Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,10 +14,8 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 18 18 19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 - 21 21 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 22 22 23 23 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -28,10 +28,8 @@ 28 28 29 29 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 30 30 31 -In any case, the aliases used in the VTL Transformations have to be mapped to the 29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 32 32 33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 - 35 35 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 36 36 37 37 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -202,7 +202,7 @@ 202 202 203 203 === 12.3.3 Mapping from SDMX to VTL data structures === 204 204 205 - **12.3.3.1 Basic Mapping**201 +==== 12.3.3.1 Basic Mapping ==== 206 206 207 207 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 208 208 ... ... @@ -232,18 +232,11 @@ 232 232 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 233 233 234 234 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 - 237 -Component; 238 - 231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 239 239 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 240 240 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 241 241 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 - 244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 - 246 -* 235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 247 247 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 248 248 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 249 249 ... ... @@ -266,10 +266,7 @@ 266 266 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 267 267 268 268 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 269 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 270 - 271 -Identifiers, (time) Identifier and Attributes. 272 - 258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 273 273 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 274 274 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 275 275 ... ... @@ -580,8 +580,10 @@ 580 580 581 581 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 582 582 583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.569 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 584 584 571 +if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 572 + 585 585 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 586 586 587 587 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -598,7 +598,8 @@ 598 598 599 599 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 600 600 601 -==== Figure 22 – VTL Data Types ==== 589 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 590 +**Figure 22 – VTL Data Types** 602 602 603 603 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 604 604 ... ... @@ -605,131 +605,12 @@ 605 605 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 606 606 607 607 597 +**Figure 23 – VTL Basic Scalar Types** 608 608 609 609 ((( 610 -//n// 611 - 612 -//a// 613 - 614 -//e// 615 - 616 -//l// 617 - 618 -//o// 619 - 620 -//o// 621 - 622 -//B// 623 - 624 -//n// 625 - 626 -//o// 627 - 628 -//i// 629 - 630 -//t// 631 - 632 -//a// 633 - 634 -//r// 635 - 636 -//u// 637 - 638 -//D// 639 - 640 -//d// 641 - 642 -//o// 643 - 644 -//i// 645 - 646 -//r// 647 - 648 -//e// 649 - 650 -//p// 651 - 652 -//_// 653 - 654 -//e// 655 - 656 -//m// 657 - 658 -//i// 659 - 660 -//T// 661 - 662 -//e// 663 - 664 -//t// 665 - 666 -//a// 667 - 668 -//D// 669 - 670 -//e// 671 - 672 -//m// 673 - 674 -//i// 675 - 676 -//T// 677 - 678 -//r// 679 - 680 -//e// 681 - 682 -//g// 683 - 684 -//e// 685 - 686 -//t// 687 - 688 -//n// 689 - 690 -//I// 691 - 692 -//r// 693 - 694 -//e// 695 - 696 -//b// 697 - 698 -//m// 699 - 700 -//u// 701 - 702 -//N// 703 - 704 -//g// 705 - 706 -//n// 707 - 708 -//i// 709 - 710 -//r// 711 - 712 -//t// 713 - 714 -//S// 715 - 716 -//r// 717 - 718 -//a// 719 - 720 -//l// 721 - 722 -//a// 723 - 724 -//c// 725 - 726 -//S// 727 - 728 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 600 + 729 729 ))) 730 730 731 -==== Figure 23 – VTL Basic Scalar Types ==== 732 - 733 733 === 12.4.2 VTL basic scalar types and SDMX data types === 734 734 735 735 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -752,204 +752,159 @@ 752 752 753 753 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 754 754 755 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 756 -|((( 625 +(% style="width:823.294px" %) 626 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 627 +|(% style="width:509px" %)((( 757 757 String 758 - 759 759 (string allowing any character) 760 -)))|string 761 -|((( 630 +)))|(% style="width:312px" %)string 631 +|(% style="width:509px" %)((( 762 762 Alpha 763 - 764 764 (string which only allows A-z) 765 -)))|string 766 -|((( 634 +)))|(% style="width:312px" %)string 635 +|(% style="width:509px" %)((( 767 767 AlphaNumeric 768 - 769 769 (string which only allows A-z and 0-9) 770 -)))|string 771 -|((( 638 +)))|(% style="width:312px" %)string 639 +|(% style="width:509px" %)((( 772 772 Numeric 773 - 774 774 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 775 -)))|string 776 -|((( 642 +)))|(% style="width:312px" %)string 643 +|(% style="width:509px" %)((( 777 777 BigInteger 778 - 779 779 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 780 -)))|integer 781 -|((( 646 +)))|(% style="width:312px" %)integer 647 +|(% style="width:509px" %)((( 782 782 Integer 783 - 784 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 785 - 786 -(inclusive)) 787 -)))|integer 788 -|((( 649 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 650 +)))|(% style="width:312px" %)integer 651 +|(% style="width:509px" %)((( 789 789 Long 790 - 791 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 792 - 793 -+9223372036854775807 (inclusive)) 794 -)))|integer 795 -|((( 653 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 654 +)))|(% style="width:312px" %)integer 655 +|(% style="width:509px" %)((( 796 796 Short 797 - 798 798 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 799 -)))|integer 800 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 801 -|((( 658 +)))|(% style="width:312px" %)integer 659 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number 660 +|(% style="width:509px" %)((( 802 802 Float 803 - 804 804 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 805 -)))|number 806 -|((( 663 +)))|(% style="width:312px" %)number 664 +|(% style="width:509px" %)((( 807 807 Double 808 - 809 809 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 810 -)))|number 811 -|((( 667 +)))|(% style="width:312px" %)number 668 +|(% style="width:509px" %)((( 812 812 Boolean 670 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 671 +)))|(% style="width:312px" %)boolean 813 813 814 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 815 - 816 -binary-valued logic: {true, false}) 817 -)))|boolean 818 - 819 -| |(% colspan="2" %)((( 673 +(% style="width:822.294px" %) 674 +|(% colspan="2" style="width:507px" %)((( 820 820 URI 821 - 822 822 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 823 -)))|(% colspan=" 2" %)string824 -| |(% colspan="2" %)(((677 +)))|(% colspan="1" style="width:311px" %)string 678 +|(% colspan="2" style="width:507px" %)((( 825 825 Count 826 - 827 827 (an integer following a sequential pattern, increasing by 1 for each occurrence) 828 -)))|(% colspan=" 2" %)integer829 -| |(% colspan="2" %)(((681 +)))|(% colspan="1" style="width:311px" %)integer 682 +|(% colspan="2" style="width:507px" %)((( 830 830 InclusiveValueRange 831 - 832 832 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 833 -)))|(% colspan=" 2" %)number834 -| |(% colspan="2" %)(((685 +)))|(% colspan="1" style="width:311px" %)number 686 +|(% colspan="2" style="width:507px" %)((( 835 835 ExclusiveValueRange 836 - 837 837 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 838 -)))|(% colspan=" 2" %)number839 -| |(% colspan="2" %)(((689 +)))|(% colspan="1" style="width:311px" %)number 690 +|(% colspan="2" style="width:507px" %)((( 840 840 Incremental 841 - 842 842 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 843 -)))|(% colspan=" 2" %)number844 -| |(% colspan="2" %)(((693 +)))|(% colspan="1" style="width:311px" %)number 694 +|(% colspan="2" style="width:507px" %)((( 845 845 ObservationalTimePeriod 846 - 847 847 (superset of StandardTimePeriod and TimeRange) 848 -)))|(% colspan=" 2" %)time849 -| |(% colspan="2" %)(((697 +)))|(% colspan="1" style="width:311px" %)time 698 +|(% colspan="2" style="width:507px" %)((( 850 850 StandardTimePeriod 851 - 852 -(superset of BasicTimePeriod and 853 - 854 -ReportingTimePeriod) 855 -)))|(% colspan="2" %)time 856 -| |(% colspan="2" %)((( 700 +(superset of BasicTimePeriod and ReportingTimePeriod) 701 +)))|(% colspan="1" style="width:311px" %)time 702 +|(% colspan="2" style="width:507px" %)((( 857 857 BasicTimePeriod 858 - 859 859 (superset of GregorianTimePeriod and DateTime) 860 -)))|(% colspan=" 2" %)date861 -| |(% colspan="2" %)(((705 +)))|(% colspan="1" style="width:311px" %)date 706 +|(% colspan="2" style="width:507px" %)((( 862 862 GregorianTimePeriod 863 - 864 864 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 865 -)))|(% colspan=" 2" %)date866 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date867 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date868 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date869 -| |(% colspan="2" %)(((709 +)))|(% colspan="1" style="width:311px" %)date 710 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date 711 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date 712 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date 713 +|(% colspan="2" style="width:507px" %)((( 870 870 ReportingTimePeriod 871 - 872 -(superset of RepostingYear, ReportingSemester, 873 - 874 -ReportingTrimester, ReportingQuarter, 875 - 876 -ReportingMonth, ReportingWeek, ReportingDay) 877 -)))|(% colspan="2" %)time_period 878 -| |(% colspan="2" %)((( 715 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 716 +)))|(% colspan="1" style="width:311px" %)time_period 717 +|(% colspan="2" style="width:507px" %)((( 879 879 ReportingYear 880 - 881 881 (YYYY-A1 – 1 year period) 882 -)))|(% colspan=" 2" %)time_period883 -| |(% colspan="2" %)(((720 +)))|(% colspan="1" style="width:311px" %)time_period 721 +|(% colspan="2" style="width:507px" %)((( 884 884 ReportingSemester 885 - 886 886 (YYYY-Ss – 6 month period) 887 -)))|(% colspan=" 2" %)time_period888 -| |(% colspan="2" %)(((724 +)))|(% colspan="1" style="width:311px" %)time_period 725 +|(% colspan="2" style="width:507px" %)((( 889 889 ReportingTrimester 890 - 891 891 (YYYY-Tt – 4 month period) 892 -)))|(% colspan=" 2" %)time_period893 -| |(% colspan="2" %)(((728 +)))|(% colspan="1" style="width:311px" %)time_period 729 +|(% colspan="2" style="width:507px" %)((( 894 894 ReportingQuarter 895 - 896 896 (YYYY-Qq – 3 month period) 897 -)))|(% colspan=" 2" %)time_period898 -| |(% colspan="2" %)(((732 +)))|(% colspan="1" style="width:311px" %)time_period 733 +|(% colspan="2" style="width:507px" %)((( 899 899 ReportingMonth 900 - 901 901 (YYYY-Mmm – 1 month period) 902 -)))|(% colspan="2" %)time_period 903 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 904 -| |(% colspan="2" %) |(% colspan="2" %) 905 -| |(% colspan="2" %) |(% colspan="2" %) 906 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 907 -|(% colspan="2" %)((( 736 +)))|(% colspan="1" style="width:311px" %)time_period 737 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 738 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 739 +|(% colspan="1" style="width:507px" %)((( 908 908 ReportingDay 909 - 910 910 (YYYY-Dddd – 1 day period) 911 -)))|(% colspan="2" %)time_period |912 -|(% colspan=" 2" %)(((742 +)))|(% colspan="2" style="width:312px" %)time_period 743 +|(% colspan="1" style="width:507px" %)((( 913 913 DateTime 914 - 915 915 (YYYY-MM-DDThh:mm:ss) 916 -)))|(% colspan="2" %)date |917 -|(% colspan=" 2" %)(((746 +)))|(% colspan="2" style="width:312px" %)date 747 +|(% colspan="1" style="width:507px" %)((( 918 918 TimeRange 919 - 920 920 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 921 -)))|(% colspan="2" %)time |922 -|(% colspan=" 2" %)(((750 +)))|(% colspan="2" style="width:312px" %)time 751 +|(% colspan="1" style="width:507px" %)((( 923 923 Month 924 - 925 925 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 926 -)))|(% colspan="2" %)string |927 -|(% colspan=" 2" %)(((754 +)))|(% colspan="2" style="width:312px" %)string 755 +|(% colspan="1" style="width:507px" %)((( 928 928 MonthDay 929 - 930 930 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 931 -)))|(% colspan="2" %)string |932 -|(% colspan=" 2" %)(((758 +)))|(% colspan="2" style="width:312px" %)string 759 +|(% colspan="1" style="width:507px" %)((( 933 933 Day 934 - 935 935 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 936 -)))|(% colspan="2" %)string |937 -|(% colspan=" 2" %)(((762 +)))|(% colspan="2" style="width:312px" %)string 763 +|(% colspan="1" style="width:507px" %)((( 938 938 Time 939 - 940 940 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 941 -)))|(% colspan="2" %)string |942 -|(% colspan=" 2" %)(((766 +)))|(% colspan="2" style="width:312px" %)string 767 +|(% colspan="1" style="width:507px" %)((( 943 943 Duration 944 - 945 945 (corresponds to XML Schema xs:duration datatype) 946 -)))|(% colspan="2" %)duration |947 -|(% colspan=" 2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|948 -|(% colspan=" 2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|949 -|(% colspan=" 2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|950 -|(% colspan=" 2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|770 +)))|(% colspan="2" style="width:312px" %)duration 771 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable 772 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable 773 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 774 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 951 951 952 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 776 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 777 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 953 953 954 954 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 955 955 ... ... @@ -957,39 +957,32 @@ 957 957 958 958 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 959 959 960 -|((( 961 -VTL basic 962 - 963 -scalar type 964 -)))|((( 965 -Default SDMX data type 966 - 967 -(BasicComponentDataType 968 - 969 -) 970 -)))|Default output format 971 -|String|String|Like XML (xs:string) 972 -|Number|Float|Like XML (xs:float) 973 -|Integer|Integer|Like XML (xs:int) 974 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 975 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 976 -|time_period|((( 785 +(% style="width:1073.29px" %) 786 +|(% style="width:207px" %)((( 787 +**VTL basic scalar type** 788 +)))|(% style="width:462px" %)((( 789 +**Default SDMX data type (BasicComponentDataType)** 790 +)))|(% style="width:402px" %)**Default output format** 791 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 792 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 793 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 794 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 795 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 796 +|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 977 977 ReportingTimePeriod 978 - 979 979 (StandardReportingPeriod) 980 -)))|((( 799 +)))|(% style="width:402px" %)((( 981 981 YYYY-Pppp 982 - 983 983 (according to SDMX ) 984 984 ))) 985 -|Duration|Duration|((( 803 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)((( 986 986 Like XML (xs:duration) 987 - 988 988 PnYnMnDTnHnMnS 989 989 ))) 990 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 807 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false" 991 991 992 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 809 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 810 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 993 993 994 994 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 995 995 ... ... @@ -1043,7 +1043,7 @@ 1043 1043 |N|fixed number of digits used in the preceding textual representation of the month or the day 1044 1044 | | 1045 1045 1046 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.864 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 1047 1047 1048 1048 === 12.4.5 Null Values === 1049 1049 ... ... @@ -1061,10 +1061,8 @@ 1061 1061 1062 1062 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 1063 1063 1064 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 882 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme. 1065 1065 1066 -TransformationScheme. 1067 - 1068 1068 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 1069 1069 1070 1070 {{putFootnotes/}}