Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -241,7 +241,7 @@ 241 241 242 242 AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 243 243 244 -* 246 +* 245 245 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 246 246 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 247 247 ... ... @@ -529,9 +529,9 @@ 529 529 530 530 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 531 531 532 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0) {{footnote}}The result ispersistent in thisexamplebut itcanbe alsononpersistent ifneeded.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.534 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 533 533 534 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. {{footnote}}Incase theorderedconcatenation notationfromVTLtoSDMXisused,thesetofTransformationsdescribedabove isimplicitlyperformed;therefore,inorder totest theoverallcomplianceoftheVTL programtotheVTL consistencyrules,theseimplicitTransformationshave tobeconsideredaspartoftheVTL programeven iftheyare not explicitlycoded.{{/footnote}}536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^ 535 535 536 536 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 537 537 ... ... @@ -539,51 +539,52 @@ 539 539 540 540 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 541 541 542 -(% style="width:1170.29px" %) 543 -|**VTL**|(% style="width:754px" %)**SDMX** 544 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 545 -|**Represented Variable**|(% style="width:754px" %)((( 544 +|VTL|SDMX 545 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 546 +|**Represented Variable**|((( 546 546 **Concept** with a definite 547 547 548 548 Representation 549 549 ))) 550 -|**Value Domain**|( % style="width:754px" %)(((551 +|**Value Domain**|((( 551 551 **Representation** (see the Structure 552 552 553 553 Pattern in the Base Package) 554 554 ))) 555 -|**Enumerated Value Domain / Code List**| (% style="width:754px" %)**Codelist**556 -|**Code**|( % style="width:754px" %)(((556 +|**Enumerated Value Domain / Code List**|**Codelist** 557 +|**Code**|((( 557 557 **Code** (for enumerated 558 558 559 559 DimensionComponent, Measure, DataAttribute) 560 560 ))) 561 -|**Described Value Domain**|( % style="width:754px" %)(((562 -non-enumerated** Representation** 562 +|**Described Value Domain**|((( 563 +non-enumerated** Representation** 563 563 564 564 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 565 565 ))) 566 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 567 -| |(% style="width:754px" %)((( 568 -to a valid **value **(for non-enumerated** **Representations) 567 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 568 +| |((( 569 +to a valid **value **(for non-enumerated** ** 570 + 571 +Representations) 569 569 ))) 570 -|**Value Domain Subset / Set**| (% style="width:754px" %)This abstraction does not exist in SDMX571 -|**Enumerated Value Domain Subset / Enumerated Set**| (% style="width:754px" %)This abstraction does not exist in SDMX572 -|**Described Value Domain Subset / Described Set**| (% style="width:754px" %)This abstraction does not exist in SDMX573 -|**Set list**| (% style="width:754px" %)This abstraction does not exist in SDMX573 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 574 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 575 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 576 +|**Set list**|This abstraction does not exist in SDMX 574 574 575 575 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 576 576 577 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear {{footnote}}By usingrepresented variables,VTL can assume thatdatastructureshavingthesamevariablesasidentifierscanbecomposedone anotherbecause thecorrespondentvaluescanmatch.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}AConceptbecomesaComponentin aDataStructureDefinition,andComponents canhavedifferent LocalRepresentationsindifferentDataStructureDefinitions,alsooverridingthe(possible)base representationoftheConcept.{{/footnote}}This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.580 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 578 578 579 579 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 580 580 581 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 584 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 582 582 583 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 584 - 585 585 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 586 586 588 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 589 + 587 587 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 588 588 589 589 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -598,8 +598,7 @@ 598 598 599 599 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 600 600 601 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 602 -**Figure 22 – VTL Data Types** 604 +==== Figure 22 – VTL Data Types ==== 603 603 604 604 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 605 605 ... ... @@ -606,12 +606,131 @@ 606 606 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 607 607 608 608 609 -**Figure 23 – VTL Basic Scalar Types** 610 610 611 611 ((( 612 - 613 +//n// 614 + 615 +//a// 616 + 617 +//e// 618 + 619 +//l// 620 + 621 +//o// 622 + 623 +//o// 624 + 625 +//B// 626 + 627 +//n// 628 + 629 +//o// 630 + 631 +//i// 632 + 633 +//t// 634 + 635 +//a// 636 + 637 +//r// 638 + 639 +//u// 640 + 641 +//D// 642 + 643 +//d// 644 + 645 +//o// 646 + 647 +//i// 648 + 649 +//r// 650 + 651 +//e// 652 + 653 +//p// 654 + 655 +//_// 656 + 657 +//e// 658 + 659 +//m// 660 + 661 +//i// 662 + 663 +//T// 664 + 665 +//e// 666 + 667 +//t// 668 + 669 +//a// 670 + 671 +//D// 672 + 673 +//e// 674 + 675 +//m// 676 + 677 +//i// 678 + 679 +//T// 680 + 681 +//r// 682 + 683 +//e// 684 + 685 +//g// 686 + 687 +//e// 688 + 689 +//t// 690 + 691 +//n// 692 + 693 +//I// 694 + 695 +//r// 696 + 697 +//e// 698 + 699 +//b// 700 + 701 +//m// 702 + 703 +//u// 704 + 705 +//N// 706 + 707 +//g// 708 + 709 +//n// 710 + 711 +//i// 712 + 713 +//r// 714 + 715 +//t// 716 + 717 +//S// 718 + 719 +//r// 720 + 721 +//a// 722 + 723 +//l// 724 + 725 +//a// 726 + 727 +//c// 728 + 729 +//S// 730 + 731 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 613 613 ))) 614 614 734 +==== Figure 23 – VTL Basic Scalar Types ==== 735 + 615 615 === 12.4.2 VTL basic scalar types and SDMX data types === 616 616 617 617 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -634,159 +634,204 @@ 634 634 635 635 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 636 636 637 -(% style="width:823.294px" %) 638 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 639 -|(% style="width:509px" %)((( 758 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 759 +|((( 640 640 String 761 + 641 641 (string allowing any character) 642 -)))| (%style="width:312px" %)string643 -|( % style="width:509px" %)(((763 +)))|string 764 +|((( 644 644 Alpha 766 + 645 645 (string which only allows A-z) 646 -)))| (%style="width:312px" %)string647 -|( % style="width:509px" %)(((768 +)))|string 769 +|((( 648 648 AlphaNumeric 771 + 649 649 (string which only allows A-z and 0-9) 650 -)))| (%style="width:312px" %)string651 -|( % style="width:509px" %)(((773 +)))|string 774 +|((( 652 652 Numeric 776 + 653 653 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 654 -)))| (%style="width:312px" %)string655 -|( % style="width:509px" %)(((778 +)))|string 779 +|((( 656 656 BigInteger 781 + 657 657 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 658 -)))| (% style="width:312px" %)integer659 -|( % style="width:509px" %)(((783 +)))|integer 784 +|((( 660 660 Integer 661 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 662 -)))|(% style="width:312px" %)integer 663 -|(% style="width:509px" %)((( 786 + 787 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 788 + 789 +(inclusive)) 790 +)))|integer 791 +|((( 664 664 Long 665 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 666 -)))|(% style="width:312px" %)integer 667 -|(% style="width:509px" %)((( 793 + 794 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 795 + 796 ++9223372036854775807 (inclusive)) 797 +)))|integer 798 +|((( 668 668 Short 800 + 669 669 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 670 -)))| (% style="width:312px" %)integer671 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number672 -|( % style="width:509px" %)(((802 +)))|integer 803 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 804 +|((( 673 673 Float 806 + 674 674 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 675 -)))| (% style="width:312px" %)number676 -|( % style="width:509px" %)(((808 +)))|number 809 +|((( 677 677 Double 811 + 678 678 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 679 -)))| (% style="width:312px" %)number680 -|( % style="width:509px" %)(((813 +)))|number 814 +|((( 681 681 Boolean 682 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 683 -)))|(% style="width:312px" %)boolean 684 684 685 -(% style="width:822.294px" %) 686 -|(% colspan="2" style="width:507px" %)((( 817 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 818 + 819 +binary-valued logic: {true, false}) 820 +)))|boolean 821 + 822 +| |(% colspan="2" %)((( 687 687 URI 824 + 688 688 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 689 -)))|(% colspan=" 1"style="width:311px"%)string690 -|(% colspan="2" style="width:507px"%)(((826 +)))|(% colspan="2" %)string 827 +| |(% colspan="2" %)((( 691 691 Count 829 + 692 692 (an integer following a sequential pattern, increasing by 1 for each occurrence) 693 -)))|(% colspan=" 1"style="width:311px"%)integer694 -|(% colspan="2" style="width:507px"%)(((831 +)))|(% colspan="2" %)integer 832 +| |(% colspan="2" %)((( 695 695 InclusiveValueRange 834 + 696 696 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 697 -)))|(% colspan=" 1"style="width:311px"%)number698 -|(% colspan="2" style="width:507px"%)(((836 +)))|(% colspan="2" %)number 837 +| |(% colspan="2" %)((( 699 699 ExclusiveValueRange 839 + 700 700 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 701 -)))|(% colspan=" 1"style="width:311px"%)number702 -|(% colspan="2" style="width:507px"%)(((841 +)))|(% colspan="2" %)number 842 +| |(% colspan="2" %)((( 703 703 Incremental 844 + 704 704 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 705 -)))|(% colspan=" 1"style="width:311px"%)number706 -|(% colspan="2" style="width:507px"%)(((846 +)))|(% colspan="2" %)number 847 +| |(% colspan="2" %)((( 707 707 ObservationalTimePeriod 849 + 708 708 (superset of StandardTimePeriod and TimeRange) 709 -)))|(% colspan=" 1"style="width:311px"%)time710 -|(% colspan="2" style="width:507px"%)(((851 +)))|(% colspan="2" %)time 852 +| |(% colspan="2" %)((( 711 711 StandardTimePeriod 712 -(superset of BasicTimePeriod and ReportingTimePeriod) 713 -)))|(% colspan="1" style="width:311px" %)time 714 -|(% colspan="2" style="width:507px" %)((( 854 + 855 +(superset of BasicTimePeriod and 856 + 857 +ReportingTimePeriod) 858 +)))|(% colspan="2" %)time 859 +| |(% colspan="2" %)((( 715 715 BasicTimePeriod 861 + 716 716 (superset of GregorianTimePeriod and DateTime) 717 -)))|(% colspan=" 1"style="width:311px"%)date718 -|(% colspan="2" style="width:507px"%)(((863 +)))|(% colspan="2" %)date 864 +| |(% colspan="2" %)((( 719 719 GregorianTimePeriod 866 + 720 720 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 721 -)))|(% colspan=" 1"style="width:311px"%)date722 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date723 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date724 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date725 -|(% colspan="2" style="width:507px"%)(((868 +)))|(% colspan="2" %)date 869 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 870 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 871 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 872 +| |(% colspan="2" %)((( 726 726 ReportingTimePeriod 727 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 728 -)))|(% colspan="1" style="width:311px" %)time_period 729 -|(% colspan="2" style="width:507px" %)((( 874 + 875 +(superset of RepostingYear, ReportingSemester, 876 + 877 +ReportingTrimester, ReportingQuarter, 878 + 879 +ReportingMonth, ReportingWeek, ReportingDay) 880 +)))|(% colspan="2" %)time_period 881 +| |(% colspan="2" %)((( 730 730 ReportingYear 883 + 731 731 (YYYY-A1 – 1 year period) 732 -)))|(% colspan=" 1"style="width:311px"%)time_period733 -|(% colspan="2" style="width:507px"%)(((885 +)))|(% colspan="2" %)time_period 886 +| |(% colspan="2" %)((( 734 734 ReportingSemester 888 + 735 735 (YYYY-Ss – 6 month period) 736 -)))|(% colspan=" 1"style="width:311px"%)time_period737 -|(% colspan="2" style="width:507px"%)(((890 +)))|(% colspan="2" %)time_period 891 +| |(% colspan="2" %)((( 738 738 ReportingTrimester 893 + 739 739 (YYYY-Tt – 4 month period) 740 -)))|(% colspan=" 1"style="width:311px"%)time_period741 -|(% colspan="2" style="width:507px"%)(((895 +)))|(% colspan="2" %)time_period 896 +| |(% colspan="2" %)((( 742 742 ReportingQuarter 898 + 743 743 (YYYY-Qq – 3 month period) 744 -)))|(% colspan=" 1"style="width:311px"%)time_period745 -|(% colspan="2" style="width:507px"%)(((900 +)))|(% colspan="2" %)time_period 901 +| |(% colspan="2" %)((( 746 746 ReportingMonth 903 + 747 747 (YYYY-Mmm – 1 month period) 748 -)))|(% colspan="1" style="width:311px" %)time_period 749 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 750 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 751 -|(% colspan="1" style="width:507px" %)((( 905 +)))|(% colspan="2" %)time_period 906 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 907 +| |(% colspan="2" %) |(% colspan="2" %) 908 +| |(% colspan="2" %) |(% colspan="2" %) 909 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 910 +|(% colspan="2" %)((( 752 752 ReportingDay 912 + 753 753 (YYYY-Dddd – 1 day period) 754 -)))|(% colspan="2" style="width:312px"%)time_period755 -|(% colspan=" 1"style="width:507px"%)(((914 +)))|(% colspan="2" %)time_period| 915 +|(% colspan="2" %)((( 756 756 DateTime 917 + 757 757 (YYYY-MM-DDThh:mm:ss) 758 -)))|(% colspan="2" style="width:312px"%)date759 -|(% colspan=" 1"style="width:507px"%)(((919 +)))|(% colspan="2" %)date| 920 +|(% colspan="2" %)((( 760 760 TimeRange 922 + 761 761 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 762 -)))|(% colspan="2" style="width:312px"%)time763 -|(% colspan=" 1"style="width:507px"%)(((924 +)))|(% colspan="2" %)time| 925 +|(% colspan="2" %)((( 764 764 Month 927 + 765 765 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 766 -)))|(% colspan="2" style="width:312px"%)string767 -|(% colspan=" 1"style="width:507px"%)(((929 +)))|(% colspan="2" %)string| 930 +|(% colspan="2" %)((( 768 768 MonthDay 932 + 769 769 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 770 -)))|(% colspan="2" style="width:312px"%)string771 -|(% colspan=" 1"style="width:507px"%)(((934 +)))|(% colspan="2" %)string| 935 +|(% colspan="2" %)((( 772 772 Day 937 + 773 773 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 774 -)))|(% colspan="2" style="width:312px"%)string775 -|(% colspan=" 1"style="width:507px"%)(((939 +)))|(% colspan="2" %)string| 940 +|(% colspan="2" %)((( 776 776 Time 942 + 777 777 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 778 -)))|(% colspan="2" style="width:312px"%)string779 -|(% colspan=" 1"style="width:507px"%)(((944 +)))|(% colspan="2" %)string| 945 +|(% colspan="2" %)((( 780 780 Duration 947 + 781 781 (corresponds to XML Schema xs:duration datatype) 782 -)))|(% colspan="2" style="width:312px"%)duration783 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable784 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable785 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable786 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable949 +)))|(% colspan="2" %)duration| 950 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 951 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 952 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 953 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 787 787 788 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 789 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 955 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 790 790 791 791 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 792 792 ... ... @@ -794,32 +794,39 @@ 794 794 795 795 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 796 796 797 -(% style="width:1073.29px" %) 798 -|(% style="width:207px" %)((( 799 -**VTL basic scalar type** 800 -)))|(% style="width:462px" %)((( 801 -**Default SDMX data type (BasicComponentDataType)** 802 -)))|(% style="width:402px" %)**Default output format** 803 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 804 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 805 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 806 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 807 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 808 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 963 +|((( 964 +VTL basic 965 + 966 +scalar type 967 +)))|((( 968 +Default SDMX data type 969 + 970 +(BasicComponentDataType 971 + 972 +) 973 +)))|Default output format 974 +|String|String|Like XML (xs:string) 975 +|Number|Float|Like XML (xs:float) 976 +|Integer|Integer|Like XML (xs:int) 977 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 978 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 979 +|time_period|((( 809 809 ReportingTimePeriod 981 + 810 810 (StandardReportingPeriod) 811 -)))|( % style="width:402px" %)(((983 +)))|((( 812 812 YYYY-Pppp 985 + 813 813 (according to SDMX ) 814 814 ))) 815 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((988 +|Duration|Duration|((( 816 816 Like XML (xs:duration) 990 + 817 817 PnYnMnDTnHnMnS 818 818 ))) 819 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"993 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 820 820 821 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 822 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 995 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 823 823 824 824 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 825 825 ... ... @@ -873,7 +873,7 @@ 873 873 |N|fixed number of digits used in the preceding textual representation of the month or the day 874 874 | | 875 875 876 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}The representationgiven in theDSDshouldobviouslybecompatible withtheVTLdata type.{{/footnote}}.1049 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 877 877 878 878 === 12.4.5 Null Values === 879 879 ... ... @@ -891,8 +891,10 @@ 891 891 892 892 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 893 893 894 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.1067 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 895 895 1069 +TransformationScheme. 1070 + 896 896 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 897 897 898 898 {{putFootnotes/}}