Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,10 +14,8 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 18 18 19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 - 21 21 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 22 22 23 23 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -28,10 +28,8 @@ 28 28 29 29 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 30 30 31 -In any case, the aliases used in the VTL Transformations have to be mapped to the 29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 32 32 33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 - 35 35 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 36 36 37 37 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -202,7 +202,7 @@ 202 202 203 203 === 12.3.3 Mapping from SDMX to VTL data structures === 204 204 205 - **12.3.3.1 Basic Mapping**201 +==== 12.3.3.1 Basic Mapping ==== 206 206 207 207 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 208 208 ... ... @@ -232,18 +232,11 @@ 232 232 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 233 233 234 234 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 - 237 -Component; 238 - 231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 239 239 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 240 240 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 241 241 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 - 244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 - 246 -* 235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 247 247 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 248 248 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 249 249 ... ... @@ -533,7 +533,7 @@ 533 533 534 534 DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 535 535 536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} {{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}525 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} 537 537 538 538 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 539 539 ... ... @@ -541,52 +541,51 @@ 541 541 542 542 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 543 543 544 -|VTL|SDMX 545 -|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 546 -|**Represented Variable**|((( 533 +(% style="width:1170.29px" %) 534 +|**VTL**|(% style="width:754px" %)**SDMX** 535 +|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 536 +|**Represented Variable**|(% style="width:754px" %)((( 547 547 **Concept** with a definite 548 548 549 549 Representation 550 550 ))) 551 -|**Value Domain**|((( 541 +|**Value Domain**|(% style="width:754px" %)((( 552 552 **Representation** (see the Structure 553 553 554 554 Pattern in the Base Package) 555 555 ))) 556 -|**Enumerated Value Domain / Code List**|**Codelist** 557 -|**Code**|((( 546 +|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist** 547 +|**Code**|(% style="width:754px" %)((( 558 558 **Code** (for enumerated 559 559 560 560 DimensionComponent, Measure, DataAttribute) 561 561 ))) 562 -|**Described Value Domain**|((( 563 -non-enumerated** Representation**552 +|**Described Value Domain**|(% style="width:754px" %)((( 553 +non-enumerated** Representation** 564 564 565 565 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 566 566 ))) 567 -|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 568 -| |((( 569 -to a valid **value **(for non-enumerated** ** 570 - 571 -Representations) 557 +|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 558 +| |(% style="width:754px" %)((( 559 +to a valid **value **(for non-enumerated** **Representations) 572 572 ))) 573 -|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 574 -|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 575 -|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 576 -|**Set list**|This abstraction does not exist in SDMX 561 +|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX 562 +|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX 563 +|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX 564 +|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX 577 577 578 578 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 579 579 580 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink"%)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.568 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 581 581 582 582 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 583 583 584 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.572 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 585 585 574 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 575 + 586 586 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 587 587 588 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 589 - 590 590 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 591 591 592 592 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -601,7 +601,8 @@ 601 601 602 602 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 603 603 604 -==== Figure 22 – VTL Data Types ==== 592 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 593 +**Figure 22 – VTL Data Types** 605 605 606 606 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 607 607 ... ... @@ -608,131 +608,12 @@ 608 608 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 609 609 610 610 600 +**Figure 23 – VTL Basic Scalar Types** 611 611 612 612 ((( 613 -//n// 614 - 615 -//a// 616 - 617 -//e// 618 - 619 -//l// 620 - 621 -//o// 622 - 623 -//o// 624 - 625 -//B// 626 - 627 -//n// 628 - 629 -//o// 630 - 631 -//i// 632 - 633 -//t// 634 - 635 -//a// 636 - 637 -//r// 638 - 639 -//u// 640 - 641 -//D// 642 - 643 -//d// 644 - 645 -//o// 646 - 647 -//i// 648 - 649 -//r// 650 - 651 -//e// 652 - 653 -//p// 654 - 655 -//_// 656 - 657 -//e// 658 - 659 -//m// 660 - 661 -//i// 662 - 663 -//T// 664 - 665 -//e// 666 - 667 -//t// 668 - 669 -//a// 670 - 671 -//D// 672 - 673 -//e// 674 - 675 -//m// 676 - 677 -//i// 678 - 679 -//T// 680 - 681 -//r// 682 - 683 -//e// 684 - 685 -//g// 686 - 687 -//e// 688 - 689 -//t// 690 - 691 -//n// 692 - 693 -//I// 694 - 695 -//r// 696 - 697 -//e// 698 - 699 -//b// 700 - 701 -//m// 702 - 703 -//u// 704 - 705 -//N// 706 - 707 -//g// 708 - 709 -//n// 710 - 711 -//i// 712 - 713 -//r// 714 - 715 -//t// 716 - 717 -//S// 718 - 719 -//r// 720 - 721 -//a// 722 - 723 -//l// 724 - 725 -//a// 726 - 727 -//c// 728 - 729 -//S// 730 - 731 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 603 + 732 732 ))) 733 733 734 -==== Figure 23 – VTL Basic Scalar Types ==== 735 - 736 736 === 12.4.2 VTL basic scalar types and SDMX data types === 737 737 738 738 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -755,204 +755,159 @@ 755 755 756 756 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 757 757 758 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 759 -|((( 628 +(% style="width:823.294px" %) 629 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 630 +|(% style="width:509px" %)((( 760 760 String 761 - 762 762 (string allowing any character) 763 -)))|string 764 -|((( 633 +)))|(% style="width:312px" %)string 634 +|(% style="width:509px" %)((( 765 765 Alpha 766 - 767 767 (string which only allows A-z) 768 -)))|string 769 -|((( 637 +)))|(% style="width:312px" %)string 638 +|(% style="width:509px" %)((( 770 770 AlphaNumeric 771 - 772 772 (string which only allows A-z and 0-9) 773 -)))|string 774 -|((( 641 +)))|(% style="width:312px" %)string 642 +|(% style="width:509px" %)((( 775 775 Numeric 776 - 777 777 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 778 -)))|string 779 -|((( 645 +)))|(% style="width:312px" %)string 646 +|(% style="width:509px" %)((( 780 780 BigInteger 781 - 782 782 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 783 -)))|integer 784 -|((( 649 +)))|(% style="width:312px" %)integer 650 +|(% style="width:509px" %)((( 785 785 Integer 786 - 787 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 788 - 789 -(inclusive)) 790 -)))|integer 791 -|((( 652 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 653 +)))|(% style="width:312px" %)integer 654 +|(% style="width:509px" %)((( 792 792 Long 793 - 794 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 795 - 796 -+9223372036854775807 (inclusive)) 797 -)))|integer 798 -|((( 656 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 657 +)))|(% style="width:312px" %)integer 658 +|(% style="width:509px" %)((( 799 799 Short 800 - 801 801 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 802 -)))|integer 803 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 804 -|((( 661 +)))|(% style="width:312px" %)integer 662 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number 663 +|(% style="width:509px" %)((( 805 805 Float 806 - 807 807 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 808 -)))|number 809 -|((( 666 +)))|(% style="width:312px" %)number 667 +|(% style="width:509px" %)((( 810 810 Double 811 - 812 812 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 813 -)))|number 814 -|((( 670 +)))|(% style="width:312px" %)number 671 +|(% style="width:509px" %)((( 815 815 Boolean 673 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 674 +)))|(% style="width:312px" %)boolean 816 816 817 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 818 - 819 -binary-valued logic: {true, false}) 820 -)))|boolean 821 - 822 -| |(% colspan="2" %)((( 676 +(% style="width:822.294px" %) 677 +|(% colspan="2" style="width:507px" %)((( 823 823 URI 824 - 825 825 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 826 -)))|(% colspan=" 2" %)string827 -| |(% colspan="2" %)(((680 +)))|(% colspan="1" style="width:311px" %)string 681 +|(% colspan="2" style="width:507px" %)((( 828 828 Count 829 - 830 830 (an integer following a sequential pattern, increasing by 1 for each occurrence) 831 -)))|(% colspan=" 2" %)integer832 -| |(% colspan="2" %)(((684 +)))|(% colspan="1" style="width:311px" %)integer 685 +|(% colspan="2" style="width:507px" %)((( 833 833 InclusiveValueRange 834 - 835 835 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 836 -)))|(% colspan=" 2" %)number837 -| |(% colspan="2" %)(((688 +)))|(% colspan="1" style="width:311px" %)number 689 +|(% colspan="2" style="width:507px" %)((( 838 838 ExclusiveValueRange 839 - 840 840 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 841 -)))|(% colspan=" 2" %)number842 -| |(% colspan="2" %)(((692 +)))|(% colspan="1" style="width:311px" %)number 693 +|(% colspan="2" style="width:507px" %)((( 843 843 Incremental 844 - 845 845 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 846 -)))|(% colspan=" 2" %)number847 -| |(% colspan="2" %)(((696 +)))|(% colspan="1" style="width:311px" %)number 697 +|(% colspan="2" style="width:507px" %)((( 848 848 ObservationalTimePeriod 849 - 850 850 (superset of StandardTimePeriod and TimeRange) 851 -)))|(% colspan=" 2" %)time852 -| |(% colspan="2" %)(((700 +)))|(% colspan="1" style="width:311px" %)time 701 +|(% colspan="2" style="width:507px" %)((( 853 853 StandardTimePeriod 854 - 855 -(superset of BasicTimePeriod and 856 - 857 -ReportingTimePeriod) 858 -)))|(% colspan="2" %)time 859 -| |(% colspan="2" %)((( 703 +(superset of BasicTimePeriod and ReportingTimePeriod) 704 +)))|(% colspan="1" style="width:311px" %)time 705 +|(% colspan="2" style="width:507px" %)((( 860 860 BasicTimePeriod 861 - 862 862 (superset of GregorianTimePeriod and DateTime) 863 -)))|(% colspan=" 2" %)date864 -| |(% colspan="2" %)(((708 +)))|(% colspan="1" style="width:311px" %)date 709 +|(% colspan="2" style="width:507px" %)((( 865 865 GregorianTimePeriod 866 - 867 867 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 868 -)))|(% colspan=" 2" %)date869 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date870 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date871 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date872 -| |(% colspan="2" %)(((712 +)))|(% colspan="1" style="width:311px" %)date 713 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date 714 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date 715 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date 716 +|(% colspan="2" style="width:507px" %)((( 873 873 ReportingTimePeriod 874 - 875 -(superset of RepostingYear, ReportingSemester, 876 - 877 -ReportingTrimester, ReportingQuarter, 878 - 879 -ReportingMonth, ReportingWeek, ReportingDay) 880 -)))|(% colspan="2" %)time_period 881 -| |(% colspan="2" %)((( 718 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 719 +)))|(% colspan="1" style="width:311px" %)time_period 720 +|(% colspan="2" style="width:507px" %)((( 882 882 ReportingYear 883 - 884 884 (YYYY-A1 – 1 year period) 885 -)))|(% colspan=" 2" %)time_period886 -| |(% colspan="2" %)(((723 +)))|(% colspan="1" style="width:311px" %)time_period 724 +|(% colspan="2" style="width:507px" %)((( 887 887 ReportingSemester 888 - 889 889 (YYYY-Ss – 6 month period) 890 -)))|(% colspan=" 2" %)time_period891 -| |(% colspan="2" %)(((727 +)))|(% colspan="1" style="width:311px" %)time_period 728 +|(% colspan="2" style="width:507px" %)((( 892 892 ReportingTrimester 893 - 894 894 (YYYY-Tt – 4 month period) 895 -)))|(% colspan=" 2" %)time_period896 -| |(% colspan="2" %)(((731 +)))|(% colspan="1" style="width:311px" %)time_period 732 +|(% colspan="2" style="width:507px" %)((( 897 897 ReportingQuarter 898 - 899 899 (YYYY-Qq – 3 month period) 900 -)))|(% colspan=" 2" %)time_period901 -| |(% colspan="2" %)(((735 +)))|(% colspan="1" style="width:311px" %)time_period 736 +|(% colspan="2" style="width:507px" %)((( 902 902 ReportingMonth 903 - 904 904 (YYYY-Mmm – 1 month period) 905 -)))|(% colspan="2" %)time_period 906 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 907 -| |(% colspan="2" %) |(% colspan="2" %) 908 -| |(% colspan="2" %) |(% colspan="2" %) 909 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 910 -|(% colspan="2" %)((( 739 +)))|(% colspan="1" style="width:311px" %)time_period 740 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 741 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 742 +|(% colspan="1" style="width:507px" %)((( 911 911 ReportingDay 912 - 913 913 (YYYY-Dddd – 1 day period) 914 -)))|(% colspan="2" %)time_period |915 -|(% colspan=" 2" %)(((745 +)))|(% colspan="2" style="width:312px" %)time_period 746 +|(% colspan="1" style="width:507px" %)((( 916 916 DateTime 917 - 918 918 (YYYY-MM-DDThh:mm:ss) 919 -)))|(% colspan="2" %)date |920 -|(% colspan=" 2" %)(((749 +)))|(% colspan="2" style="width:312px" %)date 750 +|(% colspan="1" style="width:507px" %)((( 921 921 TimeRange 922 - 923 923 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 924 -)))|(% colspan="2" %)time |925 -|(% colspan=" 2" %)(((753 +)))|(% colspan="2" style="width:312px" %)time 754 +|(% colspan="1" style="width:507px" %)((( 926 926 Month 927 - 928 928 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 929 -)))|(% colspan="2" %)string |930 -|(% colspan=" 2" %)(((757 +)))|(% colspan="2" style="width:312px" %)string 758 +|(% colspan="1" style="width:507px" %)((( 931 931 MonthDay 932 - 933 933 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 934 -)))|(% colspan="2" %)string |935 -|(% colspan=" 2" %)(((761 +)))|(% colspan="2" style="width:312px" %)string 762 +|(% colspan="1" style="width:507px" %)((( 936 936 Day 937 - 938 938 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 939 -)))|(% colspan="2" %)string |940 -|(% colspan=" 2" %)(((765 +)))|(% colspan="2" style="width:312px" %)string 766 +|(% colspan="1" style="width:507px" %)((( 941 941 Time 942 - 943 943 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 944 -)))|(% colspan="2" %)string |945 -|(% colspan=" 2" %)(((769 +)))|(% colspan="2" style="width:312px" %)string 770 +|(% colspan="1" style="width:507px" %)((( 946 946 Duration 947 - 948 948 (corresponds to XML Schema xs:duration datatype) 949 -)))|(% colspan="2" %)duration |950 -|(% colspan=" 2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|951 -|(% colspan=" 2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|952 -|(% colspan=" 2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|953 -|(% colspan=" 2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|773 +)))|(% colspan="2" style="width:312px" %)duration 774 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable 775 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable 776 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 777 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 954 954 955 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 779 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 780 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 956 956 957 957 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 958 958 ... ... @@ -960,39 +960,32 @@ 960 960 961 961 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 962 962 963 -|((( 964 -VTL basic 965 - 966 -scalar type 967 -)))|((( 968 -Default SDMX data type 969 - 970 -(BasicComponentDataType 971 - 972 -) 973 -)))|Default output format 974 -|String|String|Like XML (xs:string) 975 -|Number|Float|Like XML (xs:float) 976 -|Integer|Integer|Like XML (xs:int) 977 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 978 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 979 -|time_period|((( 788 +(% style="width:1073.29px" %) 789 +|(% style="width:207px" %)((( 790 +**VTL basic scalar type** 791 +)))|(% style="width:462px" %)((( 792 +**Default SDMX data type (BasicComponentDataType)** 793 +)))|(% style="width:402px" %)**Default output format** 794 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 795 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 796 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 797 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 798 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 799 +|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 980 980 ReportingTimePeriod 981 - 982 982 (StandardReportingPeriod) 983 -)))|((( 802 +)))|(% style="width:402px" %)((( 984 984 YYYY-Pppp 985 - 986 986 (according to SDMX ) 987 987 ))) 988 -|Duration|Duration|((( 806 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)((( 989 989 Like XML (xs:duration) 990 - 991 991 PnYnMnDTnHnMnS 992 992 ))) 993 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 810 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false" 994 994 995 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 812 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 813 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 996 996 997 997 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 998 998 ... ... @@ -1046,7 +1046,7 @@ 1046 1046 |N|fixed number of digits used in the preceding textual representation of the month or the day 1047 1047 | | 1048 1048 1049 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.867 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 1050 1050 1051 1051 === 12.4.5 Null Values === 1052 1052 ... ... @@ -1064,10 +1064,8 @@ 1064 1064 1065 1065 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 1066 1066 1067 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 885 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme. 1068 1068 1069 -TransformationScheme. 1070 - 1071 1071 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 1072 1072 1073 1073 {{putFootnotes/}}