Last modified by Helena on 2025/09/10 11:19

From version 5.16
edited by Helena
on 2025/05/16 08:53
Change comment: There is no comment for this version
To version 6.1
edited by Helena
on 2025/05/16 09:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -442,7 +442,7 @@
442 442  
443 443  … … …
444 444  
445 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^
445 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
446 446  
447 447  In the direction from SDMX to VTL it is allowed to omit the value of one or more
448 448  
... ... @@ -470,12 +470,12 @@
470 470  
471 471  Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY:
472 472  
473 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^
474 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^
473 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation;{{footnote}}If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one SDMX Dataflow to many VTL datasets) does not apply.{{/footnote}}
474 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.{{footnote}}This is possible as each VTL dataset corresponds to one particular combination of values of INDICATOR and COUNTRY.{{/footnote}}
475 475  
476 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^.
476 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions{{footnote}}The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the VtlDataflowMapping relevant to DF2(1.0).{{/footnote}}.
477 477  
478 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^
478 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
479 479  
480 480  ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
481 481  
... ... @@ -531,9 +531,9 @@
531 531  
532 532  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
533 533  
534 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
534 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
535 535  
536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^
536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
537 537  
538 538  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
539 539  
... ... @@ -541,52 +541,51 @@
541 541  
542 542  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
543 543  
544 -|VTL|SDMX
545 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
546 -|**Represented Variable**|(((
544 +(% style="width:1170.29px" %)
545 +|**VTL**|(% style="width:754px" %)**SDMX**
546 +|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
547 +|**Represented Variable**|(% style="width:754px" %)(((
547 547  **Concept** with a definite
548 548  
549 549  Representation
550 550  )))
551 -|**Value Domain**|(((
552 +|**Value Domain**|(% style="width:754px" %)(((
552 552  **Representation** (see the Structure
553 553  
554 554  Pattern in the Base Package)
555 555  )))
556 -|**Enumerated Value Domain / Code List**|**Codelist**
557 -|**Code**|(((
557 +|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
558 +|**Code**|(% style="width:754px" %)(((
558 558  **Code** (for enumerated
559 559  
560 560  DimensionComponent, Measure, DataAttribute)
561 561  )))
562 -|**Described Value Domain**|(((
563 -non-enumerated** &nbsp;&nbsp;&nbsp;Representation**
563 +|**Described Value Domain**|(% style="width:754px" %)(((
564 +non-enumerated** Representation**
564 564  
565 565  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
566 566  )))
567 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
568 -| |(((
569 -to a valid **value &nbsp;&nbsp;&nbsp;**(for non-enumerated** &nbsp;&nbsp;&nbsp;**
570 -
571 -Representations)
568 +|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
569 +| |(% style="width:754px" %)(((
570 +to a valid **value **(for non-enumerated** **Representations)
572 572  )))
573 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
574 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
575 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
576 -|**Set list**|This abstraction does not exist in SDMX
572 +|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
573 +|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
574 +|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
575 +|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
577 577  
578 578  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
579 579  
580 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
579 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
581 581  
582 582  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
583 583  
584 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
585 585  
585 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
586 +
586 586  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
587 587  
588 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
589 -
590 590  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
591 591  
592 592  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -601,7 +601,8 @@
601 601  
602 602  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
603 603  
604 -==== Figure 22 – VTL Data Types ====
603 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
604 +**Figure 22 – VTL Data Types**
605 605  
606 606  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
607 607  
... ... @@ -608,131 +608,12 @@
608 608  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
609 609  
610 610  
611 +**Figure 23 – VTL Basic Scalar Types**
611 611  
612 612  (((
613 -//n//
614 -
615 -//a//
616 -
617 -//e//
618 -
619 -//l//
620 -
621 -//o//
622 -
623 -//o//
624 -
625 -//B//
626 -
627 -//n//
628 -
629 -//o//
630 -
631 -//i//
632 -
633 -//t//
634 -
635 -//a//
636 -
637 -//r//
638 -
639 -//u//
640 -
641 -//D//
642 -
643 -//d//
644 -
645 -//o//
646 -
647 -//i//
648 -
649 -//r//
650 -
651 -//e//
652 -
653 -//p//
654 -
655 -//_//
656 -
657 -//e//
658 -
659 -//m//
660 -
661 -//i//
662 -
663 -//T//
664 -
665 -//e//
666 -
667 -//t//
668 -
669 -//a//
670 -
671 -//D//
672 -
673 -//e//
674 -
675 -//m//
676 -
677 -//i//
678 -
679 -//T//
680 -
681 -//r//
682 -
683 -//e//
684 -
685 -//g//
686 -
687 -//e//
688 -
689 -//t//
690 -
691 -//n//
692 -
693 -//I//
694 -
695 -//r//
696 -
697 -//e//
698 -
699 -//b//
700 -
701 -//m//
702 -
703 -//u//
704 -
705 -//N//
706 -
707 -//g//
708 -
709 -//n//
710 -
711 -//i//
712 -
713 -//r//
714 -
715 -//t//
716 -
717 -//S//
718 -
719 -//r//
720 -
721 -//a//
722 -
723 -//l//
724 -
725 -//a//
726 -
727 -//c//
728 -
729 -//S//
730 -
731 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
614 +
732 732  )))
733 733  
734 -==== Figure 23 – VTL Basic Scalar Types ====
735 -
736 736  === 12.4.2 VTL basic scalar types and SDMX data types ===
737 737  
738 738  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -755,204 +755,159 @@
755 755  
756 756  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
757 757  
758 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
759 -|(((
639 +(% style="width:823.294px" %)
640 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
641 +|(% style="width:509px" %)(((
760 760  String
761 -
762 762  (string allowing any character)
763 -)))|string
764 -|(((
644 +)))|(% style="width:312px" %)string
645 +|(% style="width:509px" %)(((
765 765  Alpha
766 -
767 767  (string which only allows A-z)
768 -)))|string
769 -|(((
648 +)))|(% style="width:312px" %)string
649 +|(% style="width:509px" %)(((
770 770  AlphaNumeric
771 -
772 772  (string which only allows A-z and 0-9)
773 -)))|string
774 -|(((
652 +)))|(% style="width:312px" %)string
653 +|(% style="width:509px" %)(((
775 775  Numeric
776 -
777 777  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
778 -)))|string
779 -|(((
656 +)))|(% style="width:312px" %)string
657 +|(% style="width:509px" %)(((
780 780  BigInteger
781 -
782 782  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
783 -)))|integer
784 -|(((
660 +)))|(% style="width:312px" %)integer
661 +|(% style="width:509px" %)(((
785 785  Integer
786 -
787 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
788 -
789 -(inclusive))
790 -)))|integer
791 -|(((
663 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
664 +)))|(% style="width:312px" %)integer
665 +|(% style="width:509px" %)(((
792 792  Long
793 -
794 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
795 -
796 -+9223372036854775807 (inclusive))
797 -)))|integer
798 -|(((
667 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
668 +)))|(% style="width:312px" %)integer
669 +|(% style="width:509px" %)(((
799 799  Short
800 -
801 801  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
802 -)))|integer
803 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
804 -|(((
672 +)))|(% style="width:312px" %)integer
673 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
674 +|(% style="width:509px" %)(((
805 805  Float
806 -
807 807  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
808 -)))|number
809 -|(((
677 +)))|(% style="width:312px" %)number
678 +|(% style="width:509px" %)(((
810 810  Double
811 -
812 812  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
813 -)))|number
814 -|(((
681 +)))|(% style="width:312px" %)number
682 +|(% style="width:509px" %)(((
815 815  Boolean
684 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
685 +)))|(% style="width:312px" %)boolean
816 816  
817 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
818 -
819 -binary-valued logic: {true, false})
820 -)))|boolean
821 -
822 -| |(% colspan="2" %)(((
687 +(% style="width:822.294px" %)
688 +|(% colspan="2" style="width:507px" %)(((
823 823  URI
824 -
825 825  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
826 -)))|(% colspan="2" %)string
827 -| |(% colspan="2" %)(((
691 +)))|(% colspan="1" style="width:311px" %)string
692 +|(% colspan="2" style="width:507px" %)(((
828 828  Count
829 -
830 830  (an integer following a sequential pattern, increasing by 1 for each occurrence)
831 -)))|(% colspan="2" %)integer
832 -| |(% colspan="2" %)(((
695 +)))|(% colspan="1" style="width:311px" %)integer
696 +|(% colspan="2" style="width:507px" %)(((
833 833  InclusiveValueRange
834 -
835 835  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
836 -)))|(% colspan="2" %)number
837 -| |(% colspan="2" %)(((
699 +)))|(% colspan="1" style="width:311px" %)number
700 +|(% colspan="2" style="width:507px" %)(((
838 838  ExclusiveValueRange
839 -
840 840  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
841 -)))|(% colspan="2" %)number
842 -| |(% colspan="2" %)(((
703 +)))|(% colspan="1" style="width:311px" %)number
704 +|(% colspan="2" style="width:507px" %)(((
843 843  Incremental
844 -
845 845  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
846 -)))|(% colspan="2" %)number
847 -| |(% colspan="2" %)(((
707 +)))|(% colspan="1" style="width:311px" %)number
708 +|(% colspan="2" style="width:507px" %)(((
848 848  ObservationalTimePeriod
849 -
850 850  (superset of StandardTimePeriod and TimeRange)
851 -)))|(% colspan="2" %)time
852 -| |(% colspan="2" %)(((
711 +)))|(% colspan="1" style="width:311px" %)time
712 +|(% colspan="2" style="width:507px" %)(((
853 853  StandardTimePeriod
854 -
855 -(superset of BasicTimePeriod and
856 -
857 -ReportingTimePeriod)
858 -)))|(% colspan="2" %)time
859 -| |(% colspan="2" %)(((
714 +(superset of BasicTimePeriod and ReportingTimePeriod)
715 +)))|(% colspan="1" style="width:311px" %)time
716 +|(% colspan="2" style="width:507px" %)(((
860 860  BasicTimePeriod
861 -
862 862  (superset of GregorianTimePeriod and DateTime)
863 -)))|(% colspan="2" %)date
864 -| |(% colspan="2" %)(((
719 +)))|(% colspan="1" style="width:311px" %)date
720 +|(% colspan="2" style="width:507px" %)(((
865 865  GregorianTimePeriod
866 -
867 867  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
868 -)))|(% colspan="2" %)date
869 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
870 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
871 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
872 -| |(% colspan="2" %)(((
723 +)))|(% colspan="1" style="width:311px" %)date
724 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
725 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
726 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
727 +|(% colspan="2" style="width:507px" %)(((
873 873  ReportingTimePeriod
874 -
875 -(superset of RepostingYear, ReportingSemester,
876 -
877 -ReportingTrimester, ReportingQuarter,
878 -
879 -ReportingMonth, ReportingWeek, ReportingDay)
880 -)))|(% colspan="2" %)time_period
881 -| |(% colspan="2" %)(((
729 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
730 +)))|(% colspan="1" style="width:311px" %)time_period
731 +|(% colspan="2" style="width:507px" %)(((
882 882  ReportingYear
883 -
884 884  (YYYY-A1 – 1 year period)
885 -)))|(% colspan="2" %)time_period
886 -| |(% colspan="2" %)(((
734 +)))|(% colspan="1" style="width:311px" %)time_period
735 +|(% colspan="2" style="width:507px" %)(((
887 887  ReportingSemester
888 -
889 889  (YYYY-Ss – 6 month period)
890 -)))|(% colspan="2" %)time_period
891 -| |(% colspan="2" %)(((
738 +)))|(% colspan="1" style="width:311px" %)time_period
739 +|(% colspan="2" style="width:507px" %)(((
892 892  ReportingTrimester
893 -
894 894  (YYYY-Tt – 4 month period)
895 -)))|(% colspan="2" %)time_period
896 -| |(% colspan="2" %)(((
742 +)))|(% colspan="1" style="width:311px" %)time_period
743 +|(% colspan="2" style="width:507px" %)(((
897 897  ReportingQuarter
898 -
899 899  (YYYY-Qq – 3 month period)
900 -)))|(% colspan="2" %)time_period
901 -| |(% colspan="2" %)(((
746 +)))|(% colspan="1" style="width:311px" %)time_period
747 +|(% colspan="2" style="width:507px" %)(((
902 902  ReportingMonth
903 -
904 904  (YYYY-Mmm – 1 month period)
905 -)))|(% colspan="2" %)time_period
906 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
907 -| |(% colspan="2" %) |(% colspan="2" %)
908 -| |(% colspan="2" %) |(% colspan="2" %)
909 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
910 -|(% colspan="2" %)(((
750 +)))|(% colspan="1" style="width:311px" %)time_period
751 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
752 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
753 +|(% colspan="1" style="width:507px" %)(((
911 911  ReportingDay
912 -
913 913  (YYYY-Dddd – 1 day period)
914 -)))|(% colspan="2" %)time_period|
915 -|(% colspan="2" %)(((
756 +)))|(% colspan="2" style="width:312px" %)time_period
757 +|(% colspan="1" style="width:507px" %)(((
916 916  DateTime
917 -
918 918  (YYYY-MM-DDThh:mm:ss)
919 -)))|(% colspan="2" %)date|
920 -|(% colspan="2" %)(((
760 +)))|(% colspan="2" style="width:312px" %)date
761 +|(% colspan="1" style="width:507px" %)(((
921 921  TimeRange
922 -
923 923  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
924 -)))|(% colspan="2" %)time|
925 -|(% colspan="2" %)(((
764 +)))|(% colspan="2" style="width:312px" %)time
765 +|(% colspan="1" style="width:507px" %)(((
926 926  Month
927 -
928 928  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
929 -)))|(% colspan="2" %)string|
930 -|(% colspan="2" %)(((
768 +)))|(% colspan="2" style="width:312px" %)string
769 +|(% colspan="1" style="width:507px" %)(((
931 931  MonthDay
932 -
933 933  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
934 -)))|(% colspan="2" %)string|
935 -|(% colspan="2" %)(((
772 +)))|(% colspan="2" style="width:312px" %)string
773 +|(% colspan="1" style="width:507px" %)(((
936 936  Day
937 -
938 938  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
939 -)))|(% colspan="2" %)string|
940 -|(% colspan="2" %)(((
776 +)))|(% colspan="2" style="width:312px" %)string
777 +|(% colspan="1" style="width:507px" %)(((
941 941  Time
942 -
943 943  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
944 -)))|(% colspan="2" %)string|
945 -|(% colspan="2" %)(((
780 +)))|(% colspan="2" style="width:312px" %)string
781 +|(% colspan="1" style="width:507px" %)(((
946 946  Duration
947 -
948 948  (corresponds to XML Schema xs:duration datatype)
949 -)))|(% colspan="2" %)duration|
950 -|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
951 -|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
952 -|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
953 -|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
784 +)))|(% colspan="2" style="width:312px" %)duration
785 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
786 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
787 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
788 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
954 954  
955 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
790 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
791 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
956 956  
957 957  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
958 958  
... ... @@ -960,39 +960,32 @@
960 960  
961 961  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
962 962  
963 -|(((
964 -VTL basic
965 -
966 -scalar type
967 -)))|(((
968 -Default SDMX data type
969 -
970 -(BasicComponentDataType
971 -
972 -)
973 -)))|Default output format
974 -|String|String|Like XML (xs:string)
975 -|Number|Float|Like XML (xs:float)
976 -|Integer|Integer|Like XML (xs:int)
977 -|Date|DateTime|YYYY-MM-DDT00:00:00Z
978 -|Time|StandardTimePeriod|<date>/<date> (as defined above)
979 -|time_period|(((
799 +(% style="width:1073.29px" %)
800 +|(% style="width:207px" %)(((
801 +**VTL basic scalar type**
802 +)))|(% style="width:462px" %)(((
803 +**Default SDMX data type (BasicComponentDataType)**
804 +)))|(% style="width:402px" %)**Default output format**
805 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
806 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
807 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
808 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
809 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
810 +|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
980 980  ReportingTimePeriod
981 -
982 982  (StandardReportingPeriod)
983 -)))|(((
813 +)))|(% style="width:402px" %)(((
984 984  YYYY-Pppp
985 -
986 986  (according to SDMX )
987 987  )))
988 -|Duration|Duration|(((
817 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
989 989  Like XML (xs:duration)
990 -
991 991  PnYnMnDTnHnMnS
992 992  )))
993 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
821 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
994 994  
995 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
823 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
824 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
996 996  
997 997  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
998 998  
... ... @@ -1046,7 +1046,7 @@
1046 1046  |N|fixed number of digits used in the preceding textual representation of the month or the day
1047 1047  | |
1048 1048  
1049 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
878 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1050 1050  
1051 1051  === 12.4.5 Null Values ===
1052 1052  
... ... @@ -1064,10 +1064,8 @@
1064 1064  
1065 1065  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
1066 1066  
1067 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
896 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1068 1068  
1069 -TransformationScheme.
1070 -
1071 1071  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
1072 1072  
1073 1073  {{putFootnotes/}}