Last modified by Helena on 2025/09/10 11:19

From version 5.27
edited by Helena
on 2025/05/16 09:08
Change comment: There is no comment for this version
To version 5.14
edited by Helena
on 2025/05/16 08:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -215,19 +215,21 @@
215 215  
216 216  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
217 217  
218 -With the Basic mapping, one SDMX observation{{footnote}}Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.{{/footnote}} generates one VTL data point.
218 +With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point.
219 219  
220 220  ==== 12.3.3.2 Pivot Mapping ====
221 221  
222 222  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
223 223  
224 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
225 225  
226 +MeasureDimensions considered as a joint variable^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^24^^>>path:#sdfootnote24sym||name="sdfootnote24anc"]](%%)^^.
227 +
226 226  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
227 227  
228 228  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
229 229  
230 -Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.
232 +^^27^^ Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.
231 231  
232 232  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
233 233  
... ... @@ -243,22 +243,25 @@
243 243  
244 244  AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 245  
246 -*
248 +*
247 247  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
248 248  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
249 249  
250 250  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
251 251  
252 -(% style="width:769.294px" %)
253 -|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL**
254 -|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier
255 -|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier
256 -|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)(((
257 -One Measure for each Code of the SDMX MeasureDimension
254 +|**SDMX**|**VTL**
255 +|Dimension|(Simple) Identifier
256 +|TimeDimension|(Time) Identifier
257 +|MeasureDimension & one Measure|(((
258 +One Measure for each Code of the
259 +
260 +SDMX MeasureDimension
258 258  )))
259 -|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute
260 -|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)(((
261 -One Attribute for each Code of the SDMX MeasureDimension
262 +|DataAttribute not depending on the MeasureDimension|Attribute
263 +|DataAttribute depending on the MeasureDimension|(((
264 +One Attribute for each Code of the
265 +
266 +SDMX MeasureDimension
262 262  )))
263 263  
264 264  Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure.
... ... @@ -273,7 +273,7 @@
273 273  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
274 274  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
275 275  
276 -==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
281 +**12.3.3.3 From SDMX DataAttributes to VTL Measures**
277 277  
278 278  * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
279 279  
... ... @@ -285,7 +285,7 @@
285 285  
286 286  === 12.3.4 Mapping from VTL to SDMX data structures ===
287 287  
288 -==== 12.3.4.1 Basic Mapping ====
293 +**12.3.4.1 Basic Mapping**
289 289  
290 290  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
291 291  
... ... @@ -295,12 +295,11 @@
295 295  
296 296  Mapping table:
297 297  
298 -(% style="width:667.294px" %)
299 -|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX**
300 -|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension
301 -|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension
302 -|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure
303 -|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute
303 +|**VTL**|**SDMX**
304 +|(Simple) Identifier|Dimension
305 +|(Time) Identifier|TimeDimension
306 +|Measure|Measure
307 +|Attribute|DataAttribute
304 304  
305 305  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
306 306  
... ... @@ -310,7 +310,7 @@
310 310  
311 311  As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
312 312  
313 -==== 12.3.4.2 Unpivot Mapping ====
317 +**12.3.4.2 Unpivot Mapping**
314 314  
315 315  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.
316 316  
... ... @@ -334,12 +334,11 @@
334 334  
335 335  The summary mapping table of the **unpivot** mapping method is the following:
336 336  
337 -(% style="width:994.294px" %)
338 -|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX**
339 -|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension
340 -|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension
341 -|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
342 -|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
341 +|**VTL**|**SDMX**
342 +|(Simple) Identifier|Dimension
343 +|(Time) Identifier|TimeDimension
344 +|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
345 +|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
343 343  
344 344  At observation / data point level:
345 345  
... ... @@ -353,7 +353,7 @@
353 353  
354 354  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
355 355  
356 -==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ====
359 +**12.3.4.3 From VTL Measures to SDMX Data Attributes**
357 357  
358 358  More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
359 359  
... ... @@ -361,13 +361,12 @@
361 361  
362 362  The mapping table is the following:
363 363  
364 -(% style="width:689.294px" %)
365 -|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
366 -|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
367 -|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
368 -|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
369 -|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute
370 -|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute
367 +|VTL|SDMX
368 +|(Simple) Identifier|Dimension
369 +|(Time) Identifier|TimeDimension
370 +|Some Measures|Measure
371 +|Other Measures|DataAttribute
372 +|Attribute|DataAttribute
371 371  
372 372  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
373 373  
... ... @@ -385,20 +385,20 @@
385 385  
386 386  Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
387 387  
388 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}}
390 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^
389 389  
390 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}}
392 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^
391 391  
392 392  Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets.
393 393  
394 394  For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows:
395 395  
396 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.{{footnote}}This definition is made through the ToVtlSubspace and ToVtlSpaceKey classes and/or the FromVtlSuperspace and FromVtlSpaceKey classes, depending on the direction of the mapping (“key” means “dimension”). The mapping of Dataflow subsets can be applied independently in the two directions, also according to different Dimensions. When no Dimension is declared for a given direction, it is assumed that the option of mapping different parts of a SDMX Dataflow to different VTL Data Sets is not used.{{/footnote}} Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.
398 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^ Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.
397 397  * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts:
398 398  ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0);
399 -** a slash (“/”) as a separator;{{footnote}}As a consequence of this formalism, a slash in the name of the VTL Data Set assumes the specific meaning of separator between the name of the Dataflow and the values of some of its Dimensions.{{/footnote}}
401 +** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^
400 400  
401 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined{{footnote}}This is the order in which the dimensions are defined in the ToVtlSpaceKey class or in the FromVtlSpaceKey class, depending on the direction of the mapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
403 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
402 402  
403 403  In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
404 404  
... ... @@ -414,7 +414,7 @@
414 414  
415 415  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
416 416  
417 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations{{footnote}}It should be remembered that, according to the VTL consistency rules, a given VTL dataset cannot be the result of more than one VTL Transformation.{{/footnote}} need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
419 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^ need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
418 418  
419 419  First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations.
420 420  
... ... @@ -422,7 +422,7 @@
422 422  
423 423  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
424 424  
425 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
427 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
426 426  
427 427  basic, pivot …).
428 428  
... ... @@ -442,7 +442,7 @@
442 442  
443 443  … … …
444 444  
445 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
447 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^
446 446  
447 447  In the direction from SDMX to VTL it is allowed to omit the value of one or more
448 448  
... ... @@ -470,12 +470,12 @@
470 470  
471 471  Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY:
472 472  
473 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation;{{footnote}}If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one SDMX Dataflow to many VTL datasets) does not apply.{{/footnote}}
474 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.{{footnote}}This is possible as each VTL dataset corresponds to one particular combination of values of INDICATOR and COUNTRY.{{/footnote}}
475 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^
476 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^
475 475  
476 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions{{footnote}}The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the VtlDataflowMapping relevant to DF2(1.0).{{/footnote}}.
478 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^.
477 477  
478 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
480 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^
479 479  
480 480  ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
481 481  
... ... @@ -531,9 +531,9 @@
531 531  
532 532  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
533 533  
534 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
536 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
535 535  
536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
538 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^
537 537  
538 538  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
539 539  
... ... @@ -541,51 +541,52 @@
541 541  
542 542  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
543 543  
544 -(% style="width:1170.29px" %)
545 -|**VTL**|(% style="width:754px" %)**SDMX**
546 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
547 -|**Represented Variable**|(% style="width:754px" %)(((
546 +|VTL|SDMX
547 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
548 +|**Represented Variable**|(((
548 548  **Concept** with a definite
549 549  
550 550  Representation
551 551  )))
552 -|**Value Domain**|(% style="width:754px" %)(((
553 +|**Value Domain**|(((
553 553  **Representation** (see the Structure
554 554  
555 555  Pattern in the Base Package)
556 556  )))
557 -|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
558 -|**Code**|(% style="width:754px" %)(((
558 +|**Enumerated Value Domain / Code List**|**Codelist**
559 +|**Code**|(((
559 559  **Code** (for enumerated
560 560  
561 561  DimensionComponent, Measure, DataAttribute)
562 562  )))
563 -|**Described Value Domain**|(% style="width:754px" %)(((
564 -non-enumerated** Representation**
564 +|**Described Value Domain**|(((
565 +non-enumerated** &nbsp;&nbsp;&nbsp;Representation**
565 565  
566 566  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
567 567  )))
568 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
569 -| |(% style="width:754px" %)(((
570 -to a valid **value **(for non-enumerated** **Representations)
569 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
570 +| |(((
571 +to a valid **value &nbsp;&nbsp;&nbsp;**(for non-enumerated** &nbsp;&nbsp;&nbsp;**
572 +
573 +Representations)
571 571  )))
572 -|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
573 -|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
574 -|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
575 -|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
575 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
576 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
577 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
578 +|**Set list**|This abstraction does not exist in SDMX
576 576  
577 577  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
578 578  
579 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
582 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
580 580  
581 581  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
582 582  
583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
586 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
584 584  
585 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
586 -
587 587  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
588 588  
590 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
591 +
589 589  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
590 590  
591 591  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -600,8 +600,7 @@
600 600  
601 601  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
602 602  
603 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
604 -**Figure 22 – VTL Data Types**
606 +==== Figure 22 – VTL Data Types ====
605 605  
606 606  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
607 607  
... ... @@ -608,12 +608,131 @@
608 608  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
609 609  
610 610  
611 -**Figure 23 – VTL Basic Scalar Types**
612 612  
613 613  (((
614 -
615 +//n//
616 +
617 +//a//
618 +
619 +//e//
620 +
621 +//l//
622 +
623 +//o//
624 +
625 +//o//
626 +
627 +//B//
628 +
629 +//n//
630 +
631 +//o//
632 +
633 +//i//
634 +
635 +//t//
636 +
637 +//a//
638 +
639 +//r//
640 +
641 +//u//
642 +
643 +//D//
644 +
645 +//d//
646 +
647 +//o//
648 +
649 +//i//
650 +
651 +//r//
652 +
653 +//e//
654 +
655 +//p//
656 +
657 +//_//
658 +
659 +//e//
660 +
661 +//m//
662 +
663 +//i//
664 +
665 +//T//
666 +
667 +//e//
668 +
669 +//t//
670 +
671 +//a//
672 +
673 +//D//
674 +
675 +//e//
676 +
677 +//m//
678 +
679 +//i//
680 +
681 +//T//
682 +
683 +//r//
684 +
685 +//e//
686 +
687 +//g//
688 +
689 +//e//
690 +
691 +//t//
692 +
693 +//n//
694 +
695 +//I//
696 +
697 +//r//
698 +
699 +//e//
700 +
701 +//b//
702 +
703 +//m//
704 +
705 +//u//
706 +
707 +//N//
708 +
709 +//g//
710 +
711 +//n//
712 +
713 +//i//
714 +
715 +//r//
716 +
717 +//t//
718 +
719 +//S//
720 +
721 +//r//
722 +
723 +//a//
724 +
725 +//l//
726 +
727 +//a//
728 +
729 +//c//
730 +
731 +//S//
732 +
733 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
615 615  )))
616 616  
736 +==== Figure 23 – VTL Basic Scalar Types ====
737 +
617 617  === 12.4.2 VTL basic scalar types and SDMX data types ===
618 618  
619 619  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -636,159 +636,204 @@
636 636  
637 637  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
638 638  
639 -(% style="width:823.294px" %)
640 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
641 -|(% style="width:509px" %)(((
760 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
761 +|(((
642 642  String
763 +
643 643  (string allowing any character)
644 -)))|(% style="width:312px" %)string
645 -|(% style="width:509px" %)(((
765 +)))|string
766 +|(((
646 646  Alpha
768 +
647 647  (string which only allows A-z)
648 -)))|(% style="width:312px" %)string
649 -|(% style="width:509px" %)(((
770 +)))|string
771 +|(((
650 650  AlphaNumeric
773 +
651 651  (string which only allows A-z and 0-9)
652 -)))|(% style="width:312px" %)string
653 -|(% style="width:509px" %)(((
775 +)))|string
776 +|(((
654 654  Numeric
778 +
655 655  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
656 -)))|(% style="width:312px" %)string
657 -|(% style="width:509px" %)(((
780 +)))|string
781 +|(((
658 658  BigInteger
783 +
659 659  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
660 -)))|(% style="width:312px" %)integer
661 -|(% style="width:509px" %)(((
785 +)))|integer
786 +|(((
662 662  Integer
663 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
664 -)))|(% style="width:312px" %)integer
665 -|(% style="width:509px" %)(((
788 +
789 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
790 +
791 +(inclusive))
792 +)))|integer
793 +|(((
666 666  Long
667 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
668 -)))|(% style="width:312px" %)integer
669 -|(% style="width:509px" %)(((
795 +
796 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
797 +
798 ++9223372036854775807 (inclusive))
799 +)))|integer
800 +|(((
670 670  Short
802 +
671 671  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
672 -)))|(% style="width:312px" %)integer
673 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
674 -|(% style="width:509px" %)(((
804 +)))|integer
805 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
806 +|(((
675 675  Float
808 +
676 676  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
677 -)))|(% style="width:312px" %)number
678 -|(% style="width:509px" %)(((
810 +)))|number
811 +|(((
679 679  Double
813 +
680 680  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
681 -)))|(% style="width:312px" %)number
682 -|(% style="width:509px" %)(((
815 +)))|number
816 +|(((
683 683  Boolean
684 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
685 -)))|(% style="width:312px" %)boolean
686 686  
687 -(% style="width:822.294px" %)
688 -|(% colspan="2" style="width:507px" %)(((
819 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
820 +
821 +binary-valued logic: {true, false})
822 +)))|boolean
823 +
824 +| |(% colspan="2" %)(((
689 689  URI
826 +
690 690  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
691 -)))|(% colspan="1" style="width:311px" %)string
692 -|(% colspan="2" style="width:507px" %)(((
828 +)))|(% colspan="2" %)string
829 +| |(% colspan="2" %)(((
693 693  Count
831 +
694 694  (an integer following a sequential pattern, increasing by 1 for each occurrence)
695 -)))|(% colspan="1" style="width:311px" %)integer
696 -|(% colspan="2" style="width:507px" %)(((
833 +)))|(% colspan="2" %)integer
834 +| |(% colspan="2" %)(((
697 697  InclusiveValueRange
836 +
698 698  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
699 -)))|(% colspan="1" style="width:311px" %)number
700 -|(% colspan="2" style="width:507px" %)(((
838 +)))|(% colspan="2" %)number
839 +| |(% colspan="2" %)(((
701 701  ExclusiveValueRange
841 +
702 702  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
703 -)))|(% colspan="1" style="width:311px" %)number
704 -|(% colspan="2" style="width:507px" %)(((
843 +)))|(% colspan="2" %)number
844 +| |(% colspan="2" %)(((
705 705  Incremental
846 +
706 706  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
707 -)))|(% colspan="1" style="width:311px" %)number
708 -|(% colspan="2" style="width:507px" %)(((
848 +)))|(% colspan="2" %)number
849 +| |(% colspan="2" %)(((
709 709  ObservationalTimePeriod
851 +
710 710  (superset of StandardTimePeriod and TimeRange)
711 -)))|(% colspan="1" style="width:311px" %)time
712 -|(% colspan="2" style="width:507px" %)(((
853 +)))|(% colspan="2" %)time
854 +| |(% colspan="2" %)(((
713 713  StandardTimePeriod
714 -(superset of BasicTimePeriod and ReportingTimePeriod)
715 -)))|(% colspan="1" style="width:311px" %)time
716 -|(% colspan="2" style="width:507px" %)(((
856 +
857 +(superset of BasicTimePeriod and
858 +
859 +ReportingTimePeriod)
860 +)))|(% colspan="2" %)time
861 +| |(% colspan="2" %)(((
717 717  BasicTimePeriod
863 +
718 718  (superset of GregorianTimePeriod and DateTime)
719 -)))|(% colspan="1" style="width:311px" %)date
720 -|(% colspan="2" style="width:507px" %)(((
865 +)))|(% colspan="2" %)date
866 +| |(% colspan="2" %)(((
721 721  GregorianTimePeriod
868 +
722 722  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
723 -)))|(% colspan="1" style="width:311px" %)date
724 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
725 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
726 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
727 -|(% colspan="2" style="width:507px" %)(((
870 +)))|(% colspan="2" %)date
871 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
872 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
873 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
874 +| |(% colspan="2" %)(((
728 728  ReportingTimePeriod
729 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
730 -)))|(% colspan="1" style="width:311px" %)time_period
731 -|(% colspan="2" style="width:507px" %)(((
876 +
877 +(superset of RepostingYear, ReportingSemester,
878 +
879 +ReportingTrimester, ReportingQuarter,
880 +
881 +ReportingMonth, ReportingWeek, ReportingDay)
882 +)))|(% colspan="2" %)time_period
883 +| |(% colspan="2" %)(((
732 732  ReportingYear
885 +
733 733  (YYYY-A1 – 1 year period)
734 -)))|(% colspan="1" style="width:311px" %)time_period
735 -|(% colspan="2" style="width:507px" %)(((
887 +)))|(% colspan="2" %)time_period
888 +| |(% colspan="2" %)(((
736 736  ReportingSemester
890 +
737 737  (YYYY-Ss – 6 month period)
738 -)))|(% colspan="1" style="width:311px" %)time_period
739 -|(% colspan="2" style="width:507px" %)(((
892 +)))|(% colspan="2" %)time_period
893 +| |(% colspan="2" %)(((
740 740  ReportingTrimester
895 +
741 741  (YYYY-Tt – 4 month period)
742 -)))|(% colspan="1" style="width:311px" %)time_period
743 -|(% colspan="2" style="width:507px" %)(((
897 +)))|(% colspan="2" %)time_period
898 +| |(% colspan="2" %)(((
744 744  ReportingQuarter
900 +
745 745  (YYYY-Qq – 3 month period)
746 -)))|(% colspan="1" style="width:311px" %)time_period
747 -|(% colspan="2" style="width:507px" %)(((
902 +)))|(% colspan="2" %)time_period
903 +| |(% colspan="2" %)(((
748 748  ReportingMonth
905 +
749 749  (YYYY-Mmm – 1 month period)
750 -)))|(% colspan="1" style="width:311px" %)time_period
751 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
752 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
753 -|(% colspan="1" style="width:507px" %)(((
907 +)))|(% colspan="2" %)time_period
908 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
909 +| |(% colspan="2" %) |(% colspan="2" %)
910 +| |(% colspan="2" %) |(% colspan="2" %)
911 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
912 +|(% colspan="2" %)(((
754 754  ReportingDay
914 +
755 755  (YYYY-Dddd – 1 day period)
756 -)))|(% colspan="2" style="width:312px" %)time_period
757 -|(% colspan="1" style="width:507px" %)(((
916 +)))|(% colspan="2" %)time_period|
917 +|(% colspan="2" %)(((
758 758  DateTime
919 +
759 759  (YYYY-MM-DDThh:mm:ss)
760 -)))|(% colspan="2" style="width:312px" %)date
761 -|(% colspan="1" style="width:507px" %)(((
921 +)))|(% colspan="2" %)date|
922 +|(% colspan="2" %)(((
762 762  TimeRange
924 +
763 763  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
764 -)))|(% colspan="2" style="width:312px" %)time
765 -|(% colspan="1" style="width:507px" %)(((
926 +)))|(% colspan="2" %)time|
927 +|(% colspan="2" %)(((
766 766  Month
929 +
767 767  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
768 -)))|(% colspan="2" style="width:312px" %)string
769 -|(% colspan="1" style="width:507px" %)(((
931 +)))|(% colspan="2" %)string|
932 +|(% colspan="2" %)(((
770 770  MonthDay
934 +
771 771  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
772 -)))|(% colspan="2" style="width:312px" %)string
773 -|(% colspan="1" style="width:507px" %)(((
936 +)))|(% colspan="2" %)string|
937 +|(% colspan="2" %)(((
774 774  Day
939 +
775 775  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
776 -)))|(% colspan="2" style="width:312px" %)string
777 -|(% colspan="1" style="width:507px" %)(((
941 +)))|(% colspan="2" %)string|
942 +|(% colspan="2" %)(((
778 778  Time
944 +
779 779  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
780 -)))|(% colspan="2" style="width:312px" %)string
781 -|(% colspan="1" style="width:507px" %)(((
946 +)))|(% colspan="2" %)string|
947 +|(% colspan="2" %)(((
782 782  Duration
949 +
783 783  (corresponds to XML Schema xs:duration datatype)
784 -)))|(% colspan="2" style="width:312px" %)duration
785 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
786 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
787 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
788 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
951 +)))|(% colspan="2" %)duration|
952 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
953 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
954 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
955 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
789 789  
790 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
791 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
957 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
792 792  
793 793  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
794 794  
... ... @@ -796,29 +796,37 @@
796 796  
797 797  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
798 798  
799 -(% style="width:1073.29px" %)
800 -|(% style="width:207px" %)(((
801 -**VTL basic scalar type**
802 -)))|(% style="width:462px" %)(((
803 -**Default SDMX data type (BasicComponentDataType)**
804 -)))|(% style="width:402px" %)**Default output format**
805 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
806 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
807 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
808 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
809 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
810 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
965 +|(((
966 +VTL basic
967 +
968 +scalar type
969 +)))|(((
970 +Default SDMX data type
971 +
972 +(BasicComponentDataType
973 +
974 +)
975 +)))|Default output format
976 +|String|String|Like XML (xs:string)
977 +|Number|Float|Like XML (xs:float)
978 +|Integer|Integer|Like XML (xs:int)
979 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
980 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
981 +|time_period|(((
811 811  ReportingTimePeriod
983 +
812 812  (StandardReportingPeriod)
813 -)))|(% style="width:402px" %)(((
985 +)))|(((
814 814  YYYY-Pppp
987 +
815 815  (according to SDMX )
816 816  )))
817 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
990 +|Duration|Duration|(((
818 818  Like XML (xs:duration)
992 +
819 819  PnYnMnDTnHnMnS
820 820  )))
821 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
995 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
822 822  
823 823  ==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
824 824  
... ... @@ -874,7 +874,7 @@
874 874  |N|fixed number of digits used in the preceding textual representation of the month or the day
875 875  | |
876 876  
877 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
1051 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
878 878  
879 879  === 12.4.5 Null Values ===
880 880