Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,10 +14,8 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 18 18 19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 - 21 21 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 22 22 23 23 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -28,10 +28,8 @@ 28 28 29 29 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 30 30 31 -In any case, the aliases used in the VTL Transformations have to be mapped to the 29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 32 32 33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 - 35 35 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 36 36 37 37 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -202,7 +202,7 @@ 202 202 203 203 === 12.3.3 Mapping from SDMX to VTL data structures === 204 204 205 - **12.3.3.1 Basic Mapping**201 +==== 12.3.3.1 Basic Mapping ==== 206 206 207 207 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 208 208 ... ... @@ -232,18 +232,11 @@ 232 232 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 233 233 234 234 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 - 237 -Component; 238 - 231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 239 239 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 240 240 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 241 241 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 - 244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 - 246 -* 235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 247 247 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 248 248 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 249 249 ... ... @@ -266,10 +266,7 @@ 266 266 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 267 267 268 268 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 269 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 270 - 271 -Identifiers, (time) Identifier and Attributes. 272 - 258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 273 273 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 274 274 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 275 275 ... ... @@ -362,7 +362,7 @@ 362 362 The mapping table is the following: 363 363 364 364 (% style="width:689.294px" %) 365 -|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX 351 +|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX** 366 366 |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 367 367 |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 368 368 |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure ... ... @@ -422,24 +422,17 @@ 422 422 423 423 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 424 424 425 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 411 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …). 426 426 427 -basi c, pivot…).413 +In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 428 428 429 -In the example above, for all the datasets of the kind 430 - 431 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 432 - 433 433 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 434 434 435 435 ‘DF1(1.0.0)/POPULATION.USA’ := 436 - 437 437 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 438 438 439 439 ‘DF1(1.0.0)/POPULATION.CANADA’ := 440 - 441 441 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 442 - 443 443 … … … 444 444 445 445 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} ... ... @@ -452,10 +452,8 @@ 452 452 453 453 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 454 454 455 - ‘DF1(1.0.0)/POPULATION.’ :=434 +[[image:1747388244829-693.png]] 456 456 457 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 458 - 459 459 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 460 460 461 461 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different ... ... @@ -481,54 +481,18 @@ 481 481 482 482 Some examples follow, for some specific values of INDICATOR and COUNTRY: 483 483 484 - ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;461 +[[image:1747388222879-916.png]] 485 485 486 - … … …463 +[[image:1747388206717-256.png]] 487 487 488 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 489 - 490 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 491 - 492 -… … … 493 - 494 494 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 495 495 496 - VTL dataset INDICATOR value COUNTRY value467 +[[image:1747388148322-387.png]] 497 497 498 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 499 - 500 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 501 - 502 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 503 - 504 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 505 - 506 -… … … 507 - 508 508 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 509 509 510 - DF2bis_GDPPERCAPITA_USA:= ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];471 +[[image:1747388179021-814.png]] 511 511 512 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 513 - 514 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 515 - 516 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 517 - 518 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 519 - 520 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 521 - 522 -DF2bis_GDPPERCAPITA_CANADA’, 523 - 524 -… , 525 - 526 -DF2bis_POPGROWTH_USA’, 527 - 528 -DF2bis_POPGROWTH_CANADA’ 529 - 530 -…); 531 - 532 532 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 533 533 534 534 DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. ... ... @@ -600,7 +600,8 @@ 600 600 601 601 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 602 602 603 -==== Figure 22 – VTL Data Types ==== 544 +(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 545 +**Figure 22 – VTL Data Types** 604 604 605 605 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 606 606 ... ... @@ -607,131 +607,12 @@ 607 607 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 608 608 609 609 552 +**Figure 23 – VTL Basic Scalar Types** 610 610 611 611 ((( 612 -//n// 613 - 614 -//a// 615 - 616 -//e// 617 - 618 -//l// 619 - 620 -//o// 621 - 622 -//o// 623 - 624 -//B// 625 - 626 -//n// 627 - 628 -//o// 629 - 630 -//i// 631 - 632 -//t// 633 - 634 -//a// 635 - 636 -//r// 637 - 638 -//u// 639 - 640 -//D// 641 - 642 -//d// 643 - 644 -//o// 645 - 646 -//i// 647 - 648 -//r// 649 - 650 -//e// 651 - 652 -//p// 653 - 654 -//_// 655 - 656 -//e// 657 - 658 -//m// 659 - 660 -//i// 661 - 662 -//T// 663 - 664 -//e// 665 - 666 -//t// 667 - 668 -//a// 669 - 670 -//D// 671 - 672 -//e// 673 - 674 -//m// 675 - 676 -//i// 677 - 678 -//T// 679 - 680 -//r// 681 - 682 -//e// 683 - 684 -//g// 685 - 686 -//e// 687 - 688 -//t// 689 - 690 -//n// 691 - 692 -//I// 693 - 694 -//r// 695 - 696 -//e// 697 - 698 -//b// 699 - 700 -//m// 701 - 702 -//u// 703 - 704 -//N// 705 - 706 -//g// 707 - 708 -//n// 709 - 710 -//i// 711 - 712 -//r// 713 - 714 -//t// 715 - 716 -//S// 717 - 718 -//r// 719 - 720 -//a// 721 - 722 -//l// 723 - 724 -//a// 725 - 726 -//c// 727 - 728 -//S// 729 - 730 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 555 + 731 731 ))) 732 732 733 -==== Figure 23 – VTL Basic Scalar Types ==== 734 - 735 735 === 12.4.2 VTL basic scalar types and SDMX data types === 736 736 737 737 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -754,204 +754,159 @@ 754 754 755 755 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 756 756 757 -|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 758 -|((( 580 +(% style="width:823.294px" %) 581 +|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 582 +|(% style="width:509px" %)((( 759 759 String 760 - 761 761 (string allowing any character) 762 -)))|string 763 -|((( 585 +)))|(% style="width:312px" %)string 586 +|(% style="width:509px" %)((( 764 764 Alpha 765 - 766 766 (string which only allows A-z) 767 -)))|string 768 -|((( 589 +)))|(% style="width:312px" %)string 590 +|(% style="width:509px" %)((( 769 769 AlphaNumeric 770 - 771 771 (string which only allows A-z and 0-9) 772 -)))|string 773 -|((( 593 +)))|(% style="width:312px" %)string 594 +|(% style="width:509px" %)((( 774 774 Numeric 775 - 776 776 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 777 -)))|string 778 -|((( 597 +)))|(% style="width:312px" %)string 598 +|(% style="width:509px" %)((( 779 779 BigInteger 780 - 781 781 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 782 -)))|integer 783 -|((( 601 +)))|(% style="width:312px" %)integer 602 +|(% style="width:509px" %)((( 784 784 Integer 785 - 786 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 787 - 788 -(inclusive)) 789 -)))|integer 790 -|((( 604 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 605 +)))|(% style="width:312px" %)integer 606 +|(% style="width:509px" %)((( 791 791 Long 792 - 793 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 794 - 795 -+9223372036854775807 (inclusive)) 796 -)))|integer 797 -|((( 608 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 609 +)))|(% style="width:312px" %)integer 610 +|(% style="width:509px" %)((( 798 798 Short 799 - 800 800 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 801 -)))|integer 802 -|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 803 -|((( 613 +)))|(% style="width:312px" %)integer 614 +|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number 615 +|(% style="width:509px" %)((( 804 804 Float 805 - 806 806 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 807 -)))|number 808 -|((( 618 +)))|(% style="width:312px" %)number 619 +|(% style="width:509px" %)((( 809 809 Double 810 - 811 811 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 812 -)))|number 813 -|((( 622 +)))|(% style="width:312px" %)number 623 +|(% style="width:509px" %)((( 814 814 Boolean 625 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 626 +)))|(% style="width:312px" %)boolean 815 815 816 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 817 - 818 -binary-valued logic: {true, false}) 819 -)))|boolean 820 - 821 -| |(% colspan="2" %)((( 628 +(% style="width:822.294px" %) 629 +|(% colspan="2" style="width:507px" %)((( 822 822 URI 823 - 824 824 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 825 -)))|(% colspan=" 2" %)string826 -| |(% colspan="2" %)(((632 +)))|(% colspan="1" style="width:311px" %)string 633 +|(% colspan="2" style="width:507px" %)((( 827 827 Count 828 - 829 829 (an integer following a sequential pattern, increasing by 1 for each occurrence) 830 -)))|(% colspan=" 2" %)integer831 -| |(% colspan="2" %)(((636 +)))|(% colspan="1" style="width:311px" %)integer 637 +|(% colspan="2" style="width:507px" %)((( 832 832 InclusiveValueRange 833 - 834 834 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 835 -)))|(% colspan=" 2" %)number836 -| |(% colspan="2" %)(((640 +)))|(% colspan="1" style="width:311px" %)number 641 +|(% colspan="2" style="width:507px" %)((( 837 837 ExclusiveValueRange 838 - 839 839 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 840 -)))|(% colspan=" 2" %)number841 -| |(% colspan="2" %)(((644 +)))|(% colspan="1" style="width:311px" %)number 645 +|(% colspan="2" style="width:507px" %)((( 842 842 Incremental 843 - 844 844 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 845 -)))|(% colspan=" 2" %)number846 -| |(% colspan="2" %)(((648 +)))|(% colspan="1" style="width:311px" %)number 649 +|(% colspan="2" style="width:507px" %)((( 847 847 ObservationalTimePeriod 848 - 849 849 (superset of StandardTimePeriod and TimeRange) 850 -)))|(% colspan=" 2" %)time851 -| |(% colspan="2" %)(((652 +)))|(% colspan="1" style="width:311px" %)time 653 +|(% colspan="2" style="width:507px" %)((( 852 852 StandardTimePeriod 853 - 854 -(superset of BasicTimePeriod and 855 - 856 -ReportingTimePeriod) 857 -)))|(% colspan="2" %)time 858 -| |(% colspan="2" %)((( 655 +(superset of BasicTimePeriod and ReportingTimePeriod) 656 +)))|(% colspan="1" style="width:311px" %)time 657 +|(% colspan="2" style="width:507px" %)((( 859 859 BasicTimePeriod 860 - 861 861 (superset of GregorianTimePeriod and DateTime) 862 -)))|(% colspan=" 2" %)date863 -| |(% colspan="2" %)(((660 +)))|(% colspan="1" style="width:311px" %)date 661 +|(% colspan="2" style="width:507px" %)((( 864 864 GregorianTimePeriod 865 - 866 866 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 867 -)))|(% colspan=" 2" %)date868 -| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date869 -| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date870 -| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date871 -| |(% colspan="2" %)(((664 +)))|(% colspan="1" style="width:311px" %)date 665 +|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date 666 +|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date 667 +|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date 668 +|(% colspan="2" style="width:507px" %)((( 872 872 ReportingTimePeriod 873 - 874 -(superset of RepostingYear, ReportingSemester, 875 - 876 -ReportingTrimester, ReportingQuarter, 877 - 878 -ReportingMonth, ReportingWeek, ReportingDay) 879 -)))|(% colspan="2" %)time_period 880 -| |(% colspan="2" %)((( 670 +(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 671 +)))|(% colspan="1" style="width:311px" %)time_period 672 +|(% colspan="2" style="width:507px" %)((( 881 881 ReportingYear 882 - 883 883 (YYYY-A1 – 1 year period) 884 -)))|(% colspan=" 2" %)time_period885 -| |(% colspan="2" %)(((675 +)))|(% colspan="1" style="width:311px" %)time_period 676 +|(% colspan="2" style="width:507px" %)((( 886 886 ReportingSemester 887 - 888 888 (YYYY-Ss – 6 month period) 889 -)))|(% colspan=" 2" %)time_period890 -| |(% colspan="2" %)(((679 +)))|(% colspan="1" style="width:311px" %)time_period 680 +|(% colspan="2" style="width:507px" %)((( 891 891 ReportingTrimester 892 - 893 893 (YYYY-Tt – 4 month period) 894 -)))|(% colspan=" 2" %)time_period895 -| |(% colspan="2" %)(((683 +)))|(% colspan="1" style="width:311px" %)time_period 684 +|(% colspan="2" style="width:507px" %)((( 896 896 ReportingQuarter 897 - 898 898 (YYYY-Qq – 3 month period) 899 -)))|(% colspan=" 2" %)time_period900 -| |(% colspan="2" %)(((687 +)))|(% colspan="1" style="width:311px" %)time_period 688 +|(% colspan="2" style="width:507px" %)((( 901 901 ReportingMonth 902 - 903 903 (YYYY-Mmm – 1 month period) 904 -)))|(% colspan="2" %)time_period 905 -| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 906 -| |(% colspan="2" %) |(% colspan="2" %) 907 -| |(% colspan="2" %) |(% colspan="2" %) 908 -|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 909 -|(% colspan="2" %)((( 691 +)))|(% colspan="1" style="width:311px" %)time_period 692 +|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 693 +|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 694 +|(% colspan="1" style="width:507px" %)((( 910 910 ReportingDay 911 - 912 912 (YYYY-Dddd – 1 day period) 913 -)))|(% colspan="2" %)time_period |914 -|(% colspan=" 2" %)(((697 +)))|(% colspan="2" style="width:312px" %)time_period 698 +|(% colspan="1" style="width:507px" %)((( 915 915 DateTime 916 - 917 917 (YYYY-MM-DDThh:mm:ss) 918 -)))|(% colspan="2" %)date |919 -|(% colspan=" 2" %)(((701 +)))|(% colspan="2" style="width:312px" %)date 702 +|(% colspan="1" style="width:507px" %)((( 920 920 TimeRange 921 - 922 922 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 923 -)))|(% colspan="2" %)time |924 -|(% colspan=" 2" %)(((705 +)))|(% colspan="2" style="width:312px" %)time 706 +|(% colspan="1" style="width:507px" %)((( 925 925 Month 926 - 927 927 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 928 -)))|(% colspan="2" %)string |929 -|(% colspan=" 2" %)(((709 +)))|(% colspan="2" style="width:312px" %)string 710 +|(% colspan="1" style="width:507px" %)((( 930 930 MonthDay 931 - 932 932 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 933 -)))|(% colspan="2" %)string |934 -|(% colspan=" 2" %)(((713 +)))|(% colspan="2" style="width:312px" %)string 714 +|(% colspan="1" style="width:507px" %)((( 935 935 Day 936 - 937 937 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 938 -)))|(% colspan="2" %)string |939 -|(% colspan=" 2" %)(((717 +)))|(% colspan="2" style="width:312px" %)string 718 +|(% colspan="1" style="width:507px" %)((( 940 940 Time 941 - 942 942 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 943 -)))|(% colspan="2" %)string |944 -|(% colspan=" 2" %)(((721 +)))|(% colspan="2" style="width:312px" %)string 722 +|(% colspan="1" style="width:507px" %)((( 945 945 Duration 946 - 947 947 (corresponds to XML Schema xs:duration datatype) 948 -)))|(% colspan="2" %)duration |949 -|(% colspan=" 2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|950 -|(% colspan=" 2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|951 -|(% colspan=" 2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|952 -|(% colspan=" 2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|725 +)))|(% colspan="2" style="width:312px" %)duration 726 +|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable 727 +|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable 728 +|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 729 +|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable 953 953 954 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 731 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 732 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 955 955 956 956 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 957 957 ... ... @@ -959,39 +959,32 @@ 959 959 960 960 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 961 961 962 -|((( 963 -VTL basic 964 - 965 -scalar type 966 -)))|((( 967 -Default SDMX data type 968 - 969 -(BasicComponentDataType 970 - 971 -) 972 -)))|Default output format 973 -|String|String|Like XML (xs:string) 974 -|Number|Float|Like XML (xs:float) 975 -|Integer|Integer|Like XML (xs:int) 976 -|Date|DateTime|YYYY-MM-DDT00:00:00Z 977 -|Time|StandardTimePeriod|<date>/<date> (as defined above) 978 -|time_period|((( 740 +(% style="width:1073.29px" %) 741 +|(% style="width:207px" %)((( 742 +**VTL basic scalar type** 743 +)))|(% style="width:462px" %)((( 744 +**Default SDMX data type (BasicComponentDataType)** 745 +)))|(% style="width:402px" %)**Default output format** 746 +|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 747 +|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 748 +|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 749 +|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 750 +|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 751 +|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 979 979 ReportingTimePeriod 980 - 981 981 (StandardReportingPeriod) 982 -)))|((( 754 +)))|(% style="width:402px" %)((( 983 983 YYYY-Pppp 984 - 985 985 (according to SDMX ) 986 986 ))) 987 -|Duration|Duration|((( 758 +|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)((( 988 988 Like XML (xs:duration) 989 - 990 990 PnYnMnDTnHnMnS 991 991 ))) 992 -|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 762 +|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false" 993 993 994 -==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 764 +(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 765 +**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 995 995 996 996 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 997 997 ... ... @@ -1045,7 +1045,7 @@ 1045 1045 |N|fixed number of digits used in the preceding textual representation of the month or the day 1046 1046 | | 1047 1047 1048 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion ^^[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.819 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}. 1049 1049 1050 1050 === 12.4.5 Null Values === 1051 1051 ... ... @@ -1063,10 +1063,8 @@ 1063 1063 1064 1064 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 1065 1065 1066 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 837 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme. 1067 1067 1068 -TransformationScheme. 1069 - 1070 1070 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 1071 1071 1072 1072 {{putFootnotes/}}
- 1747388148322-387.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.0 KB - Content
- 1747388179021-814.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.2 KB - Content
- 1747388206717-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.3 KB - Content
- 1747388222879-916.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +9.9 KB - Content
- 1747388244829-693.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.4 KB - Content