Last modified by Helena on 2025/09/10 11:19

From version 6.11
edited by Helena
on 2025/05/16 12:39
Change comment: There is no comment for this version
To version 5.18
edited by Helena
on 2025/05/16 08:56
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -228,11 +228,18 @@
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 +
237 +Component;
238 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 +
244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 +
246 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
... ... @@ -255,7 +255,10 @@
255 255  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
256 256  
257 257  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 +
271 +Identifiers, (time) Identifier and Attributes.
272 +
259 259  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
260 260  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
261 261  
... ... @@ -348,7 +348,7 @@
348 348  The mapping table is the following:
349 349  
350 350  (% style="width:689.294px" %)
351 -|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
365 +|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
352 352  |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
353 353  |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
354 354  |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
... ... @@ -408,14 +408,26 @@
408 408  
409 409  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
410 410  
411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
425 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
412 412  
413 -In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
427 +basic, pivot …).
414 414  
429 +In the example above, for all the datasets of the kind
430 +
431 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 +
415 415  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
416 416  
417 -[[image:1747388275998-621.png]]
435 +‘DF1(1.0.0)/POPULATION.USA’ :=
418 418  
437 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
438 +
439 +‘DF1(1.0.0)/POPULATION.CANADA’ :=
440 +
441 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
442 +
443 +… … …
444 +
419 419  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
420 420  
421 421  In the direction from SDMX to VTL it is allowed to omit the value of one or more
... ... @@ -426,8 +426,10 @@
426 426  
427 427  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
428 428  
429 -[[image:1747388244829-693.png]]
455 +‘DF1(1.0.0)/POPULATION.’ :=
430 430  
457 +DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
458 +
431 431  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
432 432  
433 433  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different
... ... @@ -453,23 +453,59 @@
453 453  
454 454  Some examples follow, for some specific values of INDICATOR and COUNTRY:
455 455  
456 -[[image:1747388222879-916.png]]
484 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
457 457  
458 -[[image:1747388206717-256.png]]
486 +… … …
459 459  
488 +‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
489 +
490 +‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
491 +
492 +… … …
493 +
460 460  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
461 461  
462 -[[image:1747388148322-387.png]]
496 +VTL dataset INDICATOR value COUNTRY value
463 463  
498 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
499 +
500 +‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
501 +
502 +‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
503 +
504 +‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
505 +
506 +… … …
507 +
464 464  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
465 465  
466 -[[image:1747388179021-814.png]]
510 +DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
467 467  
512 +DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
513 +
514 +DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
515 +
516 +[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
517 +
518 +DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
519 +
520 +DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
521 +
522 +DF2bis_GDPPERCAPITA_CANADA’,
523 +
524 +… ,
525 +
526 +DF2bis_POPGROWTH_USA’,
527 +
528 +DF2bis_POPGROWTH_CANADA’
529 +
530 +…);
531 +
468 468  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
469 469  
470 470  DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
471 471  
472 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
473 473  
474 474  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
475 475  
... ... @@ -477,43 +477,52 @@
477 477  
478 478  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
479 479  
480 -(% style="width:895.294px" %)
481 -|(% style="width:278px" %)**VTL**|(% style="width:613px" %)**SDMX**
482 -|(% style="width:278px" %)**Data Set Component**|(% style="width:613px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
483 -|(% style="width:278px" %)**Represented Variable**|(% style="width:613px" %)(((
544 +|VTL|SDMX
545 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
546 +|**Represented Variable**|(((
484 484  **Concept** with a definite
485 485  
486 486  Representation
487 487  )))
488 -|(% style="width:278px" %)**Value Domain**|(% style="width:613px" %)(((
489 -**Representation** (see the Structure Pattern in the Base Package)
551 +|**Value Domain**|(((
552 +**Representation** (see the Structure
553 +
554 +Pattern in the Base Package)
490 490  )))
491 -|(% style="width:278px" %)**Enumerated Value Domain /
492 -Code List**|(% style="width:613px" %)**Codelist**
493 -|(% style="width:278px" %)**Code**|(% style="width:613px" %)(((
494 -**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
556 +|**Enumerated Value Domain / Code List**|**Codelist**
557 +|**Code**|(((
558 +**Code** (for enumerated
559 +
560 +DimensionComponent, Measure, DataAttribute)
495 495  )))
496 -|(% style="width:278px" %)**Described Value Domain**|(% style="width:613px" %)(((
497 -non-enumerated** Representation **(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
562 +|**Described Value Domain**|(((
563 +non-enumerated** &nbsp;&nbsp;&nbsp;Representation**
564 +
565 +(having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
498 498  )))
499 -|(% style="width:278px" %)**Value**|(% style="width:613px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or to a valid **value **(for non-enumerated** **Representations)
500 -|(% style="width:278px" %)**Value Domain Subset / Set**|(% style="width:613px" %)This abstraction does not exist in SDMX
501 -|(% style="width:278px" %)**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:613px" %)This abstraction does not exist in SDMX
502 -|(% style="width:278px" %)**Described Value Domain Subset / Described Set**|(% style="width:613px" %)This abstraction does not exist in SDMX
503 -|(% style="width:278px" %)**Set list**|(% style="width:613px" %)This abstraction does not exist in SDMX
567 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
568 +| |(((
569 +to a valid **value &nbsp;&nbsp;&nbsp;**(for non-enumerated** &nbsp;&nbsp;&nbsp;**
504 504  
571 +Representations)
572 +)))
573 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
574 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
575 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
576 +|**Set list**|This abstraction does not exist in SDMX
577 +
505 505  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
506 506  
507 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
580 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
508 508  
509 509  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
510 510  
511 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
584 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
512 512  
513 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
514 -
515 515  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
516 516  
588 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
589 +
517 517  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
518 518  
519 519  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -528,8 +528,7 @@
528 528  
529 529  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
530 530  
531 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
532 -**Figure 22 – VTL Data Types**
604 +==== Figure 22 – VTL Data Types ====
533 533  
534 534  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
535 535  
... ... @@ -536,12 +536,131 @@
536 536  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
537 537  
538 538  
539 -**Figure 23 – VTL Basic Scalar Types**
540 540  
541 541  (((
542 -
613 +//n//
614 +
615 +//a//
616 +
617 +//e//
618 +
619 +//l//
620 +
621 +//o//
622 +
623 +//o//
624 +
625 +//B//
626 +
627 +//n//
628 +
629 +//o//
630 +
631 +//i//
632 +
633 +//t//
634 +
635 +//a//
636 +
637 +//r//
638 +
639 +//u//
640 +
641 +//D//
642 +
643 +//d//
644 +
645 +//o//
646 +
647 +//i//
648 +
649 +//r//
650 +
651 +//e//
652 +
653 +//p//
654 +
655 +//_//
656 +
657 +//e//
658 +
659 +//m//
660 +
661 +//i//
662 +
663 +//T//
664 +
665 +//e//
666 +
667 +//t//
668 +
669 +//a//
670 +
671 +//D//
672 +
673 +//e//
674 +
675 +//m//
676 +
677 +//i//
678 +
679 +//T//
680 +
681 +//r//
682 +
683 +//e//
684 +
685 +//g//
686 +
687 +//e//
688 +
689 +//t//
690 +
691 +//n//
692 +
693 +//I//
694 +
695 +//r//
696 +
697 +//e//
698 +
699 +//b//
700 +
701 +//m//
702 +
703 +//u//
704 +
705 +//N//
706 +
707 +//g//
708 +
709 +//n//
710 +
711 +//i//
712 +
713 +//r//
714 +
715 +//t//
716 +
717 +//S//
718 +
719 +//r//
720 +
721 +//a//
722 +
723 +//l//
724 +
725 +//a//
726 +
727 +//c//
728 +
729 +//S//
730 +
731 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
543 543  )))
544 544  
734 +==== Figure 23 – VTL Basic Scalar Types ====
735 +
545 545  === 12.4.2 VTL basic scalar types and SDMX data types ===
546 546  
547 547  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -564,159 +564,204 @@
564 564  
565 565  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
566 566  
567 -(% style="width:823.294px" %)
568 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
569 -|(% style="width:509px" %)(((
758 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
759 +|(((
570 570  String
761 +
571 571  (string allowing any character)
572 -)))|(% style="width:312px" %)string
573 -|(% style="width:509px" %)(((
763 +)))|string
764 +|(((
574 574  Alpha
766 +
575 575  (string which only allows A-z)
576 -)))|(% style="width:312px" %)string
577 -|(% style="width:509px" %)(((
768 +)))|string
769 +|(((
578 578  AlphaNumeric
771 +
579 579  (string which only allows A-z and 0-9)
580 -)))|(% style="width:312px" %)string
581 -|(% style="width:509px" %)(((
773 +)))|string
774 +|(((
582 582  Numeric
776 +
583 583  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
584 -)))|(% style="width:312px" %)string
585 -|(% style="width:509px" %)(((
778 +)))|string
779 +|(((
586 586  BigInteger
781 +
587 587  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
588 -)))|(% style="width:312px" %)integer
589 -|(% style="width:509px" %)(((
783 +)))|integer
784 +|(((
590 590  Integer
591 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
592 -)))|(% style="width:312px" %)integer
593 -|(% style="width:509px" %)(((
786 +
787 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
788 +
789 +(inclusive))
790 +)))|integer
791 +|(((
594 594  Long
595 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
596 -)))|(% style="width:312px" %)integer
597 -|(% style="width:509px" %)(((
793 +
794 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
795 +
796 ++9223372036854775807 (inclusive))
797 +)))|integer
798 +|(((
598 598  Short
800 +
599 599  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
600 -)))|(% style="width:312px" %)integer
601 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
602 -|(% style="width:509px" %)(((
802 +)))|integer
803 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
804 +|(((
603 603  Float
806 +
604 604  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
605 -)))|(% style="width:312px" %)number
606 -|(% style="width:509px" %)(((
808 +)))|number
809 +|(((
607 607  Double
811 +
608 608  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
609 -)))|(% style="width:312px" %)number
610 -|(% style="width:509px" %)(((
813 +)))|number
814 +|(((
611 611  Boolean
612 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
613 -)))|(% style="width:312px" %)boolean
614 614  
615 -(% style="width:822.294px" %)
616 -|(% colspan="2" style="width:507px" %)(((
817 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
818 +
819 +binary-valued logic: {true, false})
820 +)))|boolean
821 +
822 +| |(% colspan="2" %)(((
617 617  URI
824 +
618 618  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
619 -)))|(% colspan="1" style="width:311px" %)string
620 -|(% colspan="2" style="width:507px" %)(((
826 +)))|(% colspan="2" %)string
827 +| |(% colspan="2" %)(((
621 621  Count
829 +
622 622  (an integer following a sequential pattern, increasing by 1 for each occurrence)
623 -)))|(% colspan="1" style="width:311px" %)integer
624 -|(% colspan="2" style="width:507px" %)(((
831 +)))|(% colspan="2" %)integer
832 +| |(% colspan="2" %)(((
625 625  InclusiveValueRange
834 +
626 626  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
627 -)))|(% colspan="1" style="width:311px" %)number
628 -|(% colspan="2" style="width:507px" %)(((
836 +)))|(% colspan="2" %)number
837 +| |(% colspan="2" %)(((
629 629  ExclusiveValueRange
839 +
630 630  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
631 -)))|(% colspan="1" style="width:311px" %)number
632 -|(% colspan="2" style="width:507px" %)(((
841 +)))|(% colspan="2" %)number
842 +| |(% colspan="2" %)(((
633 633  Incremental
844 +
634 634  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
635 -)))|(% colspan="1" style="width:311px" %)number
636 -|(% colspan="2" style="width:507px" %)(((
846 +)))|(% colspan="2" %)number
847 +| |(% colspan="2" %)(((
637 637  ObservationalTimePeriod
849 +
638 638  (superset of StandardTimePeriod and TimeRange)
639 -)))|(% colspan="1" style="width:311px" %)time
640 -|(% colspan="2" style="width:507px" %)(((
851 +)))|(% colspan="2" %)time
852 +| |(% colspan="2" %)(((
641 641  StandardTimePeriod
642 -(superset of BasicTimePeriod and ReportingTimePeriod)
643 -)))|(% colspan="1" style="width:311px" %)time
644 -|(% colspan="2" style="width:507px" %)(((
854 +
855 +(superset of BasicTimePeriod and
856 +
857 +ReportingTimePeriod)
858 +)))|(% colspan="2" %)time
859 +| |(% colspan="2" %)(((
645 645  BasicTimePeriod
861 +
646 646  (superset of GregorianTimePeriod and DateTime)
647 -)))|(% colspan="1" style="width:311px" %)date
648 -|(% colspan="2" style="width:507px" %)(((
863 +)))|(% colspan="2" %)date
864 +| |(% colspan="2" %)(((
649 649  GregorianTimePeriod
866 +
650 650  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
651 -)))|(% colspan="1" style="width:311px" %)date
652 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
653 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
654 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
655 -|(% colspan="2" style="width:507px" %)(((
868 +)))|(% colspan="2" %)date
869 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
870 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
871 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
872 +| |(% colspan="2" %)(((
656 656  ReportingTimePeriod
657 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
658 -)))|(% colspan="1" style="width:311px" %)time_period
659 -|(% colspan="2" style="width:507px" %)(((
874 +
875 +(superset of RepostingYear, ReportingSemester,
876 +
877 +ReportingTrimester, ReportingQuarter,
878 +
879 +ReportingMonth, ReportingWeek, ReportingDay)
880 +)))|(% colspan="2" %)time_period
881 +| |(% colspan="2" %)(((
660 660  ReportingYear
883 +
661 661  (YYYY-A1 – 1 year period)
662 -)))|(% colspan="1" style="width:311px" %)time_period
663 -|(% colspan="2" style="width:507px" %)(((
885 +)))|(% colspan="2" %)time_period
886 +| |(% colspan="2" %)(((
664 664  ReportingSemester
888 +
665 665  (YYYY-Ss – 6 month period)
666 -)))|(% colspan="1" style="width:311px" %)time_period
667 -|(% colspan="2" style="width:507px" %)(((
890 +)))|(% colspan="2" %)time_period
891 +| |(% colspan="2" %)(((
668 668  ReportingTrimester
893 +
669 669  (YYYY-Tt – 4 month period)
670 -)))|(% colspan="1" style="width:311px" %)time_period
671 -|(% colspan="2" style="width:507px" %)(((
895 +)))|(% colspan="2" %)time_period
896 +| |(% colspan="2" %)(((
672 672  ReportingQuarter
898 +
673 673  (YYYY-Qq – 3 month period)
674 -)))|(% colspan="1" style="width:311px" %)time_period
675 -|(% colspan="2" style="width:507px" %)(((
900 +)))|(% colspan="2" %)time_period
901 +| |(% colspan="2" %)(((
676 676  ReportingMonth
903 +
677 677  (YYYY-Mmm – 1 month period)
678 -)))|(% colspan="1" style="width:311px" %)time_period
679 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
680 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
681 -|(% colspan="1" style="width:507px" %)(((
905 +)))|(% colspan="2" %)time_period
906 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
907 +| |(% colspan="2" %) |(% colspan="2" %)
908 +| |(% colspan="2" %) |(% colspan="2" %)
909 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
910 +|(% colspan="2" %)(((
682 682  ReportingDay
912 +
683 683  (YYYY-Dddd – 1 day period)
684 -)))|(% colspan="2" style="width:312px" %)time_period
685 -|(% colspan="1" style="width:507px" %)(((
914 +)))|(% colspan="2" %)time_period|
915 +|(% colspan="2" %)(((
686 686  DateTime
917 +
687 687  (YYYY-MM-DDThh:mm:ss)
688 -)))|(% colspan="2" style="width:312px" %)date
689 -|(% colspan="1" style="width:507px" %)(((
919 +)))|(% colspan="2" %)date|
920 +|(% colspan="2" %)(((
690 690  TimeRange
922 +
691 691  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
692 -)))|(% colspan="2" style="width:312px" %)time
693 -|(% colspan="1" style="width:507px" %)(((
924 +)))|(% colspan="2" %)time|
925 +|(% colspan="2" %)(((
694 694  Month
927 +
695 695  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
696 -)))|(% colspan="2" style="width:312px" %)string
697 -|(% colspan="1" style="width:507px" %)(((
929 +)))|(% colspan="2" %)string|
930 +|(% colspan="2" %)(((
698 698  MonthDay
932 +
699 699  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
700 -)))|(% colspan="2" style="width:312px" %)string
701 -|(% colspan="1" style="width:507px" %)(((
934 +)))|(% colspan="2" %)string|
935 +|(% colspan="2" %)(((
702 702  Day
937 +
703 703  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
704 -)))|(% colspan="2" style="width:312px" %)string
705 -|(% colspan="1" style="width:507px" %)(((
939 +)))|(% colspan="2" %)string|
940 +|(% colspan="2" %)(((
706 706  Time
942 +
707 707  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
708 -)))|(% colspan="2" style="width:312px" %)string
709 -|(% colspan="1" style="width:507px" %)(((
944 +)))|(% colspan="2" %)string|
945 +|(% colspan="2" %)(((
710 710  Duration
947 +
711 711  (corresponds to XML Schema xs:duration datatype)
712 -)))|(% colspan="2" style="width:312px" %)duration
713 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
714 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
715 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
716 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
949 +)))|(% colspan="2" %)duration|
950 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
951 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
952 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
953 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
717 717  
718 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
719 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
955 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
720 720  
721 721  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
722 722  
... ... @@ -724,32 +724,39 @@
724 724  
725 725  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
726 726  
727 -(% style="width:1073.29px" %)
728 -|(% style="width:207px" %)(((
729 -**VTL basic scalar type**
730 -)))|(% style="width:462px" %)(((
731 -**Default SDMX data type (BasicComponentDataType)**
732 -)))|(% style="width:402px" %)**Default output format**
733 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
734 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
735 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
736 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
737 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
738 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
963 +|(((
964 +VTL basic
965 +
966 +scalar type
967 +)))|(((
968 +Default SDMX data type
969 +
970 +(BasicComponentDataType
971 +
972 +)
973 +)))|Default output format
974 +|String|String|Like XML (xs:string)
975 +|Number|Float|Like XML (xs:float)
976 +|Integer|Integer|Like XML (xs:int)
977 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
978 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
979 +|time_period|(((
739 739  ReportingTimePeriod
981 +
740 740  (StandardReportingPeriod)
741 -)))|(% style="width:402px" %)(((
983 +)))|(((
742 742  YYYY-Pppp
985 +
743 743  (according to SDMX )
744 744  )))
745 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
988 +|Duration|Duration|(((
746 746  Like XML (xs:duration)
990 +
747 747  PnYnMnDTnHnMnS
748 748  )))
749 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
993 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
750 750  
751 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
752 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
995 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
753 753  
754 754  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
755 755  
... ... @@ -803,7 +803,7 @@
803 803  |N|fixed number of digits used in the preceding textual representation of the month or the day
804 804  | |
805 805  
806 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1049 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
807 807  
808 808  === 12.4.5 Null Values ===
809 809  
... ... @@ -821,8 +821,10 @@
821 821  
822 822  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
823 823  
824 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1067 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
825 825  
1069 +TransformationScheme.
1070 +
826 826  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
827 827  
828 828  {{putFootnotes/}}
1747388148322-387.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
1747388179021-814.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -66.2 KB
Content
1747388206717-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -10.3 KB
Content
1747388222879-916.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -9.9 KB
Content
1747388244829-693.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -7.4 KB
Content
1747388275998-621.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -19.2 KB
Content