Last modified by Helena on 2025/09/10 11:19

From version 6.1
edited by Helena
on 2025/05/16 09:09
Change comment: There is no comment for this version
To version 6.13
edited by Helena
on 2025/05/16 12:42
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,10 +14,8 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
18 18  
19 -Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 -
21 21  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
22 22  
23 23  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -28,10 +28,8 @@
28 28  
29 29  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
30 30  
31 -In any case, the aliases used in the VTL Transformations have to be mapped to the
29 +In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
32 32  
33 -SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 -
35 35  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
36 36  
37 37  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -202,7 +202,7 @@
202 202  
203 203  === 12.3.3 Mapping from SDMX to VTL data structures ===
204 204  
205 -**12.3.3.1 Basic Mapping**
201 +==== 12.3.3.1 Basic Mapping ====
206 206  
207 207  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
208 208  
... ... @@ -232,18 +232,11 @@
232 232  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
233 233  
234 234  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
235 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 -
237 -Component;
238 -
231 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
239 239  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
240 240  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
241 241  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
242 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 -
244 -AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 -
246 -*
235 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
247 247  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
248 248  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
249 249  
... ... @@ -266,10 +266,7 @@
266 266  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
267 267  
268 268  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
269 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 -
271 -Identifiers, (time) Identifier and Attributes.
272 -
258 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
273 273  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
274 274  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
275 275  
... ... @@ -362,7 +362,7 @@
362 362  The mapping table is the following:
363 363  
364 364  (% style="width:689.294px" %)
365 -|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
351 +|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
366 366  |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
367 367  |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
368 368  |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
... ... @@ -422,26 +422,14 @@
422 422  
423 423  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
424 424  
425 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
411 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
426 426  
427 -basic, pivot …).
413 +In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
428 428  
429 -In the example above, for all the datasets of the kind
430 -
431 -‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 -
433 433  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
434 434  
435 -‘DF1(1.0.0)/POPULATION.USA’ :=
417 +[[image:1747388275998-621.png]]
436 436  
437 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
438 -
439 -‘DF1(1.0.0)/POPULATION.CANADA’ :=
440 -
441 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
442 -
443 -… … …
444 -
445 445  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
446 446  
447 447  In the direction from SDMX to VTL it is allowed to omit the value of one or more
... ... @@ -452,10 +452,8 @@
452 452  
453 453  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
454 454  
455 -‘DF1(1.0.0)/POPULATION.’ :=
429 +[[image:1747388244829-693.png]]
456 456  
457 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
458 -
459 459  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
460 460  
461 461  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different
... ... @@ -481,54 +481,18 @@
481 481  
482 482  Some examples follow, for some specific values of INDICATOR and COUNTRY:
483 483  
484 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
456 +[[image:1747388222879-916.png]]
485 485  
486 -… … …
458 +[[image:1747388206717-256.png]]
487 487  
488 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
489 -
490 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
491 -
492 -… … …
493 -
494 494  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
495 495  
496 -VTL dataset INDICATOR value COUNTRY value
462 +[[image:1747388148322-387.png]]
497 497  
498 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
499 -
500 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
501 -
502 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
503 -
504 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
505 -
506 -… … …
507 -
508 508  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
509 509  
510 -DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
466 +[[image:1747388179021-814.png]]
511 511  
512 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
513 -
514 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
515 -
516 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
517 -
518 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
519 -
520 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
521 -
522 -DF2bis_GDPPERCAPITA_CANADA’,
523 -
524 -… ,
525 -
526 -DF2bis_POPGROWTH_USA’,
527 -
528 -DF2bis_POPGROWTH_CANADA’
529 -
530 -…);
531 -
532 532  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
533 533  
534 534  DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -541,38 +541,30 @@
541 541  
542 542  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
543 543  
544 -(% style="width:1170.29px" %)
545 -|**VTL**|(% style="width:754px" %)**SDMX**
546 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
547 -|**Represented Variable**|(% style="width:754px" %)(((
480 +(% style="width:895.294px" %)
481 +|(% style="width:278px" %)**VTL**|(% style="width:613px" %)**SDMX**
482 +|(% style="width:278px" %)**Data Set Component**|(% style="width:613px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
483 +|(% style="width:278px" %)**Represented Variable**|(% style="width:613px" %)(((
548 548  **Concept** with a definite
549 549  
550 550  Representation
551 551  )))
552 -|**Value Domain**|(% style="width:754px" %)(((
553 -**Representation** (see the Structure
554 -
555 -Pattern in the Base Package)
488 +|(% style="width:278px" %)**Value Domain**|(% style="width:613px" %)(((
489 +**Representation** (see the Structure Pattern in the Base Package)
556 556  )))
557 -|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
558 -|**Code**|(% style="width:754px" %)(((
559 -**Code** (for enumerated
560 -
561 -DimensionComponent, Measure, DataAttribute)
491 +|(% style="width:278px" %)**Enumerated Value Domain /
492 +Code List**|(% style="width:613px" %)**Codelist**
493 +|(% style="width:278px" %)**Code**|(% style="width:613px" %)(((
494 +**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
562 562  )))
563 -|**Described Value Domain**|(% style="width:754px" %)(((
564 -non-enumerated** Representation**
565 -
566 -(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
496 +|(% style="width:278px" %)**Described Value Domain**|(% style="width:613px" %)(((
497 +non-enumerated** Representation **(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
567 567  )))
568 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
569 -| |(% style="width:754px" %)(((
570 -to a valid **value **(for non-enumerated** **Representations)
571 -)))
572 -|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
573 -|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
574 -|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
575 -|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
499 +|(% style="width:278px" %)**Value**|(% style="width:613px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or to a valid **value **(for non-enumerated** **Representations)
500 +|(% style="width:278px" %)**Value Domain Subset / Set**|(% style="width:613px" %)This abstraction does not exist in SDMX
501 +|(% style="width:278px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:613px" %)This abstraction does not exist in SDMX
502 +|(% style="width:278px" %)**Described Value Domain Subset / Described Set**|(% style="width:613px" %)This abstraction does not exist in SDMX
503 +|(% style="width:278px" %)**Set list**|(% style="width:613px" %)This abstraction does not exist in SDMX
576 576  
577 577  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
578 578  
... ... @@ -598,7 +598,7 @@
598 598  
599 599  The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which are the types of the scalar values, and compound types (like Data Sets, Components, Rulesets, etc.), which are the types of the compound structures. See below the diagram of the VTL data types, taken from the VTL User Manual:
600 600  
601 -[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
529 +[[image:1747388434672-948.png]]
602 602  
603 603  (% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
604 604  **Figure 22 – VTL Data Types**
... ... @@ -607,13 +607,10 @@
607 607  
608 608  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
609 609  
538 +[[image:1747388465321-274.png]]
610 610  
611 611  **Figure 23 – VTL Basic Scalar Types**
612 612  
613 -(((
614 -
615 -)))
616 -
617 617  === 12.4.2 VTL basic scalar types and SDMX data types ===
618 618  
619 619  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -827,53 +827,53 @@
827 827  
828 828  The custom output formats can be specified by means of the VTL formatting mask described in the section "Type Conversion and Formatting Mask" of the VTL Reference Manual. Such a section describes the masks for the VTL basic scalar types "number", "integer", "date", "time", "time_period" and "duration" and gives examples. As for the types "string" and "boolean" the VTL conventions are extended with some other special characters as described in the following table.
829 829  
830 -|(% colspan="2" %)VTL special characters for the formatting masks
831 -|(% colspan="2" %)
832 -|(% colspan="2" %)Number
833 -|D|one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
834 -|E|one numeric digit (for the exponent of the scientific notation)
835 -|. (dot)|possible separator between the integer and the decimal parts.
836 -|, (comma)|possible separator between the integer and the decimal parts.
837 -| |
838 -|(% colspan="2" %)Time and duration
839 -|C|century
840 -|Y|year
841 -|S|semester
842 -|Q|quarter
843 -|M|month
844 -|W|week
845 -|D|day
846 -|h|hour digit (by default on 24 hours)
847 -|M|minute
848 -|S|second
849 -|D|decimal of second
850 -|P|period indicator (representation in one digit for the duration)
851 -|P|number of the periods specified in the period indicator
852 -|AM/PM|indicator of AM / PM (e.g. am/pm for "am" or "pm")
853 -|MONTH|uppercase textual representation of the month (e.g., JANUARY for January)
854 -|DAY|uppercase textual representation of the day (e.g., MONDAY for Monday)
855 -|Month|lowercase textual representation of the month (e.g., january)
856 -|Day|lowercase textual representation of the month (e.g., monday)
857 -|Month|First character uppercase, then lowercase textual representation of the month (e.g., January)
858 -|Day|First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
859 -| |
860 -|(% colspan="2" %)String
861 -|X|any string character
862 -|Z|any string character from "A" to "z"
863 -|9|any string character from "0" to "9"
864 -| |
865 -|(% colspan="2" %)Boolean
866 -|B|Boolean using "true" for True and "false" for False
867 -|1|Boolean using "1" for True and "0" for False
868 -|0|Boolean using "0" for True and "1" for False
869 -| |
870 -|(% colspan="2" %)Other qualifiers
871 -|*|an arbitrary number of digits (of the preceding type)
872 -|+|at least one digit (of the preceding type)
873 -|( )|optional digits (specified within the brackets)
874 -|\|prefix for the special characters that must appear in the mask
875 -|N|fixed number of digits used in the preceding textual representation of the month or the day
876 -| |
755 +(% style="width:713.294px" %)
756 +|(% colspan="2" style="width:710px" %)VTL special characters for the formatting masks
757 +|(% colspan="2" style="width:710px" %)
758 +|(% colspan="2" style="width:710px" %)Number
759 +|D|(% style="width:486px" %)one numeric digit (if the scientific notation is adopted, D is only for the mantissa)
760 +|E|(% style="width:486px" %)one numeric digit (for the exponent of the scientific notation)
761 +|. (dot)|(% style="width:486px" %)possible separator between the integer and the decimal parts.
762 +|, (comma)|(% style="width:486px" %)possible separator between the integer and the decimal parts.
763 +| |(% style="width:486px" %)
764 +|(% colspan="2" style="width:710px" %)Time and duration
765 +|C|(% style="width:486px" %)century
766 +|Y|(% style="width:486px" %)year
767 +|S|(% style="width:486px" %)semester
768 +|Q|(% style="width:486px" %)quarter
769 +|M|(% style="width:486px" %)month
770 +|W|(% style="width:486px" %)week
771 +|D|(% style="width:486px" %)day
772 +|h|(% style="width:486px" %)hour digit (by default on 24 hours)
773 +|M|(% style="width:486px" %)minute
774 +|S|(% style="width:486px" %)second
775 +|D|(% style="width:486px" %)decimal of second
776 +|P|(% style="width:486px" %)period indicator (representation in one digit for the duration)
777 +|P|(% style="width:486px" %)number of the periods specified in the period indicator
778 +|AM/PM|(% style="width:486px" %)indicator of AM / PM (e.g. am/pm for "am" or "pm")
779 +|MONTH|(% style="width:486px" %)uppercase textual representation of the month (e.g., JANUARY for January)
780 +|DAY|(% style="width:486px" %)uppercase textual representation of the day (e.g., MONDAY for Monday)
781 +|Month|(% style="width:486px" %)lowercase textual representation of the month (e.g., january)
782 +|Day|(% style="width:486px" %)lowercase textual representation of the month (e.g., monday)
783 +|Month|(% style="width:486px" %)First character uppercase, then lowercase textual representation of the month (e.g., January)
784 +|Day|(% style="width:486px" %)First character uppercase, then lowercase textual representation of the day using (e.g. Monday)
785 +| |(% style="width:486px" %)
786 +|(% colspan="2" style="width:710px" %)String
787 +|X|(% style="width:486px" %)any string character
788 +|Z|(% style="width:486px" %)any string character from "A" to "z"
789 +|9|(% style="width:486px" %)any string character from "0" to "9"
790 +| |(% style="width:486px" %)
791 +|(% colspan="2" style="width:710px" %)Boolean
792 +|B|(% style="width:486px" %)Boolean using "true" for True and "false" for False
793 +|1|(% style="width:486px" %)Boolean using "1" for True and "0" for False
794 +|0|(% style="width:486px" %)Boolean using "0" for True and "1" for False
795 +| |(% style="width:486px" %)
796 +|(% colspan="2" style="width:710px" %)Other qualifiers
797 +|*|(% style="width:486px" %)an arbitrary number of digits (of the preceding type)
798 +|+|(% style="width:486px" %)at least one digit (of the preceding type)
799 +|( )|(% style="width:486px" %)optional digits (specified within the brackets)
800 +|\|(% style="width:486px" %)prefix for the special characters that must appear in the mask
801 +|N|(% style="width:486px" %)fixed number of digits used in the preceding textual representation of the month or the day
877 877  
878 878  The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
879 879  
1747388148322-387.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
1747388179021-814.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +66.2 KB
Content
1747388206717-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +10.3 KB
Content
1747388222879-916.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +9.9 KB
Content
1747388244829-693.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +7.4 KB
Content
1747388275998-621.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +19.2 KB
Content
1747388434672-948.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +43.2 KB
Content
1747388465321-274.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.helena
Size
... ... @@ -1,0 +1,1 @@
1 +17.9 KB
Content