Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,10 +14,8 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 18 18 19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 - 21 21 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 22 22 23 23 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -28,10 +28,8 @@ 28 28 29 29 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 30 30 31 -In any case, the aliases used in the VTL Transformations have to be mapped to the 29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 32 32 33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 - 35 35 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 36 36 37 37 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -202,7 +202,7 @@ 202 202 203 203 === 12.3.3 Mapping from SDMX to VTL data structures === 204 204 205 - **12.3.3.1 Basic Mapping**201 +==== 12.3.3.1 Basic Mapping ==== 206 206 207 207 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 208 208 ... ... @@ -232,18 +232,11 @@ 232 232 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 233 233 234 234 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 - 237 -Component; 238 - 231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 239 239 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 240 240 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 241 241 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 - 244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 - 246 -* 235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 247 247 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 248 248 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 249 249 ... ... @@ -266,10 +266,7 @@ 266 266 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 267 267 268 268 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 269 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 270 - 271 -Identifiers, (time) Identifier and Attributes. 272 - 258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 273 273 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 274 274 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 275 275 ... ... @@ -533,7 +533,7 @@ 533 533 534 534 DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 535 535 536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} {{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}522 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} 537 537 538 538 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 539 539 ... ... @@ -576,16 +576,16 @@ 576 576 577 577 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 578 578 579 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear ^^[[(% class="wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink"%)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.565 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 580 580 581 581 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 582 582 583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.569 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 584 584 571 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 572 + 585 585 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 586 586 587 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 588 - 589 589 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 590 590 591 591 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -600,7 +600,8 @@ 600 600 601 601 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 602 602 603 -==== Figure 22 – VTL Data Types ==== 589 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 590 +**Figure 22 – VTL Data Types** 604 604 605 605 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 606 606 ... ... @@ -607,131 +607,12 @@ 607 607 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 608 608 609 609 597 +**Figure 23 – VTL Basic Scalar Types** 610 610 611 611 ((( 612 -//n// 613 - 614 -//a// 615 - 616 -//e// 617 - 618 -//l// 619 - 620 -//o// 621 - 622 -//o// 623 - 624 -//B// 625 - 626 -//n// 627 - 628 -//o// 629 - 630 -//i// 631 - 632 -//t// 633 - 634 -//a// 635 - 636 -//r// 637 - 638 -//u// 639 - 640 -//D// 641 - 642 -//d// 643 - 644 -//o// 645 - 646 -//i// 647 - 648 -//r// 649 - 650 -//e// 651 - 652 -//p// 653 - 654 -//_// 655 - 656 -//e// 657 - 658 -//m// 659 - 660 -//i// 661 - 662 -//T// 663 - 664 -//e// 665 - 666 -//t// 667 - 668 -//a// 669 - 670 -//D// 671 - 672 -//e// 673 - 674 -//m// 675 - 676 -//i// 677 - 678 -//T// 679 - 680 -//r// 681 - 682 -//e// 683 - 684 -//g// 685 - 686 -//e// 687 - 688 -//t// 689 - 690 -//n// 691 - 692 -//I// 693 - 694 -//r// 695 - 696 -//e// 697 - 698 -//b// 699 - 700 -//m// 701 - 702 -//u// 703 - 704 -//N// 705 - 706 -//g// 707 - 708 -//n// 709 - 710 -//i// 711 - 712 -//r// 713 - 714 -//t// 715 - 716 -//S// 717 - 718 -//r// 719 - 720 -//a// 721 - 722 -//l// 723 - 724 -//a// 725 - 726 -//c// 727 - 728 -//S// 729 - 730 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 600 + 731 731 ))) 732 732 733 -==== Figure 23 – VTL Basic Scalar Types ==== 734 - 735 735 === 12.4.2 VTL basic scalar types and SDMX data types === 736 736 737 737 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -754,204 +754,159 @@ 754 754 755 755 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 756 756 757 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 758 -|((( 625 +(% style="width:823.294px" %) 626 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 627 +|(% style="width:509px" %)((( 759 759 String 760 - 761 761 (string allowing any character) 762 -)))|string 763 -|((( 630 +)))|(% style="width:312px" %)string 631 +|(% style="width:509px" %)((( 764 764 Alpha 765 - 766 766 (string which only allows A-z) 767 -)))|string 768 -|((( 634 +)))|(% style="width:312px" %)string 635 +|(% style="width:509px" %)((( 769 769 AlphaNumeric 770 - 771 771 (string which only allows A-z and 0-9) 772 -)))|string 773 -|((( 638 +)))|(% style="width:312px" %)string 639 +|(% style="width:509px" %)((( 774 774 Numeric 775 - 776 776 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 777 -)))|string 778 -|((( 642 +)))|(% style="width:312px" %)string 643 +|(% style="width:509px" %)((( 779 779 BigInteger 780 - 781 781 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 782 -)))|integer 783 -|((( 646 +)))|(% style="width:312px" %)integer 647 +|(% style="width:509px" %)((( 784 784 Integer 785 - 786 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 787 - 788 -(inclusive)) 789 -)))|integer 790 -|((( 649 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 650 +)))|(% style="width:312px" %)integer 651 +|(% style="width:509px" %)((( 791 791 Long 792 - 793 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 794 - 795 -+9223372036854775807 (inclusive)) 796 -)))|integer 797 -|((( 653 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 654 +)))|(% style="width:312px" %)integer 655 +|(% style="width:509px" %)((( 798 798 Short 799 - 800 800 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 801 -)))|integer 802 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 803 -|((( 658 +)))|(% style="width:312px" %)integer 659 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number 660 +|(% style="width:509px" %)((( 804 804 Float 805 - 806 806 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 807 -)))|number 808 -|((( 663 +)))|(% style="width:312px" %)number 664 +|(% style="width:509px" %)((( 809 809 Double 810 - 811 811 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 812 -)))|number 813 -|((( 667 +)))|(% style="width:312px" %)number 668 +|(% style="width:509px" %)((( 814 814 Boolean 670 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 671 +)))|(% style="width:312px" %)boolean 815 815 816 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 817 - 818 -binary-valued logic: {true, false}) 819 -)))|boolean 820 - 821 -| |(% colspan="2" %)((( 673 +(% style="width:822.294px" %) 674 +|(% colspan="2" style="width:507px" %)((( 822 822 URI 823 - 824 824 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 825 -)))|(% colspan=" 2" %)string826 -| |(% colspan="2" %)(((677 +)))|(% colspan="1" style="width:311px" %)string 678 +|(% colspan="2" style="width:507px" %)((( 827 827 Count 828 - 829 829 (an integer following a sequential pattern, increasing by 1 for each occurrence) 830 -)))|(% colspan=" 2" %)integer831 -| |(% colspan="2" %)(((681 +)))|(% colspan="1" style="width:311px" %)integer 682 +|(% colspan="2" style="width:507px" %)((( 832 832 InclusiveValueRange 833 - 834 834 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 835 -)))|(% colspan=" 2" %)number836 -| |(% colspan="2" %)(((685 +)))|(% colspan="1" style="width:311px" %)number 686 +|(% colspan="2" style="width:507px" %)((( 837 837 ExclusiveValueRange 838 - 839 839 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 840 -)))|(% colspan=" 2" %)number841 -| |(% colspan="2" %)(((689 +)))|(% colspan="1" style="width:311px" %)number 690 +|(% colspan="2" style="width:507px" %)((( 842 842 Incremental 843 - 844 844 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 845 -)))|(% colspan=" 2" %)number846 -| |(% colspan="2" %)(((693 +)))|(% colspan="1" style="width:311px" %)number 694 +|(% colspan="2" style="width:507px" %)((( 847 847 ObservationalTimePeriod 848 - 849 849 (superset of StandardTimePeriod and TimeRange) 850 -)))|(% colspan=" 2" %)time851 -| |(% colspan="2" %)(((697 +)))|(% colspan="1" style="width:311px" %)time 698 +|(% colspan="2" style="width:507px" %)((( 852 852 StandardTimePeriod 853 - 854 -(superset of BasicTimePeriod and 855 - 856 -ReportingTimePeriod) 857 -)))|(% colspan="2" %)time 858 -| |(% colspan="2" %)((( 700 +(superset of BasicTimePeriod and ReportingTimePeriod) 701 +)))|(% colspan="1" style="width:311px" %)time 702 +|(% colspan="2" style="width:507px" %)((( 859 859 BasicTimePeriod 860 - 861 861 (superset of GregorianTimePeriod and DateTime) 862 -)))|(% colspan=" 2" %)date863 -| |(% colspan="2" %)(((705 +)))|(% colspan="1" style="width:311px" %)date 706 +|(% colspan="2" style="width:507px" %)((( 864 864 GregorianTimePeriod 865 - 866 866 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 867 -)))|(% colspan=" 2" %)date868 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date869 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date870 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date871 -| |(% colspan="2" %)(((709 +)))|(% colspan="1" style="width:311px" %)date 710 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date 711 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date 712 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date 713 +|(% colspan="2" style="width:507px" %)((( 872 872 ReportingTimePeriod 873 - 874 -(superset of RepostingYear, ReportingSemester, 875 - 876 -ReportingTrimester, ReportingQuarter, 877 - 878 -ReportingMonth, ReportingWeek, ReportingDay) 879 -)))|(% colspan="2" %)time_period 880 -| |(% colspan="2" %)((( 715 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 716 +)))|(% colspan="1" style="width:311px" %)time_period 717 +|(% colspan="2" style="width:507px" %)((( 881 881 ReportingYear 882 - 883 883 (YYYY-A1 – 1 year period) 884 -)))|(% colspan=" 2" %)time_period885 -| |(% colspan="2" %)(((720 +)))|(% colspan="1" style="width:311px" %)time_period 721 +|(% colspan="2" style="width:507px" %)((( 886 886 ReportingSemester 887 - 888 888 (YYYY-Ss – 6 month period) 889 -)))|(% colspan=" 2" %)time_period890 -| |(% colspan="2" %)(((724 +)))|(% colspan="1" style="width:311px" %)time_period 725 +|(% colspan="2" style="width:507px" %)((( 891 891 ReportingTrimester 892 - 893 893 (YYYY-Tt – 4 month period) 894 -)))|(% colspan=" 2" %)time_period895 -| |(% colspan="2" %)(((728 +)))|(% colspan="1" style="width:311px" %)time_period 729 +|(% colspan="2" style="width:507px" %)((( 896 896 ReportingQuarter 897 - 898 898 (YYYY-Qq – 3 month period) 899 -)))|(% colspan=" 2" %)time_period900 -| |(% colspan="2" %)(((732 +)))|(% colspan="1" style="width:311px" %)time_period 733 +|(% colspan="2" style="width:507px" %)((( 901 901 ReportingMonth 902 - 903 903 (YYYY-Mmm – 1 month period) 904 -)))|(% colspan="2" %)time_period 905 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 906 -| |(% colspan="2" %) |(% colspan="2" %) 907 -| |(% colspan="2" %) |(% colspan="2" %) 908 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 909 -|(% colspan="2" %)((( 736 +)))|(% colspan="1" style="width:311px" %)time_period 737 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 738 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 739 +|(% colspan="1" style="width:507px" %)((( 910 910 ReportingDay 911 - 912 912 (YYYY-Dddd – 1 day period) 913 -)))|(% colspan="2" %)time_period |914 -|(% colspan=" 2" %)(((742 +)))|(% colspan="2" style="width:312px" %)time_period 743 +|(% colspan="1" style="width:507px" %)((( 915 915 DateTime 916 - 917 917 (YYYY-MM-DDThh:mm:ss) 918 -)))|(% colspan="2" %)date |919 -|(% colspan=" 2" %)(((746 +)))|(% colspan="2" style="width:312px" %)date 747 +|(% colspan="1" style="width:507px" %)((( 920 920 TimeRange 921 - 922 922 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 923 -)))|(% colspan="2" %)time |924 -|(% colspan=" 2" %)(((750 +)))|(% colspan="2" style="width:312px" %)time 751 +|(% colspan="1" style="width:507px" %)((( 925 925 Month 926 - 927 927 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 928 -)))|(% colspan="2" %)string |929 -|(% colspan=" 2" %)(((754 +)))|(% colspan="2" style="width:312px" %)string 755 +|(% colspan="1" style="width:507px" %)((( 930 930 MonthDay 931 - 932 932 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 933 -)))|(% colspan="2" %)string |934 -|(% colspan=" 2" %)(((758 +)))|(% colspan="2" style="width:312px" %)string 759 +|(% colspan="1" style="width:507px" %)((( 935 935 Day 936 - 937 937 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 938 -)))|(% colspan="2" %)string |939 -|(% colspan=" 2" %)(((762 +)))|(% colspan="2" style="width:312px" %)string 763 +|(% colspan="1" style="width:507px" %)((( 940 940 Time 941 - 942 942 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 943 -)))|(% colspan="2" %)string |944 -|(% colspan=" 2" %)(((766 +)))|(% colspan="2" style="width:312px" %)string 767 +|(% colspan="1" style="width:507px" %)((( 945 945 Duration 946 - 947 947 (corresponds to XML Schema xs:duration datatype) 948 -)))|(% colspan="2" %)duration |949 -|(% colspan=" 2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|950 -|(% colspan=" 2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|951 -|(% colspan=" 2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|952 -|(% colspan=" 2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|770 +)))|(% colspan="2" style="width:312px" %)duration 771 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable 772 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable 773 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 774 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 953 953 954 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 776 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 777 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 955 955 956 956 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 957 957 ... ... @@ -959,39 +959,32 @@ 959 959 960 960 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 961 961 962 -|((( 963 -VTL basic 964 - 965 -scalar type 966 -)))|((( 967 -Default SDMX data type 968 - 969 -(BasicComponentDataType 970 - 971 -) 972 -)))|Default output format 973 -|String|String|Like XML (xs:string) 974 -|Number|Float|Like XML (xs:float) 975 -|Integer|Integer|Like XML (xs:int) 976 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 977 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 978 -|time_period|((( 785 +(% style="width:1073.29px" %) 786 +|(% style="width:207px" %)((( 787 +**VTL basic scalar type** 788 +)))|(% style="width:462px" %)((( 789 +**Default SDMX data type (BasicComponentDataType)** 790 +)))|(% style="width:402px" %)**Default output format** 791 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 792 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 793 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 794 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 795 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 796 +|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 979 979 ReportingTimePeriod 980 - 981 981 (StandardReportingPeriod) 982 -)))|((( 799 +)))|(% style="width:402px" %)((( 983 983 YYYY-Pppp 984 - 985 985 (according to SDMX ) 986 986 ))) 987 -|Duration|Duration|((( 803 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)((( 988 988 Like XML (xs:duration) 989 - 990 990 PnYnMnDTnHnMnS 991 991 ))) 992 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 807 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false" 993 993 994 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 809 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 810 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 995 995 996 996 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 997 997 ... ... @@ -1045,7 +1045,7 @@ 1045 1045 |N|fixed number of digits used in the preceding textual representation of the month or the day 1046 1046 | | 1047 1047 1048 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.864 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 1049 1049 1050 1050 === 12.4.5 Null Values === 1051 1051 ... ... @@ -1063,10 +1063,8 @@ 1063 1063 1064 1064 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 1065 1065 1066 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 882 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme. 1067 1067 1068 -TransformationScheme. 1069 - 1070 1070 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 1071 1071 1072 1072 {{putFootnotes/}}