Last modified by Helena on 2025/09/10 11:19

From version 5.22
edited by Helena
on 2025/05/16 08:59
Change comment: There is no comment for this version
To version 6.10
edited by Helena
on 2025/05/16 12:38
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,10 +14,8 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
18 18  
19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 -
21 21  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
22 22  
23 23  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -28,10 +28,8 @@
28 28  
29 29  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
30 30  
31 -In any case, the aliases used in the VTL Transformations have to be mapped to the
29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
32 32  
33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 -
35 35  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
36 36  
37 37  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -202,7 +202,7 @@
202 202  
203 203  === 12.3.3 Mapping from SDMX to VTL data structures ===
204 204  
205 -**12.3.3.1 Basic Mapping**
201 +==== 12.3.3.1 Basic Mapping ====
206 206  
207 207  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
208 208  
... ... @@ -232,18 +232,11 @@
232 232  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
233 233  
234 234  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 -
237 -Component;
238 -
231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
239 239  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
240 240  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
241 241  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 -
244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 -
246 -*
235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
247 247  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
248 248  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
249 249  
... ... @@ -266,10 +266,7 @@
266 266  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
267 267  
268 268  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
269 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 -
271 -Identifiers, (time) Identifier and Attributes.
272 -
258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
273 273  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
274 274  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
275 275  
... ... @@ -362,7 +362,7 @@
362 362  The mapping table is the following:
363 363  
364 364  (% style="width:689.294px" %)
365 -|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
351 +|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
366 366  |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
367 367  |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
368 368  |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
... ... @@ -422,26 +422,14 @@
422 422  
423 423  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
424 424  
425 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
411 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
426 426  
427 -basic, pivot …).
413 +In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
428 428  
429 -In the example above, for all the datasets of the kind
430 -
431 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 -
433 433  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
434 434  
435 -‘DF1(1.0.0)/POPULATION.USA’ :=
417 +[[image:1747388275998-621.png]]
436 436  
437 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
438 -
439 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
440 -
441 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
442 -
443 -… … …
444 -
445 445  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
446 446  
447 447  In the direction from SDMX to VTL it is allowed to omit the value of one or more
... ... @@ -452,10 +452,8 @@
452 452  
453 453  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
454 454  
455 -‘DF1(1.0.0)/POPULATION.’ :=
429 +[[image:1747388244829-693.png]]
456 456  
457 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
458 -
459 459  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
460 460  
461 461  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different
... ... @@ -481,54 +481,18 @@
481 481  
482 482  Some examples follow, for some specific values of INDICATOR and COUNTRY:
483 483  
484 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
456 +[[image:1747388222879-916.png]]
485 485  
486 -… … …
458 +[[image:1747388206717-256.png]]
487 487  
488 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
489 -
490 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
491 -
492 -… … …
493 -
494 494  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
495 495  
496 -VTL dataset INDICATOR value COUNTRY value
462 +[[image:1747388148322-387.png]]
497 497  
498 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
499 -
500 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
501 -
502 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
503 -
504 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
505 -
506 -… … …
507 -
508 508  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
509 509  
510 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
466 +[[image:1747388179021-814.png]]
511 511  
512 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
513 -
514 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
515 -
516 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
517 -
518 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
519 -
520 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
521 -
522 -DF2bis_GDPPERCAPITA_CANADA’,
523 -
524 -… ,
525 -
526 -DF2bis_POPGROWTH_USA’,
527 -
528 -DF2bis_POPGROWTH_CANADA’
529 -
530 -…);
531 -
532 532  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
533 533  
534 534  DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -542,37 +542,30 @@
542 542  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
543 543  
544 544  (% style="width:1170.29px" %)
545 -|**VTL**|(% style="width:754px" %)**SDMX**
546 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
547 -|**Represented Variable**|(% style="width:754px" %)(((
481 +|(% style="width:392px" %)**VTL**|(% style="width:776px" %)**SDMX**
482 +|(% style="width:392px" %)**Data Set Component**|(% style="width:776px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
483 +|(% style="width:392px" %)**Represented Variable**|(% style="width:776px" %)(((
548 548  **Concept** with a definite
549 549  
550 550  Representation
551 551  )))
552 -|**Value Domain**|(% style="width:754px" %)(((
553 -**Representation** (see the Structure
554 -
555 -Pattern in the Base Package)
488 +|(% style="width:392px" %)**Value Domain**|(% style="width:776px" %)(((
489 +**Representation** (see the Structure Pattern in the Base Package)
556 556  )))
557 -|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
558 -|**Code**|(% style="width:754px" %)(((
491 +|(% style="width:392px" %)**Enumerated Value Domain / Code List**|(% style="width:776px" %)**Codelist**
492 +|(% style="width:392px" %)**Code**|(% style="width:776px" %)(((
559 559  **Code** (for enumerated
560 560  
561 561  DimensionComponent, Measure, DataAttribute)
562 562  )))
563 -|**Described Value Domain**|(% style="width:754px" %)(((
564 -non-enumerated** Representation**
565 -
566 -(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
497 +|(% style="width:392px" %)**Described Value Domain**|(% style="width:776px" %)(((
498 +non-enumerated** Representation **(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
567 567  )))
568 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
569 -| |(% style="width:754px" %)(((
570 -to a valid **value **(for non-enumerated** **Representations)
571 -)))
572 -|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
573 -|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
574 -|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
575 -|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
500 +|(% style="width:392px" %)**Value**|(% style="width:776px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or to a valid **value **(for non-enumerated** **Representations)
501 +|(% style="width:392px" %)**Value Domain Subset / Set**|(% style="width:776px" %)This abstraction does not exist in SDMX
502 +|(% style="width:392px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:776px" %)This abstraction does not exist in SDMX
503 +|(% style="width:392px" %)**Described Value Domain Subset / Described Set**|(% style="width:776px" %)This abstraction does not exist in SDMX
504 +|(% style="width:392px" %)**Set list**|(% style="width:776px" %)This abstraction does not exist in SDMX
576 576  
577 577  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
578 578  
... ... @@ -580,8 +580,10 @@
580 580  
581 581  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
582 582  
583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
512 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
584 584  
514 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
515 +
585 585  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
586 586  
587 587  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -598,7 +598,8 @@
598 598  
599 599  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
600 600  
601 -==== Figure 22 – VTL Data Types ====
532 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
533 +**Figure 22 – VTL Data Types**
602 602  
603 603  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
604 604  
... ... @@ -605,131 +605,12 @@
605 605  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
606 606  
607 607  
540 +**Figure 23 – VTL Basic Scalar Types**
608 608  
609 609  (((
610 -//n//
611 -
612 -//a//
613 -
614 -//e//
615 -
616 -//l//
617 -
618 -//o//
619 -
620 -//o//
621 -
622 -//B//
623 -
624 -//n//
625 -
626 -//o//
627 -
628 -//i//
629 -
630 -//t//
631 -
632 -//a//
633 -
634 -//r//
635 -
636 -//u//
637 -
638 -//D//
639 -
640 -//d//
641 -
642 -//o//
643 -
644 -//i//
645 -
646 -//r//
647 -
648 -//e//
649 -
650 -//p//
651 -
652 -//_//
653 -
654 -//e//
655 -
656 -//m//
657 -
658 -//i//
659 -
660 -//T//
661 -
662 -//e//
663 -
664 -//t//
665 -
666 -//a//
667 -
668 -//D//
669 -
670 -//e//
671 -
672 -//m//
673 -
674 -//i//
675 -
676 -//T//
677 -
678 -//r//
679 -
680 -//e//
681 -
682 -//g//
683 -
684 -//e//
685 -
686 -//t//
687 -
688 -//n//
689 -
690 -//I//
691 -
692 -//r//
693 -
694 -//e//
695 -
696 -//b//
697 -
698 -//m//
699 -
700 -//u//
701 -
702 -//N//
703 -
704 -//g//
705 -
706 -//n//
707 -
708 -//i//
709 -
710 -//r//
711 -
712 -//t//
713 -
714 -//S//
715 -
716 -//r//
717 -
718 -//a//
719 -
720 -//l//
721 -
722 -//a//
723 -
724 -//c//
725 -
726 -//S//
727 -
728 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
543 +
729 729  )))
730 730  
731 -==== Figure 23 – VTL Basic Scalar Types ====
732 -
733 733  === 12.4.2 VTL basic scalar types and SDMX data types ===
734 734  
735 735  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -752,204 +752,159 @@
752 752  
753 753  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
754 754  
755 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
756 -|(((
568 +(% style="width:823.294px" %)
569 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
570 +|(% style="width:509px" %)(((
757 757  String
758 -
759 759  (string allowing any character)
760 -)))|string
761 -|(((
573 +)))|(% style="width:312px" %)string
574 +|(% style="width:509px" %)(((
762 762  Alpha
763 -
764 764  (string which only allows A-z)
765 -)))|string
766 -|(((
577 +)))|(% style="width:312px" %)string
578 +|(% style="width:509px" %)(((
767 767  AlphaNumeric
768 -
769 769  (string which only allows A-z and 0-9)
770 -)))|string
771 -|(((
581 +)))|(% style="width:312px" %)string
582 +|(% style="width:509px" %)(((
772 772  Numeric
773 -
774 774  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
775 -)))|string
776 -|(((
585 +)))|(% style="width:312px" %)string
586 +|(% style="width:509px" %)(((
777 777  BigInteger
778 -
779 779  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
780 -)))|integer
781 -|(((
589 +)))|(% style="width:312px" %)integer
590 +|(% style="width:509px" %)(((
782 782  Integer
783 -
784 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
785 -
786 -(inclusive))
787 -)))|integer
788 -|(((
592 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
593 +)))|(% style="width:312px" %)integer
594 +|(% style="width:509px" %)(((
789 789  Long
790 -
791 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
792 -
793 -+9223372036854775807 (inclusive))
794 -)))|integer
795 -|(((
596 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
597 +)))|(% style="width:312px" %)integer
598 +|(% style="width:509px" %)(((
796 796  Short
797 -
798 798  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
799 -)))|integer
800 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
801 -|(((
601 +)))|(% style="width:312px" %)integer
602 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
603 +|(% style="width:509px" %)(((
802 802  Float
803 -
804 804  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
805 -)))|number
806 -|(((
606 +)))|(% style="width:312px" %)number
607 +|(% style="width:509px" %)(((
807 807  Double
808 -
809 809  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
810 -)))|number
811 -|(((
610 +)))|(% style="width:312px" %)number
611 +|(% style="width:509px" %)(((
812 812  Boolean
613 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
614 +)))|(% style="width:312px" %)boolean
813 813  
814 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
815 -
816 -binary-valued logic: {true, false})
817 -)))|boolean
818 -
819 -| |(% colspan="2" %)(((
616 +(% style="width:822.294px" %)
617 +|(% colspan="2" style="width:507px" %)(((
820 820  URI
821 -
822 822  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
823 -)))|(% colspan="2" %)string
824 -| |(% colspan="2" %)(((
620 +)))|(% colspan="1" style="width:311px" %)string
621 +|(% colspan="2" style="width:507px" %)(((
825 825  Count
826 -
827 827  (an integer following a sequential pattern, increasing by 1 for each occurrence)
828 -)))|(% colspan="2" %)integer
829 -| |(% colspan="2" %)(((
624 +)))|(% colspan="1" style="width:311px" %)integer
625 +|(% colspan="2" style="width:507px" %)(((
830 830  InclusiveValueRange
831 -
832 832  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
833 -)))|(% colspan="2" %)number
834 -| |(% colspan="2" %)(((
628 +)))|(% colspan="1" style="width:311px" %)number
629 +|(% colspan="2" style="width:507px" %)(((
835 835  ExclusiveValueRange
836 -
837 837  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
838 -)))|(% colspan="2" %)number
839 -| |(% colspan="2" %)(((
632 +)))|(% colspan="1" style="width:311px" %)number
633 +|(% colspan="2" style="width:507px" %)(((
840 840  Incremental
841 -
842 842  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
843 -)))|(% colspan="2" %)number
844 -| |(% colspan="2" %)(((
636 +)))|(% colspan="1" style="width:311px" %)number
637 +|(% colspan="2" style="width:507px" %)(((
845 845  ObservationalTimePeriod
846 -
847 847  (superset of StandardTimePeriod and TimeRange)
848 -)))|(% colspan="2" %)time
849 -| |(% colspan="2" %)(((
640 +)))|(% colspan="1" style="width:311px" %)time
641 +|(% colspan="2" style="width:507px" %)(((
850 850  StandardTimePeriod
851 -
852 -(superset of BasicTimePeriod and
853 -
854 -ReportingTimePeriod)
855 -)))|(% colspan="2" %)time
856 -| |(% colspan="2" %)(((
643 +(superset of BasicTimePeriod and ReportingTimePeriod)
644 +)))|(% colspan="1" style="width:311px" %)time
645 +|(% colspan="2" style="width:507px" %)(((
857 857  BasicTimePeriod
858 -
859 859  (superset of GregorianTimePeriod and DateTime)
860 -)))|(% colspan="2" %)date
861 -| |(% colspan="2" %)(((
648 +)))|(% colspan="1" style="width:311px" %)date
649 +|(% colspan="2" style="width:507px" %)(((
862 862  GregorianTimePeriod
863 -
864 864  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
865 -)))|(% colspan="2" %)date
866 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
867 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
868 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
869 -| |(% colspan="2" %)(((
652 +)))|(% colspan="1" style="width:311px" %)date
653 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
654 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
655 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
656 +|(% colspan="2" style="width:507px" %)(((
870 870  ReportingTimePeriod
871 -
872 -(superset of RepostingYear, ReportingSemester,
873 -
874 -ReportingTrimester, ReportingQuarter,
875 -
876 -ReportingMonth, ReportingWeek, ReportingDay)
877 -)))|(% colspan="2" %)time_period
878 -| |(% colspan="2" %)(((
658 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
659 +)))|(% colspan="1" style="width:311px" %)time_period
660 +|(% colspan="2" style="width:507px" %)(((
879 879  ReportingYear
880 -
881 881  (YYYY-A1 – 1 year period)
882 -)))|(% colspan="2" %)time_period
883 -| |(% colspan="2" %)(((
663 +)))|(% colspan="1" style="width:311px" %)time_period
664 +|(% colspan="2" style="width:507px" %)(((
884 884  ReportingSemester
885 -
886 886  (YYYY-Ss – 6 month period)
887 -)))|(% colspan="2" %)time_period
888 -| |(% colspan="2" %)(((
667 +)))|(% colspan="1" style="width:311px" %)time_period
668 +|(% colspan="2" style="width:507px" %)(((
889 889  ReportingTrimester
890 -
891 891  (YYYY-Tt – 4 month period)
892 -)))|(% colspan="2" %)time_period
893 -| |(% colspan="2" %)(((
671 +)))|(% colspan="1" style="width:311px" %)time_period
672 +|(% colspan="2" style="width:507px" %)(((
894 894  ReportingQuarter
895 -
896 896  (YYYY-Qq – 3 month period)
897 -)))|(% colspan="2" %)time_period
898 -| |(% colspan="2" %)(((
675 +)))|(% colspan="1" style="width:311px" %)time_period
676 +|(% colspan="2" style="width:507px" %)(((
899 899  ReportingMonth
900 -
901 901  (YYYY-Mmm – 1 month period)
902 -)))|(% colspan="2" %)time_period
903 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
904 -| |(% colspan="2" %) |(% colspan="2" %)
905 -| |(% colspan="2" %) |(% colspan="2" %)
906 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
907 -|(% colspan="2" %)(((
679 +)))|(% colspan="1" style="width:311px" %)time_period
680 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
681 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
682 +|(% colspan="1" style="width:507px" %)(((
908 908  ReportingDay
909 -
910 910  (YYYY-Dddd – 1 day period)
911 -)))|(% colspan="2" %)time_period|
912 -|(% colspan="2" %)(((
685 +)))|(% colspan="2" style="width:312px" %)time_period
686 +|(% colspan="1" style="width:507px" %)(((
913 913  DateTime
914 -
915 915  (YYYY-MM-DDThh:mm:ss)
916 -)))|(% colspan="2" %)date|
917 -|(% colspan="2" %)(((
689 +)))|(% colspan="2" style="width:312px" %)date
690 +|(% colspan="1" style="width:507px" %)(((
918 918  TimeRange
919 -
920 920  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
921 -)))|(% colspan="2" %)time|
922 -|(% colspan="2" %)(((
693 +)))|(% colspan="2" style="width:312px" %)time
694 +|(% colspan="1" style="width:507px" %)(((
923 923  Month
924 -
925 925  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
926 -)))|(% colspan="2" %)string|
927 -|(% colspan="2" %)(((
697 +)))|(% colspan="2" style="width:312px" %)string
698 +|(% colspan="1" style="width:507px" %)(((
928 928  MonthDay
929 -
930 930  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
931 -)))|(% colspan="2" %)string|
932 -|(% colspan="2" %)(((
701 +)))|(% colspan="2" style="width:312px" %)string
702 +|(% colspan="1" style="width:507px" %)(((
933 933  Day
934 -
935 935  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
936 -)))|(% colspan="2" %)string|
937 -|(% colspan="2" %)(((
705 +)))|(% colspan="2" style="width:312px" %)string
706 +|(% colspan="1" style="width:507px" %)(((
938 938  Time
939 -
940 940  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
941 -)))|(% colspan="2" %)string|
942 -|(% colspan="2" %)(((
709 +)))|(% colspan="2" style="width:312px" %)string
710 +|(% colspan="1" style="width:507px" %)(((
943 943  Duration
944 -
945 945  (corresponds to XML Schema xs:duration datatype)
946 -)))|(% colspan="2" %)duration|
947 -|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
948 -|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
949 -|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
950 -|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
713 +)))|(% colspan="2" style="width:312px" %)duration
714 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
715 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
716 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
717 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
951 951  
952 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
719 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
720 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
953 953  
954 954  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
955 955  
... ... @@ -957,39 +957,32 @@
957 957  
958 958  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
959 959  
960 -|(((
961 -VTL basic
962 -
963 -scalar type
964 -)))|(((
965 -Default SDMX data type
966 -
967 -(BasicComponentDataType
968 -
969 -)
970 -)))|Default output format
971 -|String|String|Like XML (xs:string)
972 -|Number|Float|Like XML (xs:float)
973 -|Integer|Integer|Like XML (xs:int)
974 -|Date|DateTime|YYYY-MM-DDT00:00:00Z
975 -|Time|StandardTimePeriod|<date>/<date> (as defined above)
976 -|time_period|(((
728 +(% style="width:1073.29px" %)
729 +|(% style="width:207px" %)(((
730 +**VTL basic scalar type**
731 +)))|(% style="width:462px" %)(((
732 +**Default SDMX data type (BasicComponentDataType)**
733 +)))|(% style="width:402px" %)**Default output format**
734 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
735 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
736 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
737 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
738 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
739 +|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
977 977  ReportingTimePeriod
978 -
979 979  (StandardReportingPeriod)
980 -)))|(((
742 +)))|(% style="width:402px" %)(((
981 981  YYYY-Pppp
982 -
983 983  (according to SDMX )
984 984  )))
985 -|Duration|Duration|(((
746 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
986 986  Like XML (xs:duration)
987 -
988 988  PnYnMnDTnHnMnS
989 989  )))
990 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
750 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
991 991  
992 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
752 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
753 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
993 993  
994 994  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
995 995  
... ... @@ -1043,7 +1043,7 @@
1043 1043  |N|fixed number of digits used in the preceding textual representation of the month or the day
1044 1044  | |
1045 1045  
1046 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
807 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1047 1047  
1048 1048  === 12.4.5 Null Values ===
1049 1049  
... ... @@ -1061,10 +1061,8 @@
1061 1061  
1062 1062  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
1063 1063  
1064 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
825 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1065 1065  
1066 -TransformationScheme.
1067 -
1068 1068  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
1069 1069  
1070 1070  {{putFootnotes/}}
1747388148322-387.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
1747388179021-814.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +66.2 KB
Content
1747388206717-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.3 KB
Content
1747388222879-916.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +9.9 KB
Content
1747388244829-693.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +7.4 KB
Content
1747388275998-621.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +19.2 KB
Content