Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -243,7 +243,7 @@ 243 243 244 244 AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 245 246 -* 246 +* 247 247 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 248 248 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 249 249 ... ... @@ -533,7 +533,7 @@ 533 533 534 534 DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 535 535 536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} 536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 537 537 538 538 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 539 539 ... ... @@ -541,51 +541,52 @@ 541 541 542 542 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 543 543 544 -(% style="width:1170.29px" %) 545 -|**VTL**|(% style="width:754px" %)**SDMX** 546 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 547 -|**Represented Variable**|(% style="width:754px" %)((( 544 +|VTL|SDMX 545 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 546 +|**Represented Variable**|((( 548 548 **Concept** with a definite 549 549 550 550 Representation 551 551 ))) 552 -|**Value Domain**|( % style="width:754px" %)(((551 +|**Value Domain**|((( 553 553 **Representation** (see the Structure 554 554 555 555 Pattern in the Base Package) 556 556 ))) 557 -|**Enumerated Value Domain / Code List**| (% style="width:754px" %)**Codelist**558 -|**Code**|( % style="width:754px" %)(((556 +|**Enumerated Value Domain / Code List**|**Codelist** 557 +|**Code**|((( 559 559 **Code** (for enumerated 560 560 561 561 DimensionComponent, Measure, DataAttribute) 562 562 ))) 563 -|**Described Value Domain**|( % style="width:754px" %)(((564 -non-enumerated** Representation** 562 +|**Described Value Domain**|((( 563 +non-enumerated** Representation** 565 565 566 566 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 567 567 ))) 568 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 569 -| |(% style="width:754px" %)((( 570 -to a valid **value **(for non-enumerated** **Representations) 567 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 568 +| |((( 569 +to a valid **value **(for non-enumerated** ** 570 + 571 +Representations) 571 571 ))) 572 -|**Value Domain Subset / Set**| (% style="width:754px" %)This abstraction does not exist in SDMX573 -|**Enumerated Value Domain Subset / Enumerated Set**| (% style="width:754px" %)This abstraction does not exist in SDMX574 -|**Described Value Domain Subset / Described Set**| (% style="width:754px" %)This abstraction does not exist in SDMX575 -|**Set list**| (% style="width:754px" %)This abstraction does not exist in SDMX573 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 574 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 575 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 576 +|**Set list**|This abstraction does not exist in SDMX 576 576 577 577 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 578 578 579 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear {{footnote}}By usingrepresented variables,VTL can assume thatdatastructureshavingthesamevariablesasidentifierscanbecomposedone anotherbecause thecorrespondentvaluescanmatch.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}AConceptbecomesaComponentin aDataStructureDefinition,andComponents canhavedifferentLocalRepresentationsindifferentDataStructureDefinitions,alsooverridingthe(possible)base representationoftheConcept.{{/footnote}}This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.580 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 580 580 581 581 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 582 582 583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 584 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 584 584 585 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 586 - 587 587 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 588 588 588 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 589 + 589 589 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 590 590 591 591 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -600,8 +600,7 @@ 600 600 601 601 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 602 602 603 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 604 -**Figure 22 – VTL Data Types** 604 +==== Figure 22 – VTL Data Types ==== 605 605 606 606 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 607 607 ... ... @@ -608,12 +608,131 @@ 608 608 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 609 609 610 610 611 -**Figure 23 – VTL Basic Scalar Types** 612 612 613 613 ((( 614 - 613 +//n// 614 + 615 +//a// 616 + 617 +//e// 618 + 619 +//l// 620 + 621 +//o// 622 + 623 +//o// 624 + 625 +//B// 626 + 627 +//n// 628 + 629 +//o// 630 + 631 +//i// 632 + 633 +//t// 634 + 635 +//a// 636 + 637 +//r// 638 + 639 +//u// 640 + 641 +//D// 642 + 643 +//d// 644 + 645 +//o// 646 + 647 +//i// 648 + 649 +//r// 650 + 651 +//e// 652 + 653 +//p// 654 + 655 +//_// 656 + 657 +//e// 658 + 659 +//m// 660 + 661 +//i// 662 + 663 +//T// 664 + 665 +//e// 666 + 667 +//t// 668 + 669 +//a// 670 + 671 +//D// 672 + 673 +//e// 674 + 675 +//m// 676 + 677 +//i// 678 + 679 +//T// 680 + 681 +//r// 682 + 683 +//e// 684 + 685 +//g// 686 + 687 +//e// 688 + 689 +//t// 690 + 691 +//n// 692 + 693 +//I// 694 + 695 +//r// 696 + 697 +//e// 698 + 699 +//b// 700 + 701 +//m// 702 + 703 +//u// 704 + 705 +//N// 706 + 707 +//g// 708 + 709 +//n// 710 + 711 +//i// 712 + 713 +//r// 714 + 715 +//t// 716 + 717 +//S// 718 + 719 +//r// 720 + 721 +//a// 722 + 723 +//l// 724 + 725 +//a// 726 + 727 +//c// 728 + 729 +//S// 730 + 731 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 615 615 ))) 616 616 734 +==== Figure 23 – VTL Basic Scalar Types ==== 735 + 617 617 === 12.4.2 VTL basic scalar types and SDMX data types === 618 618 619 619 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -636,159 +636,204 @@ 636 636 637 637 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 638 638 639 -(% style="width:823.294px" %) 640 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 641 -|(% style="width:509px" %)((( 758 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 759 +|((( 642 642 String 761 + 643 643 (string allowing any character) 644 -)))| (%style="width:312px" %)string645 -|( % style="width:509px" %)(((763 +)))|string 764 +|((( 646 646 Alpha 766 + 647 647 (string which only allows A-z) 648 -)))| (%style="width:312px" %)string649 -|( % style="width:509px" %)(((768 +)))|string 769 +|((( 650 650 AlphaNumeric 771 + 651 651 (string which only allows A-z and 0-9) 652 -)))| (%style="width:312px" %)string653 -|( % style="width:509px" %)(((773 +)))|string 774 +|((( 654 654 Numeric 776 + 655 655 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 656 -)))| (%style="width:312px" %)string657 -|( % style="width:509px" %)(((778 +)))|string 779 +|((( 658 658 BigInteger 781 + 659 659 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 660 -)))| (% style="width:312px" %)integer661 -|( % style="width:509px" %)(((783 +)))|integer 784 +|((( 662 662 Integer 663 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 664 -)))|(% style="width:312px" %)integer 665 -|(% style="width:509px" %)((( 786 + 787 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 788 + 789 +(inclusive)) 790 +)))|integer 791 +|((( 666 666 Long 667 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 668 -)))|(% style="width:312px" %)integer 669 -|(% style="width:509px" %)((( 793 + 794 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 795 + 796 ++9223372036854775807 (inclusive)) 797 +)))|integer 798 +|((( 670 670 Short 800 + 671 671 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 672 -)))| (% style="width:312px" %)integer673 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number674 -|( % style="width:509px" %)(((802 +)))|integer 803 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 804 +|((( 675 675 Float 806 + 676 676 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 677 -)))| (% style="width:312px" %)number678 -|( % style="width:509px" %)(((808 +)))|number 809 +|((( 679 679 Double 811 + 680 680 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 681 -)))| (% style="width:312px" %)number682 -|( % style="width:509px" %)(((813 +)))|number 814 +|((( 683 683 Boolean 684 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 685 -)))|(% style="width:312px" %)boolean 686 686 687 -(% style="width:822.294px" %) 688 -|(% colspan="2" style="width:507px" %)((( 817 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 818 + 819 +binary-valued logic: {true, false}) 820 +)))|boolean 821 + 822 +| |(% colspan="2" %)((( 689 689 URI 824 + 690 690 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 691 -)))|(% colspan=" 1"style="width:311px"%)string692 -|(% colspan="2" style="width:507px"%)(((826 +)))|(% colspan="2" %)string 827 +| |(% colspan="2" %)((( 693 693 Count 829 + 694 694 (an integer following a sequential pattern, increasing by 1 for each occurrence) 695 -)))|(% colspan=" 1"style="width:311px"%)integer696 -|(% colspan="2" style="width:507px"%)(((831 +)))|(% colspan="2" %)integer 832 +| |(% colspan="2" %)((( 697 697 InclusiveValueRange 834 + 698 698 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 699 -)))|(% colspan=" 1"style="width:311px"%)number700 -|(% colspan="2" style="width:507px"%)(((836 +)))|(% colspan="2" %)number 837 +| |(% colspan="2" %)((( 701 701 ExclusiveValueRange 839 + 702 702 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 703 -)))|(% colspan=" 1"style="width:311px"%)number704 -|(% colspan="2" style="width:507px"%)(((841 +)))|(% colspan="2" %)number 842 +| |(% colspan="2" %)((( 705 705 Incremental 844 + 706 706 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 707 -)))|(% colspan=" 1"style="width:311px"%)number708 -|(% colspan="2" style="width:507px"%)(((846 +)))|(% colspan="2" %)number 847 +| |(% colspan="2" %)((( 709 709 ObservationalTimePeriod 849 + 710 710 (superset of StandardTimePeriod and TimeRange) 711 -)))|(% colspan=" 1"style="width:311px"%)time712 -|(% colspan="2" style="width:507px"%)(((851 +)))|(% colspan="2" %)time 852 +| |(% colspan="2" %)((( 713 713 StandardTimePeriod 714 -(superset of BasicTimePeriod and ReportingTimePeriod) 715 -)))|(% colspan="1" style="width:311px" %)time 716 -|(% colspan="2" style="width:507px" %)((( 854 + 855 +(superset of BasicTimePeriod and 856 + 857 +ReportingTimePeriod) 858 +)))|(% colspan="2" %)time 859 +| |(% colspan="2" %)((( 717 717 BasicTimePeriod 861 + 718 718 (superset of GregorianTimePeriod and DateTime) 719 -)))|(% colspan=" 1"style="width:311px"%)date720 -|(% colspan="2" style="width:507px"%)(((863 +)))|(% colspan="2" %)date 864 +| |(% colspan="2" %)((( 721 721 GregorianTimePeriod 866 + 722 722 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 723 -)))|(% colspan=" 1"style="width:311px"%)date724 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date725 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date726 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date727 -|(% colspan="2" style="width:507px"%)(((868 +)))|(% colspan="2" %)date 869 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 870 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 871 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 872 +| |(% colspan="2" %)((( 728 728 ReportingTimePeriod 729 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 730 -)))|(% colspan="1" style="width:311px" %)time_period 731 -|(% colspan="2" style="width:507px" %)((( 874 + 875 +(superset of RepostingYear, ReportingSemester, 876 + 877 +ReportingTrimester, ReportingQuarter, 878 + 879 +ReportingMonth, ReportingWeek, ReportingDay) 880 +)))|(% colspan="2" %)time_period 881 +| |(% colspan="2" %)((( 732 732 ReportingYear 883 + 733 733 (YYYY-A1 – 1 year period) 734 -)))|(% colspan=" 1"style="width:311px"%)time_period735 -|(% colspan="2" style="width:507px"%)(((885 +)))|(% colspan="2" %)time_period 886 +| |(% colspan="2" %)((( 736 736 ReportingSemester 888 + 737 737 (YYYY-Ss – 6 month period) 738 -)))|(% colspan=" 1"style="width:311px"%)time_period739 -|(% colspan="2" style="width:507px"%)(((890 +)))|(% colspan="2" %)time_period 891 +| |(% colspan="2" %)((( 740 740 ReportingTrimester 893 + 741 741 (YYYY-Tt – 4 month period) 742 -)))|(% colspan=" 1"style="width:311px"%)time_period743 -|(% colspan="2" style="width:507px"%)(((895 +)))|(% colspan="2" %)time_period 896 +| |(% colspan="2" %)((( 744 744 ReportingQuarter 898 + 745 745 (YYYY-Qq – 3 month period) 746 -)))|(% colspan=" 1"style="width:311px"%)time_period747 -|(% colspan="2" style="width:507px"%)(((900 +)))|(% colspan="2" %)time_period 901 +| |(% colspan="2" %)((( 748 748 ReportingMonth 903 + 749 749 (YYYY-Mmm – 1 month period) 750 -)))|(% colspan="1" style="width:311px" %)time_period 751 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 752 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 753 -|(% colspan="1" style="width:507px" %)((( 905 +)))|(% colspan="2" %)time_period 906 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 907 +| |(% colspan="2" %) |(% colspan="2" %) 908 +| |(% colspan="2" %) |(% colspan="2" %) 909 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 910 +|(% colspan="2" %)((( 754 754 ReportingDay 912 + 755 755 (YYYY-Dddd – 1 day period) 756 -)))|(% colspan="2" style="width:312px"%)time_period757 -|(% colspan=" 1"style="width:507px"%)(((914 +)))|(% colspan="2" %)time_period| 915 +|(% colspan="2" %)((( 758 758 DateTime 917 + 759 759 (YYYY-MM-DDThh:mm:ss) 760 -)))|(% colspan="2" style="width:312px"%)date761 -|(% colspan=" 1"style="width:507px"%)(((919 +)))|(% colspan="2" %)date| 920 +|(% colspan="2" %)((( 762 762 TimeRange 922 + 763 763 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 764 -)))|(% colspan="2" style="width:312px"%)time765 -|(% colspan=" 1"style="width:507px"%)(((924 +)))|(% colspan="2" %)time| 925 +|(% colspan="2" %)((( 766 766 Month 927 + 767 767 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 768 -)))|(% colspan="2" style="width:312px"%)string769 -|(% colspan=" 1"style="width:507px"%)(((929 +)))|(% colspan="2" %)string| 930 +|(% colspan="2" %)((( 770 770 MonthDay 932 + 771 771 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 772 -)))|(% colspan="2" style="width:312px"%)string773 -|(% colspan=" 1"style="width:507px"%)(((934 +)))|(% colspan="2" %)string| 935 +|(% colspan="2" %)((( 774 774 Day 937 + 775 775 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 776 -)))|(% colspan="2" style="width:312px"%)string777 -|(% colspan=" 1"style="width:507px"%)(((939 +)))|(% colspan="2" %)string| 940 +|(% colspan="2" %)((( 778 778 Time 942 + 779 779 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 780 -)))|(% colspan="2" style="width:312px"%)string781 -|(% colspan=" 1"style="width:507px"%)(((944 +)))|(% colspan="2" %)string| 945 +|(% colspan="2" %)((( 782 782 Duration 947 + 783 783 (corresponds to XML Schema xs:duration datatype) 784 -)))|(% colspan="2" style="width:312px"%)duration785 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable786 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable787 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable788 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable949 +)))|(% colspan="2" %)duration| 950 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 951 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 952 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 953 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 789 789 790 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 791 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 955 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 792 792 793 793 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 794 794 ... ... @@ -796,29 +796,37 @@ 796 796 797 797 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 798 798 799 -(% style="width:1073.29px" %) 800 -|(% style="width:207px" %)((( 801 -**VTL basic scalar type** 802 -)))|(% style="width:462px" %)((( 803 -**Default SDMX data type (BasicComponentDataType)** 804 -)))|(% style="width:402px" %)**Default output format** 805 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 806 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 807 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 808 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 809 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 810 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 963 +|((( 964 +VTL basic 965 + 966 +scalar type 967 +)))|((( 968 +Default SDMX data type 969 + 970 +(BasicComponentDataType 971 + 972 +) 973 +)))|Default output format 974 +|String|String|Like XML (xs:string) 975 +|Number|Float|Like XML (xs:float) 976 +|Integer|Integer|Like XML (xs:int) 977 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 978 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 979 +|time_period|((( 811 811 ReportingTimePeriod 981 + 812 812 (StandardReportingPeriod) 813 -)))|( % style="width:402px" %)(((983 +)))|((( 814 814 YYYY-Pppp 985 + 815 815 (according to SDMX ) 816 816 ))) 817 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((988 +|Duration|Duration|((( 818 818 Like XML (xs:duration) 990 + 819 819 PnYnMnDTnHnMnS 820 820 ))) 821 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"993 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 822 822 823 823 ==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 824 824 ... ... @@ -874,7 +874,7 @@ 874 874 |N|fixed number of digits used in the preceding textual representation of the month or the day 875 875 | | 876 876 877 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.1049 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 878 878 879 879 === 12.4.5 Null Values === 880 880