 712 - 713 -//r// 714 - 715 -//t// 716 - 717 -//S// 718 - 719 -//r// 720 - 721 -//a// 722 - 723 -//l// 724 - 725 -//a// 726 - 727 -//c// 728 - 729 -//S// 730 - 731 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 575 + 732 732 ))) 733 733 734 -==== Figure 23 – VTL Basic Scalar Types ==== 735 - 736 736 === 12.4.2 VTL basic scalar types and SDMX data types === 737 737 738 738 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -755,204 +755,159 @@ 755 755 756 756 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 757 757 758 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 759 -|((( 600 +(% style="width:823.294px" %) 601 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 602 +|(% style="width:509px" %)((( 760 760 String 761 - 762 762 (string allowing any character) 763 -)))|string 764 -|((( 605 +)))|(% style="width:312px" %)string 606 +|(% style="width:509px" %)((( 765 765 Alpha 766 - 767 767 (string which only allows A-z) 768 -)))|string 769 -|((( 609 +)))|(% style="width:312px" %)string 610 +|(% style="width:509px" %)((( 770 770 AlphaNumeric 771 - 772 772 (string which only allows A-z and 0-9) 773 -)))|string 774 -|((( 613 +)))|(% style="width:312px" %)string 614 +|(% style="width:509px" %)((( 775 775 Numeric 776 - 777 777 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 778 -)))|string 779 -|((( 617 +)))|(% style="width:312px" %)string 618 +|(% style="width:509px" %)((( 780 780 BigInteger 781 - 782 782 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 783 -)))|integer 784 -|((( 621 +)))|(% style="width:312px" %)integer 622 +|(% style="width:509px" %)((( 785 785 Integer 786 - 787 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 788 - 789 -(inclusive)) 790 -)))|integer 791 -|((( 624 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 625 +)))|(% style="width:312px" %)integer 626 +|(% style="width:509px" %)((( 792 792 Long 793 - 794 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 795 - 796 -+9223372036854775807 (inclusive)) 797 -)))|integer 798 -|((( 628 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 629 +)))|(% style="width:312px" %)integer 630 +|(% style="width:509px" %)((( 799 799 Short 800 - 801 801 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 802 -)))|integer 803 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 804 -|((( 633 +)))|(% style="width:312px" %)integer 634 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number 635 +|(% style="width:509px" %)((( 805 805 Float 806 - 807 807 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 808 -)))|number 809 -|((( 638 +)))|(% style="width:312px" %)number 639 +|(% style="width:509px" %)((( 810 810 Double 811 - 812 812 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 813 -)))|number 814 -|((( 642 +)))|(% style="width:312px" %)number 643 +|(% style="width:509px" %)((( 815 815 Boolean 645 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 646 +)))|(% style="width:312px" %)boolean 816 816 817 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 818 - 819 -binary-valued logic: {true, false}) 820 -)))|boolean 821 - 822 -| |(% colspan="2" %)((( 648 +(% style="width:822.294px" %) 649 +|(% colspan="2" style="width:507px" %)((( 823 823 URI 824 - 825 825 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 826 -)))|(% colspan=" 2" %)string827 -| |(% colspan="2" %)(((652 +)))|(% colspan="1" style="width:311px" %)string 653 +|(% colspan="2" style="width:507px" %)((( 828 828 Count 829 - 830 830 (an integer following a sequential pattern, increasing by 1 for each occurrence) 831 -)))|(% colspan=" 2" %)integer832 -| |(% colspan="2" %)(((656 +)))|(% colspan="1" style="width:311px" %)integer 657 +|(% colspan="2" style="width:507px" %)((( 833 833 InclusiveValueRange 834 - 835 835 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 836 -)))|(% colspan=" 2" %)number837 -| |(% colspan="2" %)(((660 +)))|(% colspan="1" style="width:311px" %)number 661 +|(% colspan="2" style="width:507px" %)((( 838 838 ExclusiveValueRange 839 - 840 840 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 841 -)))|(% colspan=" 2" %)number842 -| |(% colspan="2" %)(((664 +)))|(% colspan="1" style="width:311px" %)number 665 +|(% colspan="2" style="width:507px" %)((( 843 843 Incremental 844 - 845 845 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 846 -)))|(% colspan=" 2" %)number847 -| |(% colspan="2" %)(((668 +)))|(% colspan="1" style="width:311px" %)number 669 +|(% colspan="2" style="width:507px" %)((( 848 848 ObservationalTimePeriod 849 - 850 850 (superset of StandardTimePeriod and TimeRange) 851 -)))|(% colspan=" 2" %)time852 -| |(% colspan="2" %)(((672 +)))|(% colspan="1" style="width:311px" %)time 673 +|(% colspan="2" style="width:507px" %)((( 853 853 StandardTimePeriod 854 - 855 -(superset of BasicTimePeriod and 856 - 857 -ReportingTimePeriod) 858 -)))|(% colspan="2" %)time 859 -| |(% colspan="2" %)((( 675 +(superset of BasicTimePeriod and ReportingTimePeriod) 676 +)))|(% colspan="1" style="width:311px" %)time 677 +|(% colspan="2" style="width:507px" %)((( 860 860 BasicTimePeriod 861 - 862 862 (superset of GregorianTimePeriod and DateTime) 863 -)))|(% colspan=" 2" %)date864 -| |(% colspan="2" %)(((680 +)))|(% colspan="1" style="width:311px" %)date 681 +|(% colspan="2" style="width:507px" %)((( 865 865 GregorianTimePeriod 866 - 867 867 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 868 -)))|(% colspan=" 2" %)date869 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date870 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date871 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date872 -| |(% colspan="2" %)(((684 +)))|(% colspan="1" style="width:311px" %)date 685 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date 686 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date 687 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date 688 +|(% colspan="2" style="width:507px" %)((( 873 873 ReportingTimePeriod 874 - 875 -(superset of RepostingYear, ReportingSemester, 876 - 877 -ReportingTrimester, ReportingQuarter, 878 - 879 -ReportingMonth, ReportingWeek, ReportingDay) 880 -)))|(% colspan="2" %)time_period 881 -| |(% colspan="2" %)((( 690 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 691 +)))|(% colspan="1" style="width:311px" %)time_period 692 +|(% colspan="2" style="width:507px" %)((( 882 882 ReportingYear 883 - 884 884 (YYYY-A1 – 1 year period) 885 -)))|(% colspan=" 2" %)time_period886 -| |(% colspan="2" %)(((695 +)))|(% colspan="1" style="width:311px" %)time_period 696 +|(% colspan="2" style="width:507px" %)((( 887 887 ReportingSemester 888 - 889 889 (YYYY-Ss – 6 month period) 890 -)))|(% colspan=" 2" %)time_period891 -| |(% colspan="2" %)(((699 +)))|(% colspan="1" style="width:311px" %)time_period 700 +|(% colspan="2" style="width:507px" %)((( 892 892 ReportingTrimester 893 - 894 894 (YYYY-Tt – 4 month period) 895 -)))|(% colspan=" 2" %)time_period896 -| |(% colspan="2" %)(((703 +)))|(% colspan="1" style="width:311px" %)time_period 704 +|(% colspan="2" style="width:507px" %)((( 897 897 ReportingQuarter 898 - 899 899 (YYYY-Qq – 3 month period) 900 -)))|(% colspan=" 2" %)time_period901 -| |(% colspan="2" %)(((707 +)))|(% colspan="1" style="width:311px" %)time_period 708 +|(% colspan="2" style="width:507px" %)((( 902 902 ReportingMonth 903 - 904 904 (YYYY-Mmm – 1 month period) 905 -)))|(% colspan="2" %)time_period 906 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 907 -| |(% colspan="2" %) |(% colspan="2" %) 908 -| |(% colspan="2" %) |(% colspan="2" %) 909 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 910 -|(% colspan="2" %)((( 711 +)))|(% colspan="1" style="width:311px" %)time_period 712 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 713 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 714 +|(% colspan="1" style="width:507px" %)((( 911 911 ReportingDay 912 - 913 913 (YYYY-Dddd – 1 day period) 914 -)))|(% colspan="2" %)time_period |915 -|(% colspan=" 2" %)(((717 +)))|(% colspan="2" style="width:312px" %)time_period 718 +|(% colspan="1" style="width:507px" %)((( 916 916 DateTime 917 - 918 918 (YYYY-MM-DDThh:mm:ss) 919 -)))|(% colspan="2" %)date |920 -|(% colspan=" 2" %)(((721 +)))|(% colspan="2" style="width:312px" %)date 722 +|(% colspan="1" style="width:507px" %)((( 921 921 TimeRange 922 - 923 923 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 924 -)))|(% colspan="2" %)time |925 -|(% colspan=" 2" %)(((725 +)))|(% colspan="2" style="width:312px" %)time 726 +|(% colspan="1" style="width:507px" %)((( 926 926 Month 927 - 928 928 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 929 -)))|(% colspan="2" %)string |930 -|(% colspan=" 2" %)(((729 +)))|(% colspan="2" style="width:312px" %)string 730 +|(% colspan="1" style="width:507px" %)((( 931 931 MonthDay 932 - 933 933 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 934 -)))|(% colspan="2" %)string |935 -|(% colspan=" 2" %)(((733 +)))|(% colspan="2" style="width:312px" %)string 734 +|(% colspan="1" style="width:507px" %)((( 936 936 Day 937 - 938 938 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 939 -)))|(% colspan="2" %)string |940 -|(% colspan=" 2" %)(((737 +)))|(% colspan="2" style="width:312px" %)string 738 +|(% colspan="1" style="width:507px" %)((( 941 941 Time 942 - 943 943 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 944 -)))|(% colspan="2" %)string |945 -|(% colspan=" 2" %)(((741 +)))|(% colspan="2" style="width:312px" %)string 742 +|(% colspan="1" style="width:507px" %)((( 946 946 Duration 947 - 948 948 (corresponds to XML Schema xs:duration datatype) 949 -)))|(% colspan="2" %)duration |950 -|(% colspan=" 2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|951 -|(% colspan=" 2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|952 -|(% colspan=" 2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|953 -|(% colspan=" 2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|745 +)))|(% colspan="2" style="width:312px" %)duration 746 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable 747 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable 748 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 749 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 954 954 955 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 751 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 752 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 956 956 957 957 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 958 958 ... ... @@ -960,39 +960,32 @@ 960 960 961 961 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 962 962 963 -|((( 964 -VTL basic 965 - 966 -scalar type 967 -)))|((( 968 -Default SDMX data type 969 - 970 -(BasicComponentDataType 971 - 972 -) 973 -)))|Default output format 974 -|String|String|Like XML (xs:string) 975 -|Number|Float|Like XML (xs:float) 976 -|Integer|Integer|Like XML (xs:int) 977 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 978 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 979 -|time_period|((( 760 +(% style="width:1073.29px" %) 761 +|(% style="width:207px" %)((( 762 +**VTL basic scalar type** 763 +)))|(% style="width:462px" %)((( 764 +**Default SDMX data type (BasicComponentDataType)** 765 +)))|(% style="width:402px" %)**Default output format** 766 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 767 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 768 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 769 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 770 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 771 +|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 980 980 ReportingTimePeriod 981 - 982 982 (StandardReportingPeriod) 983 -)))|((( 774 +)))|(% style="width:402px" %)((( 984 984 YYYY-Pppp 985 - 986 986 (according to SDMX ) 987 987 ))) 988 -|Duration|Duration|((( 778 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)((( 989 989 Like XML (xs:duration) 990 - 991 991 PnYnMnDTnHnMnS 992 992 ))) 993 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 782 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false" 994 994 995 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 784 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 785 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 996 996 997 997 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 998 998 ... ... @@ -1046,7 +1046,7 @@ 1046 1046 |N|fixed number of digits used in the preceding textual representation of the month or the day 1047 1047 | | 1048 1048 1049 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.839 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 1050 1050 1051 1051 === 12.4.5 Null Values === 1052 1052 ... ... @@ -1064,10 +1064,8 @@ 1064 1064 1065 1065 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 1066 1066 1067 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 857 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme. 1068 1068 1069 -TransformationScheme. 1070 - 1071 1071 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 1072 1072 1073 1073 {{putFootnotes/}}