Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -580,10 +580,8 @@ 580 580 581 581 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 582 582 583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 584 584 585 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 586 - 587 587 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 588 588 589 589 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -600,8 +600,7 @@ 600 600 601 601 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 602 602 603 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 604 -Figure 22 – VTL Data Types 601 +==== Figure 22 – VTL Data Types ==== 605 605 606 606 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 607 607 ... ... @@ -608,12 +608,131 @@ 608 608 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 609 609 610 610 611 -Figure 23 – VTL Basic Scalar Types 612 612 613 613 ((( 614 - 610 +//n// 611 + 612 +//a// 613 + 614 +//e// 615 + 616 +//l// 617 + 618 +//o// 619 + 620 +//o// 621 + 622 +//B// 623 + 624 +//n// 625 + 626 +//o// 627 + 628 +//i// 629 + 630 +//t// 631 + 632 +//a// 633 + 634 +//r// 635 + 636 +//u// 637 + 638 +//D// 639 + 640 +//d// 641 + 642 +//o// 643 + 644 +//i// 645 + 646 +//r// 647 + 648 +//e// 649 + 650 +//p// 651 + 652 +//_// 653 + 654 +//e// 655 + 656 +//m// 657 + 658 +//i// 659 + 660 +//T// 661 + 662 +//e// 663 + 664 +//t// 665 + 666 +//a// 667 + 668 +//D// 669 + 670 +//e// 671 + 672 +//m// 673 + 674 +//i// 675 + 676 +//T// 677 + 678 +//r// 679 + 680 +//e// 681 + 682 +//g// 683 + 684 +//e// 685 + 686 +//t// 687 + 688 +//n// 689 + 690 +//I// 691 + 692 +//r// 693 + 694 +//e// 695 + 696 +//b// 697 + 698 +//m// 699 + 700 +//u// 701 + 702 +//N// 703 + 704 +//g// 705 + 706 +//n// 707 + 708 +//i// 709 + 710 +//r// 711 + 712 +//t// 713 + 714 +//S// 715 + 716 +//r// 717 + 718 +//a// 719 + 720 +//l// 721 + 722 +//a// 723 + 724 +//c// 725 + 726 +//S// 727 + 728 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 615 615 ))) 616 616 731 +==== Figure 23 – VTL Basic Scalar Types ==== 732 + 617 617 === 12.4.2 VTL basic scalar types and SDMX data types === 618 618 619 619 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.