Last modified by Helena on 2025/09/10 11:19

From version 5.27
edited by Helena
on 2025/05/16 09:08
Change comment: There is no comment for this version
To version 5.19
edited by Helena
on 2025/05/16 08:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -243,7 +243,7 @@
243 243  
244 244  AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 245  
246 -*
246 +*
247 247  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
248 248  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
249 249  
... ... @@ -533,7 +533,7 @@
533 533  
534 534  DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
535 535  
536 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
537 537  
538 538  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
539 539  
... ... @@ -543,7 +543,7 @@
543 543  
544 544  (% style="width:1170.29px" %)
545 545  |**VTL**|(% style="width:754px" %)**SDMX**
546 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
546 +|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow
547 547  |**Represented Variable**|(% style="width:754px" %)(((
548 548  **Concept** with a definite
549 549  
... ... @@ -576,16 +576,16 @@
576 576  
577 577  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
578 578  
579 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
579 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
580 580  
581 581  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
582 582  
583 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
584 584  
585 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
586 -
587 587  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
588 588  
587 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
588 +
589 589  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
590 590  
591 591  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -600,8 +600,7 @@
600 600  
601 601  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
602 602  
603 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
604 -**Figure 22 – VTL Data Types**
603 +==== Figure 22 – VTL Data Types ====
605 605  
606 606  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
607 607  
... ... @@ -608,12 +608,131 @@
608 608  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
609 609  
610 610  
611 -**Figure 23 – VTL Basic Scalar Types**
612 612  
613 613  (((
614 -
612 +//n//
613 +
614 +//a//
615 +
616 +//e//
617 +
618 +//l//
619 +
620 +//o//
621 +
622 +//o//
623 +
624 +//B//
625 +
626 +//n//
627 +
628 +//o//
629 +
630 +//i//
631 +
632 +//t//
633 +
634 +//a//
635 +
636 +//r//
637 +
638 +//u//
639 +
640 +//D//
641 +
642 +//d//
643 +
644 +//o//
645 +
646 +//i//
647 +
648 +//r//
649 +
650 +//e//
651 +
652 +//p//
653 +
654 +//_//
655 +
656 +//e//
657 +
658 +//m//
659 +
660 +//i//
661 +
662 +//T//
663 +
664 +//e//
665 +
666 +//t//
667 +
668 +//a//
669 +
670 +//D//
671 +
672 +//e//
673 +
674 +//m//
675 +
676 +//i//
677 +
678 +//T//
679 +
680 +//r//
681 +
682 +//e//
683 +
684 +//g//
685 +
686 +//e//
687 +
688 +//t//
689 +
690 +//n//
691 +
692 +//I//
693 +
694 +//r//
695 +
696 +//e//
697 +
698 +//b//
699 +
700 +//m//
701 +
702 +//u//
703 +
704 +//N//
705 +
706 +//g//
707 +
708 +//n//
709 +
710 +//i//
711 +
712 +//r//
713 +
714 +//t//
715 +
716 +//S//
717 +
718 +//r//
719 +
720 +//a//
721 +
722 +//l//
723 +
724 +//a//
725 +
726 +//c//
727 +
728 +//S//
729 +
730 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
615 615  )))
616 616  
733 +==== Figure 23 – VTL Basic Scalar Types ====
734 +
617 617  === 12.4.2 VTL basic scalar types and SDMX data types ===
618 618  
619 619  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -636,159 +636,204 @@
636 636  
637 637  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
638 638  
639 -(% style="width:823.294px" %)
640 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
641 -|(% style="width:509px" %)(((
757 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
758 +|(((
642 642  String
760 +
643 643  (string allowing any character)
644 -)))|(% style="width:312px" %)string
645 -|(% style="width:509px" %)(((
762 +)))|string
763 +|(((
646 646  Alpha
765 +
647 647  (string which only allows A-z)
648 -)))|(% style="width:312px" %)string
649 -|(% style="width:509px" %)(((
767 +)))|string
768 +|(((
650 650  AlphaNumeric
770 +
651 651  (string which only allows A-z and 0-9)
652 -)))|(% style="width:312px" %)string
653 -|(% style="width:509px" %)(((
772 +)))|string
773 +|(((
654 654  Numeric
775 +
655 655  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
656 -)))|(% style="width:312px" %)string
657 -|(% style="width:509px" %)(((
777 +)))|string
778 +|(((
658 658  BigInteger
780 +
659 659  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
660 -)))|(% style="width:312px" %)integer
661 -|(% style="width:509px" %)(((
782 +)))|integer
783 +|(((
662 662  Integer
663 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
664 -)))|(% style="width:312px" %)integer
665 -|(% style="width:509px" %)(((
785 +
786 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
787 +
788 +(inclusive))
789 +)))|integer
790 +|(((
666 666  Long
667 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
668 -)))|(% style="width:312px" %)integer
669 -|(% style="width:509px" %)(((
792 +
793 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
794 +
795 ++9223372036854775807 (inclusive))
796 +)))|integer
797 +|(((
670 670  Short
799 +
671 671  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
672 -)))|(% style="width:312px" %)integer
673 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
674 -|(% style="width:509px" %)(((
801 +)))|integer
802 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
803 +|(((
675 675  Float
805 +
676 676  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
677 -)))|(% style="width:312px" %)number
678 -|(% style="width:509px" %)(((
807 +)))|number
808 +|(((
679 679  Double
810 +
680 680  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
681 -)))|(% style="width:312px" %)number
682 -|(% style="width:509px" %)(((
812 +)))|number
813 +|(((
683 683  Boolean
684 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
685 -)))|(% style="width:312px" %)boolean
686 686  
687 -(% style="width:822.294px" %)
688 -|(% colspan="2" style="width:507px" %)(((
816 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
817 +
818 +binary-valued logic: {true, false})
819 +)))|boolean
820 +
821 +| |(% colspan="2" %)(((
689 689  URI
823 +
690 690  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
691 -)))|(% colspan="1" style="width:311px" %)string
692 -|(% colspan="2" style="width:507px" %)(((
825 +)))|(% colspan="2" %)string
826 +| |(% colspan="2" %)(((
693 693  Count
828 +
694 694  (an integer following a sequential pattern, increasing by 1 for each occurrence)
695 -)))|(% colspan="1" style="width:311px" %)integer
696 -|(% colspan="2" style="width:507px" %)(((
830 +)))|(% colspan="2" %)integer
831 +| |(% colspan="2" %)(((
697 697  InclusiveValueRange
833 +
698 698  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
699 -)))|(% colspan="1" style="width:311px" %)number
700 -|(% colspan="2" style="width:507px" %)(((
835 +)))|(% colspan="2" %)number
836 +| |(% colspan="2" %)(((
701 701  ExclusiveValueRange
838 +
702 702  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
703 -)))|(% colspan="1" style="width:311px" %)number
704 -|(% colspan="2" style="width:507px" %)(((
840 +)))|(% colspan="2" %)number
841 +| |(% colspan="2" %)(((
705 705  Incremental
843 +
706 706  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
707 -)))|(% colspan="1" style="width:311px" %)number
708 -|(% colspan="2" style="width:507px" %)(((
845 +)))|(% colspan="2" %)number
846 +| |(% colspan="2" %)(((
709 709  ObservationalTimePeriod
848 +
710 710  (superset of StandardTimePeriod and TimeRange)
711 -)))|(% colspan="1" style="width:311px" %)time
712 -|(% colspan="2" style="width:507px" %)(((
850 +)))|(% colspan="2" %)time
851 +| |(% colspan="2" %)(((
713 713  StandardTimePeriod
714 -(superset of BasicTimePeriod and ReportingTimePeriod)
715 -)))|(% colspan="1" style="width:311px" %)time
716 -|(% colspan="2" style="width:507px" %)(((
853 +
854 +(superset of BasicTimePeriod and
855 +
856 +ReportingTimePeriod)
857 +)))|(% colspan="2" %)time
858 +| |(% colspan="2" %)(((
717 717  BasicTimePeriod
860 +
718 718  (superset of GregorianTimePeriod and DateTime)
719 -)))|(% colspan="1" style="width:311px" %)date
720 -|(% colspan="2" style="width:507px" %)(((
862 +)))|(% colspan="2" %)date
863 +| |(% colspan="2" %)(((
721 721  GregorianTimePeriod
865 +
722 722  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
723 -)))|(% colspan="1" style="width:311px" %)date
724 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
725 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
726 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
727 -|(% colspan="2" style="width:507px" %)(((
867 +)))|(% colspan="2" %)date
868 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
869 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
870 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
871 +| |(% colspan="2" %)(((
728 728  ReportingTimePeriod
729 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
730 -)))|(% colspan="1" style="width:311px" %)time_period
731 -|(% colspan="2" style="width:507px" %)(((
873 +
874 +(superset of RepostingYear, ReportingSemester,
875 +
876 +ReportingTrimester, ReportingQuarter,
877 +
878 +ReportingMonth, ReportingWeek, ReportingDay)
879 +)))|(% colspan="2" %)time_period
880 +| |(% colspan="2" %)(((
732 732  ReportingYear
882 +
733 733  (YYYY-A1 – 1 year period)
734 -)))|(% colspan="1" style="width:311px" %)time_period
735 -|(% colspan="2" style="width:507px" %)(((
884 +)))|(% colspan="2" %)time_period
885 +| |(% colspan="2" %)(((
736 736  ReportingSemester
887 +
737 737  (YYYY-Ss – 6 month period)
738 -)))|(% colspan="1" style="width:311px" %)time_period
739 -|(% colspan="2" style="width:507px" %)(((
889 +)))|(% colspan="2" %)time_period
890 +| |(% colspan="2" %)(((
740 740  ReportingTrimester
892 +
741 741  (YYYY-Tt – 4 month period)
742 -)))|(% colspan="1" style="width:311px" %)time_period
743 -|(% colspan="2" style="width:507px" %)(((
894 +)))|(% colspan="2" %)time_period
895 +| |(% colspan="2" %)(((
744 744  ReportingQuarter
897 +
745 745  (YYYY-Qq – 3 month period)
746 -)))|(% colspan="1" style="width:311px" %)time_period
747 -|(% colspan="2" style="width:507px" %)(((
899 +)))|(% colspan="2" %)time_period
900 +| |(% colspan="2" %)(((
748 748  ReportingMonth
902 +
749 749  (YYYY-Mmm – 1 month period)
750 -)))|(% colspan="1" style="width:311px" %)time_period
751 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
752 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
753 -|(% colspan="1" style="width:507px" %)(((
904 +)))|(% colspan="2" %)time_period
905 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
906 +| |(% colspan="2" %) |(% colspan="2" %)
907 +| |(% colspan="2" %) |(% colspan="2" %)
908 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
909 +|(% colspan="2" %)(((
754 754  ReportingDay
911 +
755 755  (YYYY-Dddd – 1 day period)
756 -)))|(% colspan="2" style="width:312px" %)time_period
757 -|(% colspan="1" style="width:507px" %)(((
913 +)))|(% colspan="2" %)time_period|
914 +|(% colspan="2" %)(((
758 758  DateTime
916 +
759 759  (YYYY-MM-DDThh:mm:ss)
760 -)))|(% colspan="2" style="width:312px" %)date
761 -|(% colspan="1" style="width:507px" %)(((
918 +)))|(% colspan="2" %)date|
919 +|(% colspan="2" %)(((
762 762  TimeRange
921 +
763 763  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
764 -)))|(% colspan="2" style="width:312px" %)time
765 -|(% colspan="1" style="width:507px" %)(((
923 +)))|(% colspan="2" %)time|
924 +|(% colspan="2" %)(((
766 766  Month
926 +
767 767  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
768 -)))|(% colspan="2" style="width:312px" %)string
769 -|(% colspan="1" style="width:507px" %)(((
928 +)))|(% colspan="2" %)string|
929 +|(% colspan="2" %)(((
770 770  MonthDay
931 +
771 771  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
772 -)))|(% colspan="2" style="width:312px" %)string
773 -|(% colspan="1" style="width:507px" %)(((
933 +)))|(% colspan="2" %)string|
934 +|(% colspan="2" %)(((
774 774  Day
936 +
775 775  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
776 -)))|(% colspan="2" style="width:312px" %)string
777 -|(% colspan="1" style="width:507px" %)(((
938 +)))|(% colspan="2" %)string|
939 +|(% colspan="2" %)(((
778 778  Time
941 +
779 779  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
780 -)))|(% colspan="2" style="width:312px" %)string
781 -|(% colspan="1" style="width:507px" %)(((
943 +)))|(% colspan="2" %)string|
944 +|(% colspan="2" %)(((
782 782  Duration
946 +
783 783  (corresponds to XML Schema xs:duration datatype)
784 -)))|(% colspan="2" style="width:312px" %)duration
785 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
786 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
787 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
788 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
948 +)))|(% colspan="2" %)duration|
949 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
950 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
951 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
952 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
789 789  
790 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
791 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
954 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
792 792  
793 793  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
794 794  
... ... @@ -796,29 +796,37 @@
796 796  
797 797  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
798 798  
799 -(% style="width:1073.29px" %)
800 -|(% style="width:207px" %)(((
801 -**VTL basic scalar type**
802 -)))|(% style="width:462px" %)(((
803 -**Default SDMX data type (BasicComponentDataType)**
804 -)))|(% style="width:402px" %)**Default output format**
805 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
806 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
807 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
808 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
809 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
810 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
962 +|(((
963 +VTL basic
964 +
965 +scalar type
966 +)))|(((
967 +Default SDMX data type
968 +
969 +(BasicComponentDataType
970 +
971 +)
972 +)))|Default output format
973 +|String|String|Like XML (xs:string)
974 +|Number|Float|Like XML (xs:float)
975 +|Integer|Integer|Like XML (xs:int)
976 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
977 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
978 +|time_period|(((
811 811  ReportingTimePeriod
980 +
812 812  (StandardReportingPeriod)
813 -)))|(% style="width:402px" %)(((
982 +)))|(((
814 814  YYYY-Pppp
984 +
815 815  (according to SDMX )
816 816  )))
817 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
987 +|Duration|Duration|(((
818 818  Like XML (xs:duration)
989 +
819 819  PnYnMnDTnHnMnS
820 820  )))
821 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
992 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
822 822  
823 823  ==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
824 824  
... ... @@ -874,7 +874,7 @@
874 874  |N|fixed number of digits used in the preceding textual representation of the month or the day
875 875  | |
876 876  
877 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
1048 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
878 878  
879 879  === 12.4.5 Null Values ===
880 880