Last modified by Helena on 2025/09/10 11:19

From version 5.25
edited by Helena
on 2025/05/16 09:01
Change comment: There is no comment for this version
To version 5.22
edited by Helena
on 2025/05/16 08:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -580,10 +580,8 @@
580 580  
581 581  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
582 582  
583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
584 584  
585 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
586 -
587 587  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
588 588  
589 589  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -600,8 +600,7 @@
600 600  
601 601  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
602 602  
603 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
604 -**Figure 22 – VTL Data Types**
601 +==== Figure 22 – VTL Data Types ====
605 605  
606 606  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
607 607  
... ... @@ -608,12 +608,131 @@
608 608  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
609 609  
610 610  
611 -**Figure 23 – VTL Basic Scalar Types**
612 612  
613 613  (((
614 -
610 +//n//
611 +
612 +//a//
613 +
614 +//e//
615 +
616 +//l//
617 +
618 +//o//
619 +
620 +//o//
621 +
622 +//B//
623 +
624 +//n//
625 +
626 +//o//
627 +
628 +//i//
629 +
630 +//t//
631 +
632 +//a//
633 +
634 +//r//
635 +
636 +//u//
637 +
638 +//D//
639 +
640 +//d//
641 +
642 +//o//
643 +
644 +//i//
645 +
646 +//r//
647 +
648 +//e//
649 +
650 +//p//
651 +
652 +//_//
653 +
654 +//e//
655 +
656 +//m//
657 +
658 +//i//
659 +
660 +//T//
661 +
662 +//e//
663 +
664 +//t//
665 +
666 +//a//
667 +
668 +//D//
669 +
670 +//e//
671 +
672 +//m//
673 +
674 +//i//
675 +
676 +//T//
677 +
678 +//r//
679 +
680 +//e//
681 +
682 +//g//
683 +
684 +//e//
685 +
686 +//t//
687 +
688 +//n//
689 +
690 +//I//
691 +
692 +//r//
693 +
694 +//e//
695 +
696 +//b//
697 +
698 +//m//
699 +
700 +//u//
701 +
702 +//N//
703 +
704 +//g//
705 +
706 +//n//
707 +
708 +//i//
709 +
710 +//r//
711 +
712 +//t//
713 +
714 +//S//
715 +
716 +//r//
717 +
718 +//a//
719 +
720 +//l//
721 +
722 +//a//
723 +
724 +//c//
725 +
726 +//S//
727 +
728 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
615 615  )))
616 616  
731 +==== Figure 23 – VTL Basic Scalar Types ====
732 +
617 617  === 12.4.2 VTL basic scalar types and SDMX data types ===
618 618  
619 619  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.