Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -26,8 +26,10 @@ 26 26 27 27 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 28 28 29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.31 +In any case, the aliases used in the VTL Transformations have to be mapped to the 30 30 33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 + 31 31 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 32 32 33 33 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -198,7 +198,7 @@ 198 198 199 199 === 12.3.3 Mapping from SDMX to VTL data structures === 200 200 201 - ====12.3.3.1 Basic Mapping====205 +**12.3.3.1 Basic Mapping** 202 202 203 203 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 204 204 ... ... @@ -211,43 +211,55 @@ 211 211 212 212 The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set). 213 213 214 -With the Basic mapping, one SDMX observation {{footnote}}Herean SDMX observation is meant to correspond to one combination of values of the DimensionComponents.{{/footnote}}generates one VTL data point.218 +With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point. 215 215 216 216 ==== 12.3.3.2 Pivot Mapping ==== 217 217 218 218 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 219 219 220 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the 221 221 226 +MeasureDimensions considered as a joint variable^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^24^^>>path:#sdfootnote24sym||name="sdfootnote24anc"]](%%)^^. 227 + 222 222 Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension. 223 223 224 224 If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph). 225 225 226 -Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents. 232 +^^27^^ Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents. 227 227 228 228 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 229 229 230 230 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 237 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 238 + 239 +Component; 240 + 232 232 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 233 233 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 234 234 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 244 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 245 + 246 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 247 + 248 +* 236 236 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 237 237 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 238 239 239 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 240 240 241 -(% style="width:769.294px" %) 242 -|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL** 243 -|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier 244 -|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier 245 -|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)((( 246 -One Measure for each Code of the SDMX MeasureDimension 254 +|**SDMX**|**VTL** 255 +|Dimension|(Simple) Identifier 256 +|TimeDimension|(Time) Identifier 257 +|MeasureDimension & one Measure|((( 258 +One Measure for each Code of the 259 + 260 +SDMX MeasureDimension 247 247 ))) 248 -|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute 249 -|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)((( 250 -One Attribute for each Code of the SDMX MeasureDimension 262 +|DataAttribute not depending on the MeasureDimension|Attribute 263 +|DataAttribute depending on the MeasureDimension|((( 264 +One Attribute for each Code of the 265 + 266 +SDMX MeasureDimension 251 251 ))) 252 252 253 253 Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure. ... ... @@ -255,11 +255,14 @@ 255 255 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 256 256 257 257 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 274 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 275 + 276 +Identifiers, (time) Identifier and Attributes. 277 + 259 259 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 260 260 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 261 261 262 - ====12.3.3.3 From SDMX DataAttributes to VTL Measures====281 +**12.3.3.3 From SDMX DataAttributes to VTL Measures** 263 263 264 264 * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 265 ... ... @@ -271,7 +271,7 @@ 271 271 272 272 === 12.3.4 Mapping from VTL to SDMX data structures === 273 273 274 - ====12.3.4.1 Basic Mapping====293 +**12.3.4.1 Basic Mapping** 275 275 276 276 The main mapping method **from VTL to SDMX** is called **Basic **mapping as well. 277 277 ... ... @@ -281,12 +281,11 @@ 281 281 282 282 Mapping table: 283 283 284 -(% style="width:667.294px" %) 285 -|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX** 286 -|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension 287 -|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension 288 -|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure 289 -|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute 303 +|**VTL**|**SDMX** 304 +|(Simple) Identifier|Dimension 305 +|(Time) Identifier|TimeDimension 306 +|Measure|Measure 307 +|Attribute|DataAttribute 290 290 291 291 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 292 292 ... ... @@ -296,7 +296,7 @@ 296 296 297 297 As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 298 298 299 - ====12.3.4.2 Unpivot Mapping====317 +**12.3.4.2 Unpivot Mapping** 300 300 301 301 An alternative mapping method from VTL to SDMX is the **Unpivot **mapping. 302 302 ... ... @@ -320,12 +320,11 @@ 320 320 321 321 The summary mapping table of the **unpivot** mapping method is the following: 322 322 323 -(% style="width:994.294px" %) 324 -|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX** 325 -|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension 326 -|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension 327 -|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 328 -|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 341 +|**VTL**|**SDMX** 342 +|(Simple) Identifier|Dimension 343 +|(Time) Identifier|TimeDimension 344 +|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 345 +|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 329 329 330 330 At observation / data point level: 331 331 ... ... @@ -339,7 +339,7 @@ 339 339 340 340 In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 341 341 342 - ====12.3.4.3 From VTL Measures to SDMX Data Attributes====359 +**12.3.4.3 From VTL Measures to SDMX Data Attributes** 343 343 344 344 More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”). 345 345 ... ... @@ -347,13 +347,12 @@ 347 347 348 348 The mapping table is the following: 349 349 350 -(% style="width:689.294px" %) 351 -|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX** 352 -|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 353 -|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 354 -|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure 355 -|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute 356 -|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute 367 +|VTL|SDMX 368 +|(Simple) Identifier|Dimension 369 +|(Time) Identifier|TimeDimension 370 +|Some Measures|Measure 371 +|Other Measures|DataAttribute 372 +|Attribute|DataAttribute 357 357 358 358 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 359 359 ... ... @@ -371,20 +371,20 @@ 371 371 372 372 Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set). 373 373 374 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole. {{footnote}}A typical example of thiskindisthevalidation,and moreingeneral themanipulation,ofindividualtimeseriesbelongingto thesameDataflow,identifiablethroughtheDimensionComponentsoftheDataflowexcepttheTimeDimension.The coding ofthesekind of operationsmightbesimplified by mappingdistincttimeseries(i.e. differentpartsofa SDMX Dataflow) todistinctVTL Data Sets.{{/footnote}}390 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^ 375 375 376 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below. {{footnote}}Pleasenotethat thiskind of mappingis onlyanoptionatdisposalofthedefinerof VTL Transformations;infact itremainsalwayspossible to manipulate the needed parts of SDMX Dataflowsby meansof VTL operators(e.g. “sub”, “filter”, “calc”,“union”…), maintainingamappingone-to-onebetweenSDMX Dataflowsand VTL Data Sets.{{/footnote}}392 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^ 377 377 378 378 Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets. 379 379 380 380 For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows: 381 381 382 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order. {{footnote}}Thisdefinition is madethroughtheToVtlSubspace andToVtlSpaceKey classes and/ortheFromVtlSuperspace andFromVtlSpaceKey classes, dependingonthedirectionofthemapping(“key” means“dimension”).Themappingof Dataflowsubsets canbeappliedindependentlyinthe two directions,also accordingto differentDimensions.WhennoDimension is declared foragivendirection,itis assumedthat theoptionof mappingdifferentpartsofa SDMX Dataflow todifferentVTL Data Sets isnotused.{{/footnote}}Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.398 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^ Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY. 383 383 * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 384 384 ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0); 385 -** a slash (“/”) as a separator; {{footnote}}Asaconsequenceofthisformalism,aslashin thenameoftheVTL DataSetassumesthespecific meaningof separatorbetween thenameoftheDataflow andthevaluesof someofitsDimensions.{{/footnote}}401 +** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^ 386 386 387 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined {{footnote}}Thisistheorderin whichthedimensionsaredefinedin theToVtlSpaceKey classor in theFromVtlSpaceKeyclass,dependingon thedirectionofthemapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.403 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 388 388 389 389 In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 390 390 ... ... @@ -400,7 +400,7 @@ 400 400 401 401 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 402 402 403 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations {{footnote}}It shouldberememberedthat,accordingtotheVTL consistencyrules,agivenVTL datasetcannotbe the resultof more thanoneVTL Transformation.{{/footnote}}need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.419 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^ need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 404 404 405 405 First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations. 406 406 ... ... @@ -408,16 +408,28 @@ 408 408 409 409 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 410 410 411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets {{footnote}}Ifthese DimensionComponents wouldnotbedropped, the variousVTL Data Setsresultingfrom thiskind of mappingwould havenon-matching values for the Identifiers correspondingto themappingDimensions (e.g. POPULATIONandCOUNTRY). As a consequence, takingintoaccountthat thetypicalbinaryVTL operationsatdatasetlevel(+, -, *, / andso on) are executed on theobservationshaving matching valuesfortheidentifiers,itwouldnotbepossibleto composetheresultingVTL datasets oneanother(e.g.itwouldnotbepossibleto calculatethepopulationratiobetweenUSAandCANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.basic, pivot …).427 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 412 412 413 - In the example above, forall the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’,the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would havetheidentifier TIME_PERIOD only.429 +basic, pivot …). 414 414 431 +In the example above, for all the datasets of the kind 432 + 433 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 434 + 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 - [[image:1747388275998-621.png]]437 +‘DF1(1.0.0)/POPULATION.USA’ := 418 418 419 - In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”],is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}439 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 420 420 441 +‘DF1(1.0.0)/POPULATION.CANADA’ := 442 + 443 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 444 + 445 +… … … 446 + 447 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^ 448 + 421 421 In the direction from SDMX to VTL it is allowed to omit the value of one or more 422 422 423 423 DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -426,8 +426,10 @@ 426 426 427 427 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 428 428 429 - [[image:1747388244829-693.png]]457 +‘DF1(1.0.0)/POPULATION.’ := 430 430 459 +DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 460 + 431 431 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 432 432 433 433 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different ... ... @@ -442,34 +442,70 @@ 442 442 443 443 Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY: 444 444 445 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; {{footnote}}Ifthe wholeDF2(1.0)iscalculatedby meansof justoneVTL Transformation,then themappingbetween theSDMX DataflowandthecorrespondingVTL datasetisone-to-oneandthiskind of mapping(oneSDMX Dataflow tomanyVTL datasets)doesnotapply.{{/footnote}}446 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers. {{footnote}}Thisispossible aseachVTL datasetcorrespondstooneparticularcombinationof valuesof INDICATORandCOUNTRY.{{/footnote}}475 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^ 476 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^ 447 447 448 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions {{footnote}}The mappingdimensionsaredefinedasFromVtlSpaceKeysoftheFromVtlSuperSpaceoftheVtlDataflowMappingrelevant toDF2(1.0).{{/footnote}}.478 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^. 449 449 450 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind: {{footnote}}thesymboloftheVTLpersistent assignment isused(<-){{/footnote}}480 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^ 451 451 452 452 ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 453 453 454 454 Some examples follow, for some specific values of INDICATOR and COUNTRY: 455 455 456 - [[image:1747388222879-916.png]]486 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 457 457 458 - [[image:1747388206717-256.png]]488 +… … … 459 459 490 +‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 491 + 492 +‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 493 + 494 +… … … 495 + 460 460 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 461 461 462 - [[image:1747388148322-387.png]]498 +VTL dataset INDICATOR value COUNTRY value 463 463 500 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 501 + 502 +‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 503 + 504 +‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 505 + 506 +‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 507 + 508 +… … … 509 + 464 464 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 465 465 466 - [[image:1747388179021-814.png]]512 +DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 467 467 514 +DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 515 + 516 +DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 517 + 518 +[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 519 + 520 +DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 521 + 522 +DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 523 + 524 +DF2bis_GDPPERCAPITA_CANADA’, 525 + 526 +… , 527 + 528 +DF2bis_POPGROWTH_USA’, 529 + 530 +DF2bis_POPGROWTH_CANADA’ 531 + 532 +…); 533 + 468 468 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 469 469 470 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0) {{footnote}}The result ispersistent in thisexamplebut itcanbe alsononpersistent ifneeded.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.536 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 471 471 472 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. {{footnote}}Incase theordered concatenation notationfromVTLto SDMXisused,thesetof Transformationsdescribedaboveisimplicitlyperformed;therefore,inorder totesttheoverallcomplianceoftheVTLprogramtotheVTLconsistencyrules,theseimplicitTransformationshave to beconsideredaspartoftheVTL programeven iftheyare not explicitlycoded.{{/footnote}}538 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^ 473 473 474 474 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 475 475 ... ... @@ -477,44 +477,52 @@ 477 477 478 478 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 479 479 480 -(% style="width:1170.29px" %) 481 -|(% style="width:392px" %)**VTL**|(% style="width:776px" %)**SDMX** 482 -|(% style="width:392px" %)**Data Set Component**|(% style="width:776px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 483 -|(% style="width:392px" %)**Represented Variable**|(% style="width:776px" %)((( 546 +|VTL|SDMX 547 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 548 +|**Represented Variable**|((( 484 484 **Concept** with a definite 485 485 486 486 Representation 487 487 ))) 488 -|(% style="width:392px" %)**Value Domain**|(% style="width:776px" %)((( 489 -**Representation** (see the Structure Pattern in the Base Package) 553 +|**Value Domain**|((( 554 +**Representation** (see the Structure 555 + 556 +Pattern in the Base Package) 490 490 ))) 491 -| (% style="width:392px" %)**Enumerated Value Domain / Code List**|(% style="width:776px" %)**Codelist**492 -| (% style="width:392px" %)**Code**|(% style="width:776px" %)(((558 +|**Enumerated Value Domain / Code List**|**Codelist** 559 +|**Code**|((( 493 493 **Code** (for enumerated 494 494 495 495 DimensionComponent, Measure, DataAttribute) 496 496 ))) 497 -|(% style="width:392px" %)**Described Value Domain**|(% style="width:776px" %)((( 498 -non-enumerated** Representation **(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 564 +|**Described Value Domain**|((( 565 +non-enumerated** Representation** 566 + 567 +(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 499 499 ))) 500 -|(% style="width:392px" %)**Value**|(% style="width:776px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or to a valid **value **(for non-enumerated** **Representations) 501 -|(% style="width:392px" %)**Value Domain Subset / Set**|(% style="width:776px" %)This abstraction does not exist in SDMX 502 -|(% style="width:392px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:776px" %)This abstraction does not exist in SDMX 503 -|(% style="width:392px" %)**Described Value Domain Subset / Described Set**|(% style="width:776px" %)This abstraction does not exist in SDMX 504 -|(% style="width:392px" %)**Set list**|(% style="width:776px" %)This abstraction does not exist in SDMX 569 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 570 +| |((( 571 +to a valid **value **(for non-enumerated** ** 505 505 573 +Representations) 574 +))) 575 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 576 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 577 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 578 +|**Set list**|This abstraction does not exist in SDMX 579 + 506 506 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 507 507 508 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear {{footnote}}By usingrepresented variables,VTL canassume thatdatastructures havingthesamevariablesasidentifiers canbecomposedoneanotherbecausethecorrespondentvaluescanmatch.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}AConceptbecomesaComponentin aDataStructureDefinition,andComponents canhavedifferent LocalRepresentationsindifferent DataStructureDefinitions,alsooverridingthe(possible) baserepresentationoftheConcept.{{/footnote}}This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.582 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 509 509 510 510 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 511 511 512 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 586 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 513 513 514 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 515 - 516 516 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 517 517 590 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 591 + 518 518 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 519 519 520 520 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -529,8 +529,7 @@ 529 529 530 530 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 531 531 532 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 533 -**Figure 22 – VTL Data Types** 606 +==== Figure 22 – VTL Data Types ==== 534 534 535 535 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 536 536 ... ... @@ -537,12 +537,131 @@ 537 537 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 538 538 539 539 540 -**Figure 23 – VTL Basic Scalar Types** 541 541 542 542 ((( 543 - 615 +//n// 616 + 617 +//a// 618 + 619 +//e// 620 + 621 +//l// 622 + 623 +//o// 624 + 625 +//o// 626 + 627 +//B// 628 + 629 +//n// 630 + 631 +//o// 632 + 633 +//i// 634 + 635 +//t// 636 + 637 +//a// 638 + 639 +//r// 640 + 641 +//u// 642 + 643 +//D// 644 + 645 +//d// 646 + 647 +//o// 648 + 649 +//i// 650 + 651 +//r// 652 + 653 +//e// 654 + 655 +//p// 656 + 657 +//_// 658 + 659 +//e// 660 + 661 +//m// 662 + 663 +//i// 664 + 665 +//T// 666 + 667 +//e// 668 + 669 +//t// 670 + 671 +//a// 672 + 673 +//D// 674 + 675 +//e// 676 + 677 +//m// 678 + 679 +//i// 680 + 681 +//T// 682 + 683 +//r// 684 + 685 +//e// 686 + 687 +//g// 688 + 689 +//e// 690 + 691 +//t// 692 + 693 +//n// 694 + 695 +//I// 696 + 697 +//r// 698 + 699 +//e// 700 + 701 +//b// 702 + 703 +//m// 704 + 705 +//u// 706 + 707 +//N// 708 + 709 +//g// 710 + 711 +//n// 712 + 713 +//i// 714 + 715 +//r// 716 + 717 +//t// 718 + 719 +//S// 720 + 721 +//r// 722 + 723 +//a// 724 + 725 +//l// 726 + 727 +//a// 728 + 729 +//c// 730 + 731 +//S// 732 + 733 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 544 544 ))) 545 545 736 +==== Figure 23 – VTL Basic Scalar Types ==== 737 + 546 546 === 12.4.2 VTL basic scalar types and SDMX data types === 547 547 548 548 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -565,159 +565,204 @@ 565 565 566 566 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 567 567 568 -(% style="width:823.294px" %) 569 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 570 -|(% style="width:509px" %)((( 760 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 761 +|((( 571 571 String 763 + 572 572 (string allowing any character) 573 -)))| (%style="width:312px" %)string574 -|( % style="width:509px" %)(((765 +)))|string 766 +|((( 575 575 Alpha 768 + 576 576 (string which only allows A-z) 577 -)))| (%style="width:312px" %)string578 -|( % style="width:509px" %)(((770 +)))|string 771 +|((( 579 579 AlphaNumeric 773 + 580 580 (string which only allows A-z and 0-9) 581 -)))| (%style="width:312px" %)string582 -|( % style="width:509px" %)(((775 +)))|string 776 +|((( 583 583 Numeric 778 + 584 584 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 585 -)))| (%style="width:312px" %)string586 -|( % style="width:509px" %)(((780 +)))|string 781 +|((( 587 587 BigInteger 783 + 588 588 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 589 -)))| (% style="width:312px" %)integer590 -|( % style="width:509px" %)(((785 +)))|integer 786 +|((( 591 591 Integer 592 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 593 -)))|(% style="width:312px" %)integer 594 -|(% style="width:509px" %)((( 788 + 789 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 790 + 791 +(inclusive)) 792 +)))|integer 793 +|((( 595 595 Long 596 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 597 -)))|(% style="width:312px" %)integer 598 -|(% style="width:509px" %)((( 795 + 796 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 797 + 798 ++9223372036854775807 (inclusive)) 799 +)))|integer 800 +|((( 599 599 Short 802 + 600 600 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 601 -)))| (% style="width:312px" %)integer602 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number603 -|( % style="width:509px" %)(((804 +)))|integer 805 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 806 +|((( 604 604 Float 808 + 605 605 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 606 -)))| (% style="width:312px" %)number607 -|( % style="width:509px" %)(((810 +)))|number 811 +|((( 608 608 Double 813 + 609 609 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 610 -)))| (% style="width:312px" %)number611 -|( % style="width:509px" %)(((815 +)))|number 816 +|((( 612 612 Boolean 613 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 614 -)))|(% style="width:312px" %)boolean 615 615 616 -(% style="width:822.294px" %) 617 -|(% colspan="2" style="width:507px" %)((( 819 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 820 + 821 +binary-valued logic: {true, false}) 822 +)))|boolean 823 + 824 +| |(% colspan="2" %)((( 618 618 URI 826 + 619 619 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 620 -)))|(% colspan=" 1"style="width:311px"%)string621 -|(% colspan="2" style="width:507px"%)(((828 +)))|(% colspan="2" %)string 829 +| |(% colspan="2" %)((( 622 622 Count 831 + 623 623 (an integer following a sequential pattern, increasing by 1 for each occurrence) 624 -)))|(% colspan=" 1"style="width:311px"%)integer625 -|(% colspan="2" style="width:507px"%)(((833 +)))|(% colspan="2" %)integer 834 +| |(% colspan="2" %)((( 626 626 InclusiveValueRange 836 + 627 627 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 628 -)))|(% colspan=" 1"style="width:311px"%)number629 -|(% colspan="2" style="width:507px"%)(((838 +)))|(% colspan="2" %)number 839 +| |(% colspan="2" %)((( 630 630 ExclusiveValueRange 841 + 631 631 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 632 -)))|(% colspan=" 1"style="width:311px"%)number633 -|(% colspan="2" style="width:507px"%)(((843 +)))|(% colspan="2" %)number 844 +| |(% colspan="2" %)((( 634 634 Incremental 846 + 635 635 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 636 -)))|(% colspan=" 1"style="width:311px"%)number637 -|(% colspan="2" style="width:507px"%)(((848 +)))|(% colspan="2" %)number 849 +| |(% colspan="2" %)((( 638 638 ObservationalTimePeriod 851 + 639 639 (superset of StandardTimePeriod and TimeRange) 640 -)))|(% colspan=" 1"style="width:311px"%)time641 -|(% colspan="2" style="width:507px"%)(((853 +)))|(% colspan="2" %)time 854 +| |(% colspan="2" %)((( 642 642 StandardTimePeriod 643 -(superset of BasicTimePeriod and ReportingTimePeriod) 644 -)))|(% colspan="1" style="width:311px" %)time 645 -|(% colspan="2" style="width:507px" %)((( 856 + 857 +(superset of BasicTimePeriod and 858 + 859 +ReportingTimePeriod) 860 +)))|(% colspan="2" %)time 861 +| |(% colspan="2" %)((( 646 646 BasicTimePeriod 863 + 647 647 (superset of GregorianTimePeriod and DateTime) 648 -)))|(% colspan=" 1"style="width:311px"%)date649 -|(% colspan="2" style="width:507px"%)(((865 +)))|(% colspan="2" %)date 866 +| |(% colspan="2" %)((( 650 650 GregorianTimePeriod 868 + 651 651 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 652 -)))|(% colspan=" 1"style="width:311px"%)date653 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date654 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date655 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date656 -|(% colspan="2" style="width:507px"%)(((870 +)))|(% colspan="2" %)date 871 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 872 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 873 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 874 +| |(% colspan="2" %)((( 657 657 ReportingTimePeriod 658 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 659 -)))|(% colspan="1" style="width:311px" %)time_period 660 -|(% colspan="2" style="width:507px" %)((( 876 + 877 +(superset of RepostingYear, ReportingSemester, 878 + 879 +ReportingTrimester, ReportingQuarter, 880 + 881 +ReportingMonth, ReportingWeek, ReportingDay) 882 +)))|(% colspan="2" %)time_period 883 +| |(% colspan="2" %)((( 661 661 ReportingYear 885 + 662 662 (YYYY-A1 – 1 year period) 663 -)))|(% colspan=" 1"style="width:311px"%)time_period664 -|(% colspan="2" style="width:507px"%)(((887 +)))|(% colspan="2" %)time_period 888 +| |(% colspan="2" %)((( 665 665 ReportingSemester 890 + 666 666 (YYYY-Ss – 6 month period) 667 -)))|(% colspan=" 1"style="width:311px"%)time_period668 -|(% colspan="2" style="width:507px"%)(((892 +)))|(% colspan="2" %)time_period 893 +| |(% colspan="2" %)((( 669 669 ReportingTrimester 895 + 670 670 (YYYY-Tt – 4 month period) 671 -)))|(% colspan=" 1"style="width:311px"%)time_period672 -|(% colspan="2" style="width:507px"%)(((897 +)))|(% colspan="2" %)time_period 898 +| |(% colspan="2" %)((( 673 673 ReportingQuarter 900 + 674 674 (YYYY-Qq – 3 month period) 675 -)))|(% colspan=" 1"style="width:311px"%)time_period676 -|(% colspan="2" style="width:507px"%)(((902 +)))|(% colspan="2" %)time_period 903 +| |(% colspan="2" %)((( 677 677 ReportingMonth 905 + 678 678 (YYYY-Mmm – 1 month period) 679 -)))|(% colspan="1" style="width:311px" %)time_period 680 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 681 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 682 -|(% colspan="1" style="width:507px" %)((( 907 +)))|(% colspan="2" %)time_period 908 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 909 +| |(% colspan="2" %) |(% colspan="2" %) 910 +| |(% colspan="2" %) |(% colspan="2" %) 911 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 912 +|(% colspan="2" %)((( 683 683 ReportingDay 914 + 684 684 (YYYY-Dddd – 1 day period) 685 -)))|(% colspan="2" style="width:312px"%)time_period686 -|(% colspan=" 1"style="width:507px"%)(((916 +)))|(% colspan="2" %)time_period| 917 +|(% colspan="2" %)((( 687 687 DateTime 919 + 688 688 (YYYY-MM-DDThh:mm:ss) 689 -)))|(% colspan="2" style="width:312px"%)date690 -|(% colspan=" 1"style="width:507px"%)(((921 +)))|(% colspan="2" %)date| 922 +|(% colspan="2" %)((( 691 691 TimeRange 924 + 692 692 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 693 -)))|(% colspan="2" style="width:312px"%)time694 -|(% colspan=" 1"style="width:507px"%)(((926 +)))|(% colspan="2" %)time| 927 +|(% colspan="2" %)((( 695 695 Month 929 + 696 696 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 697 -)))|(% colspan="2" style="width:312px"%)string698 -|(% colspan=" 1"style="width:507px"%)(((931 +)))|(% colspan="2" %)string| 932 +|(% colspan="2" %)((( 699 699 MonthDay 934 + 700 700 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 701 -)))|(% colspan="2" style="width:312px"%)string702 -|(% colspan=" 1"style="width:507px"%)(((936 +)))|(% colspan="2" %)string| 937 +|(% colspan="2" %)((( 703 703 Day 939 + 704 704 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 705 -)))|(% colspan="2" style="width:312px"%)string706 -|(% colspan=" 1"style="width:507px"%)(((941 +)))|(% colspan="2" %)string| 942 +|(% colspan="2" %)((( 707 707 Time 944 + 708 708 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 709 -)))|(% colspan="2" style="width:312px"%)string710 -|(% colspan=" 1"style="width:507px"%)(((946 +)))|(% colspan="2" %)string| 947 +|(% colspan="2" %)((( 711 711 Duration 949 + 712 712 (corresponds to XML Schema xs:duration datatype) 713 -)))|(% colspan="2" style="width:312px"%)duration714 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable715 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable716 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable717 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable951 +)))|(% colspan="2" %)duration| 952 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 953 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 954 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 955 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 718 718 719 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 720 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 957 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 721 721 722 722 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 723 723 ... ... @@ -725,32 +725,39 @@ 725 725 726 726 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 727 727 728 -(% style="width:1073.29px" %) 729 -|(% style="width:207px" %)((( 730 -**VTL basic scalar type** 731 -)))|(% style="width:462px" %)((( 732 -**Default SDMX data type (BasicComponentDataType)** 733 -)))|(% style="width:402px" %)**Default output format** 734 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 735 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 736 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 737 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 738 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 739 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 965 +|((( 966 +VTL basic 967 + 968 +scalar type 969 +)))|((( 970 +Default SDMX data type 971 + 972 +(BasicComponentDataType 973 + 974 +) 975 +)))|Default output format 976 +|String|String|Like XML (xs:string) 977 +|Number|Float|Like XML (xs:float) 978 +|Integer|Integer|Like XML (xs:int) 979 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 980 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 981 +|time_period|((( 740 740 ReportingTimePeriod 983 + 741 741 (StandardReportingPeriod) 742 -)))|( % style="width:402px" %)(((985 +)))|((( 743 743 YYYY-Pppp 987 + 744 744 (according to SDMX ) 745 745 ))) 746 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((990 +|Duration|Duration|((( 747 747 Like XML (xs:duration) 992 + 748 748 PnYnMnDTnHnMnS 749 749 ))) 750 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"995 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 751 751 752 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 753 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 997 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 754 754 755 755 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 756 756 ... ... @@ -804,7 +804,7 @@ 804 804 |N|fixed number of digits used in the preceding textual representation of the month or the day 805 805 | | 806 806 807 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}The representationgiven in theDSDshouldobviouslybecompatible withtheVTLdata type.{{/footnote}}.1051 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 808 808 809 809 === 12.4.5 Null Values === 810 810 ... ... @@ -822,8 +822,10 @@ 822 822 823 823 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 824 824 825 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.1069 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 826 826 1071 +TransformationScheme. 1072 + 827 827 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 828 828 829 829 {{putFootnotes/}}
- 1747388148322-387.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.0 KB - Content
- 1747388179021-814.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.2 KB - Content
- 1747388206717-256.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.3 KB - Content
- 1747388222879-916.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.9 KB - Content
- 1747388244829-693.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.4 KB - Content
- 1747388275998-621.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.2 KB - Content