Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -80,7 +80,9 @@ 80 80 For example, by using the URN, the VTL Transformation that sums two SDMX Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, assuming that DF1, DF2 and DFR are the maintainedobject-id of the three Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as{{footnote}}Since these references to SDMX objects include non-permitted characters as per the VTL ID notation, they need to be included between single quotes, according to the VTL rules for irregular names.{{/footnote}}: 81 81 82 82 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <- 85 + 83 83 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 87 + 84 84 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 85 85 86 86 === 12.2.3 Abbreviation of the URN === ... ... @@ -91,8 +91,8 @@ 91 91 92 92 * The SDMXprefix can be omitted for all the SDMX objects, because it is a prefixed string (urn:sdmx:org), always the same for SDMX objects. • The SDMX-IM-package-name** **can be omitted as well because it can be deduced from the class-name that follows it (the table of the SDMX-IM packages and classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In particular, considering the object classes of the artefacts that VTL can reference, the package is: 93 93 ** "datastructure" for the classes Dataflow, Dimension, TimeDimension, Measure, DataAttribute, o "conceptscheme" for the class Concept, o "codelist" for the class Codelist. 94 -* The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator {{footnote}}For thesyntaxoftheVTL operatorsseetheVTL ReferenceManual{{/footnote}}, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter){{footnote}}Incasetheinvokedartefactis a VTL component,which canbeinvokedonlywithintheinvocationof a VTL data set (SDMX Dataflow),the specific SDMX class-name(e.g. Dimension,TimeDimension, Measure or DataAttribute) canbe deduced fromthedatastructureof the SDMX Dataflow, whichthe componentbelongsto.{{/footnote}}.95 -* If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency {{footnote}}Ifthe Agency iscomposite(forexample AgencyA.Dept1.Unit2), the agencyis considered differentevenif onlypart of the compositenameisdifferent(forexample AgencyA.Dept1.Unit3is a differentAgency thanthe previous one). Moreovertheagency-id cannotbe omittedinpart(i.e., if a TransformationSchemeowned by AgencyA.Dept1.Unit2 referencesanartefact comingfrom AgencyA.Dept1.Unit3, the specificationoftheagency-id becomes mandatoryand mustbe complete, withoutomittingthepossiblyequal parts likeAgencyA.Dept1){{/footnote}}. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements).98 +* The class-name can be omitted as it can be deduced from the VTL invocation. In particular, starting from the VTL class of the invoked artefact (e.g. dataset, component, identifier, measure, attribute, variable, valuedomain), which is known given the syntax of the invoking VTL operator^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^13^^>>path:#sdfootnote13sym||name="sdfootnote13anc"]](%%)^^, the SDMX class can be deduced from the mapping rules between VTL and SDMX (see the section "Mapping between VTL and SDMX" hereinafter)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^14^^>>path:#sdfootnote14sym||name="sdfootnote14anc"]](%%)^^. 99 +* If the agency-id is not specified, it is assumed by default equal to the agency-id of the TransformationScheme, UserDefinedOperatorScheme or RulesetScheme from which the artefact is invoked. For example, the agencyid can be omitted if it is the same as the invoking TransformationScheme and cannot be omitted if the artefact comes from another agency^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^15^^>>path:#sdfootnote15sym||name="sdfootnote15anc"]](%%)^^. Take also into account that, according to the VTL consistency rules, the agency of the result of a Transformation must be the same as its TransformationScheme, therefore the agency-id can be omitted for all the results (left part of Transformation statements). 96 96 * As for the maintainedobject-id, this is essential in some cases while in other cases it can be omitted: o if the referenced artefact is a Dataflow, which is a maintainable class, the maintainedobject-id is the dataflow-id and obviously cannot be omitted; 97 97 ** if the referenced artefact is a Dimension, TimeDimension, Measure, DataAttribute, which are not maintainable and belong to the DataStructure maintainable class, the maintainedobject-id is the dataStructure-id and can be omitted, given that these components are always invoked within the invocation of a Dataflow, whose dataStructure-id can be deduced from the SDMX structural definitions; 98 98 ** if the referenced artefact is a Concept, which is not maintainable and belong to the ConceptScheme maintainable class, the maintained object is the conceptScheme-id and cannot be omitted; ... ... @@ -105,7 +105,9 @@ 105 105 For example, the full formulation that uses the complete URN shown at the end of the previous paragraph: 106 106 107 107 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' := 112 + 108 108 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 114 + 109 109 'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 110 110 111 111 by omitting all the non-essential parts would become simply: ... ... @@ -112,11 +112,11 @@ 112 112 113 113 DFR := DF1 + DF2 114 114 115 -The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is {{footnote}}Singlequotes areneededbecausethisreferenceisnotaVTL regular name.{{/footnote}}:121 +The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^16^^>>path:#sdfootnote16sym||name="sdfootnote16anc"]](%%)^^: 116 116 117 117 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)' 118 118 119 -if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply {{footnote}}Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:125 +if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^: 120 120 121 121 CL_FREQ 122 122 ... ... @@ -130,7 +130,7 @@ 130 130 131 131 SECTOR 132 132 133 -For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as {{footnote}}Theresult DFR(1.0.0)isbe equal to DF1(1.0.0) save thatthecomponentSECTORiscalledSEC{{/footnote}}:139 +For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^17^^>>path:#sdfootnote17sym||name="sdfootnote17anc"]](%%)^^: 134 134 135 135 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC] 136 136 ... ... @@ -162,9 +162,9 @@ 162 162 163 163 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the Rules. 164 164 165 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation {{footnote}}Rulesetsofthiskind cannotbereusedwhen thereferencedConcepthasa differentrepresentation.{{/footnote}}.171 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^18^^>>path:#sdfootnote18sym||name="sdfootnote18anc"]](%%)^^. 166 166 167 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX. {{footnote}}Seealsothesection"VTL-DL Rulesets"in theVTL ReferenceManual.{{/footnote}}173 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^19^^>>path:#sdfootnote19sym||name="sdfootnote19anc"]](%%)^^ 168 168 169 169 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature. 170 170 ... ... @@ -176,15 +176,15 @@ 176 176 177 177 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 178 178 179 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged {{footnote}}Ifacalculated artefact ispersistent,itneeds a persistentdefinition, i.e.aSDMX definitionina SDMXenvironment. Inaddition,possiblecalculatedartefact that arenotpersistentmay requireaSDMX definition, forexamplewhentheresult ofanon-persistent calculation is disseminated through SDMX tools (likean inquirytool).{{/footnote}}.185 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^20^^>>path:#sdfootnote20sym||name="sdfootnote20anc"]](%%)^^. 180 180 181 181 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the ‘usage’ and ‘attributeRelationship’ for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 182 182 183 183 === 12.3.2 General mapping of VTL and SDMX data structures === 184 184 185 -This section makes reference to the VTL "Model for data and their structure" {{footnote}}See theVTL2.0UserManual{{/footnote}}and the correspondent SDMX "Data Structure Definition"{{footnote}}SeetheSDMX StandardsSection2 – InformationModel{{/footnote}}.191 +This section makes reference to the VTL "Model for data and their structure"^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^21^^>>path:#sdfootnote21sym||name="sdfootnote21anc"]](%%)^^ and the correspondent SDMX "Data Structure Definition"^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^22^^>>path:#sdfootnote22sym||name="sdfootnote22anc"]](%%)^^. 186 186 187 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived). {{footnote}}BesidesthemappingbetweenoneSDMX Dataflow andone VTL Data Set,itisalso possibleto map distinctparts ofaSDMX Dataflowto different VTL DataSet, asexplainedinafollowingparagraph.{{/footnote}}193 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^23^^>>path:#sdfootnote23sym||name="sdfootnote23anc"]](%%)^^ 188 188 189 189 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 190 190 ... ... @@ -204,28 +204,32 @@ 204 204 205 205 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 206 206 207 -(% style="width:529.294px" %) 208 -|(% style="width:151px" %)**SDMX**|(% style="width:375px" %)**VTL** 209 -|(% style="width:151px" %)Dimension|(% style="width:375px" %)(Simple) Identifier 210 -|(% style="width:151px" %)TimeDimension|(% style="width:375px" %)(Time) Identifier 211 -|(% style="width:151px" %)Measure|(% style="width:375px" %)Measure 212 -|(% style="width:151px" %)DataAttribute|(% style="width:375px" %)Attribute 213 +|**SDMX**|**VTL** 214 +|Dimension|(Simple) Identifier 215 +|TimeDimension|(Time) Identifier 213 213 217 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape4" height="1" width="192"]] 218 + 219 +|Measure|Measure 220 +|DataAttribute|Attribute 221 + 214 214 The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set). 215 215 216 -With the Basic mapping, one SDMX observation {{footnote}}Herean SDMX observation is meant to correspond to one combination of values of the DimensionComponents.{{/footnote}}generates one VTL data point.224 +With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point. 217 217 218 - ====12.3.3.2 Pivot Mapping====226 +**12.3.3.2 Pivot Mapping** 219 219 220 220 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 221 221 222 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.230 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the 223 223 232 +MeasureDimensions considered as a joint variable^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^24^^>>path:#sdfootnote24sym||name="sdfootnote24anc"]](%%)^^. 233 + 224 224 Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension. 225 225 226 226 If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph). 227 227 228 -Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents. 238 +^^27^^ Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents. 229 229 230 230 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 231 231 ... ... @@ -241,22 +241,25 @@ 241 241 242 242 AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 243 243 244 -* 254 +* 245 245 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 246 246 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 247 247 248 248 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 249 249 250 -(% style="width:769.294px" %) 251 -|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL** 252 -|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier 253 -|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier 254 -|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)((( 255 -One Measure for each Code of the SDMX MeasureDimension 260 +|**SDMX**|**VTL** 261 +|Dimension|(Simple) Identifier 262 +|TimeDimension|(Time) Identifier 263 +|MeasureDimension & one Measure|((( 264 +One Measure for each Code of the 265 + 266 +SDMX MeasureDimension 256 256 ))) 257 -|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute 258 -|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)((( 259 -One Attribute for each Code of the SDMX MeasureDimension 268 +|DataAttribute not depending on the MeasureDimension|Attribute 269 +|DataAttribute depending on the MeasureDimension|((( 270 +One Attribute for each Code of the 271 + 272 +SDMX MeasureDimension 260 260 ))) 261 261 262 262 Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure. ... ... @@ -271,7 +271,7 @@ 271 271 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 272 272 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 273 273 274 - ====12.3.3.3 From SDMX DataAttributes to VTL Measures====287 +**12.3.3.3 From SDMX DataAttributes to VTL Measures** 275 275 276 276 * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 277 277 ... ... @@ -283,7 +283,7 @@ 283 283 284 284 === 12.3.4 Mapping from VTL to SDMX data structures === 285 285 286 - ====12.3.4.1 Basic Mapping====299 +**12.3.4.1 Basic Mapping** 287 287 288 288 The main mapping method **from VTL to SDMX** is called **Basic **mapping as well. 289 289 ... ... @@ -293,12 +293,11 @@ 293 293 294 294 Mapping table: 295 295 296 -(% style="width:667.294px" %) 297 -|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX** 298 -|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension 299 -|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension 300 -|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure 301 -|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute 309 +|**VTL**|**SDMX** 310 +|(Simple) Identifier|Dimension 311 +|(Time) Identifier|TimeDimension 312 +|Measure|Measure 313 +|Attribute|DataAttribute 302 302 303 303 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 304 304 ... ... @@ -308,7 +308,7 @@ 308 308 309 309 As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 310 310 311 - ====12.3.4.2 Unpivot Mapping====323 +**12.3.4.2 Unpivot Mapping** 312 312 313 313 An alternative mapping method from VTL to SDMX is the **Unpivot **mapping. 314 314 ... ... @@ -332,12 +332,11 @@ 332 332 333 333 The summary mapping table of the **unpivot** mapping method is the following: 334 334 335 -(% style="width:994.294px" %) 336 -|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX** 337 -|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension 338 -|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension 339 -|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 340 -|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 347 +|**VTL**|**SDMX** 348 +|(Simple) Identifier|Dimension 349 +|(Time) Identifier|TimeDimension 350 +|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 351 +|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 341 341 342 342 At observation / data point level: 343 343 ... ... @@ -351,7 +351,7 @@ 351 351 352 352 In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 353 353 354 - ====12.3.4.3 From VTL Measures to SDMX Data Attributes====365 +**12.3.4.3 From VTL Measures to SDMX Data Attributes** 355 355 356 356 More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”). 357 357 ... ... @@ -359,13 +359,12 @@ 359 359 360 360 The mapping table is the following: 361 361 362 -(% style="width:689.294px" %) 363 -|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX 364 -|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 365 -|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 366 -|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure 367 -|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute 368 -|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute 373 +|VTL|SDMX 374 +|(Simple) Identifier|Dimension 375 +|(Time) Identifier|TimeDimension 376 +|Some Measures|Measure 377 +|Other Measures|DataAttribute 378 +|Attribute|DataAttribute 369 369 370 370 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 371 371 ... ... @@ -383,20 +383,20 @@ 383 383 384 384 Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set). 385 385 386 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole. {{footnote}}Atypicalexample of thiskindisthevalidation,and moreingeneralthe manipulation,ofindividualtimeseries belongingto thesame Dataflow,identifiable through the DimensionComponents of theDataflowexcept the TimeDimension. Thecodingof thesekind of operationsmight be simplified by mappingdistincttimeseries(i.e. differentpartsofa SDMX Dataflow) todistinctVTL Data Sets.{{/footnote}}396 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^ 387 387 388 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below. {{footnote}}Pleasenotethat thiskind of mappingis onlyanoptionatdisposalof the definerof VTL Transformations;infactit remainsalways possible to manipulatetheneeded parts of SDMX Dataflows by meansof VTL operators (e.g. “sub”, “filter”, “calc”, “union”…), maintainingamappingone-to-one betweenSDMX Dataflowsand VTL Data Sets.{{/footnote}}398 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^ 389 389 390 390 Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets. 391 391 392 392 For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows: 393 393 394 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order. {{footnote}}Thisdefinitionis madethrough theToVtlSubspace and ToVtlSpaceKey classes and/ortheFromVtlSuperspace and FromVtlSpaceKey classes, dependingon the directionofthemapping (“key”means “dimension”). The mapping of Dataflow subsets canbeappliedindependentlyinthe two directions,also accordingto differentDimensions.When no Dimensionis declared foragivendirection,itis assumed that the optionof mappingdifferentpartsofa SDMX Dataflow todifferentVTL Data Sets isnotused.{{/footnote}}Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.404 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^ Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY. 395 395 * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 396 396 ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0); 397 -** a slash (“/”) as a separator; {{footnote}}Asaconsequence ofthis formalism,aslashin thenameoftheVTL DataSetassumesthespecific meaningof separatorbetweenthenameoftheDataflow andthe valuesofsomeof itsDimensions.{{/footnote}}407 +** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^ 398 398 399 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined {{footnote}}Thisistheorderin whichthedimensionsare definedin theToVtlSpaceKey class orin theFromVtlSpaceKey class,dependingonthedirectionofthemapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.409 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 400 400 401 401 In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 402 402 ... ... @@ -412,7 +412,7 @@ 412 412 413 413 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 414 414 415 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations {{footnote}}It shouldberemembered that, accordingto theVTL consistencyrules,a givenVTL dataset cannotbe theresultof morethanoneVTL Transformation.{{/footnote}}need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.425 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^ need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 416 416 417 417 First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations. 418 418 ... ... @@ -420,7 +420,7 @@ 420 420 421 421 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 422 422 423 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets {{footnote}}Ifthese DimensionComponents would not bedropped, the various VTL Data Sets resultingfrom thiskind of mapping would havenon-matchingvalues for the Identifiers correspondingto themappingDimensions (e.g. POPULATION and COUNTRY). Asaconsequence,takinginto account that the typicalbinaryVTL operations atdatasetlevel(+, -, *, / andso on) are executed on the observationshaving matching values for theidentifiers,it wouldnotbepossible to compose theresultingVTL datasets one another(e.g. it wouldnot be possible to calculatethepopulation ratiobetweenUSAandCANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.433 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 424 424 425 425 basic, pivot …). 426 426 ... ... @@ -440,7 +440,7 @@ 440 440 441 441 … … … 442 442 443 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. {{footnote}}Incasetheordered concatenation notation is used,theVTL Transformationdescribedabove, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”],isimplicitlyexecuted. Inorderto test the overallcomplianceoftheVTL programto theVTL consistencyrules,ithas to beconsideredaspartof the VTL program even ifitisnotexplicitlycoded.{{/footnote}}453 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^ 444 444 445 445 In the direction from SDMX to VTL it is allowed to omit the value of one or more 446 446 ... ... @@ -468,12 +468,12 @@ 468 468 469 469 Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY: 470 470 471 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; {{footnote}}Ifthe whole DF2(1.0)iscalculated by meansof just oneVTL Transformation,then themappingbetweentheSDMX Dataflow andthecorrespondingVTL datasetisone-to-oneandthiskind of mapping(oneSDMX Dataflowto manyVTL datasets)doesnotapply.{{/footnote}}472 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers. {{footnote}}Thisis possibleaseachVTL dataset correspondstooneparticularcombinationof valuesof INDICATORandCOUNTRY.{{/footnote}}481 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^ 482 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^ 473 473 474 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions {{footnote}}The mappingdimensionsare definedasFromVtlSpaceKeysoftheFromVtlSuperSpaceoftheVtlDataflowMappingrelevanttoDF2(1.0).{{/footnote}}.484 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^. 475 475 476 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind: {{footnote}}thesymboloftheVTL persistent assignment isused(<-){{/footnote}}486 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^ 477 477 478 478 ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 479 479 ... ... @@ -529,9 +529,9 @@ 529 529 530 530 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 531 531 532 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0) {{footnote}}Theresultispersistentin thisexamplebut itcanbealsononpersistentifneeded.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.542 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 533 533 534 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. {{footnote}}Incasetheordered concatenation notationfrom VTL to SDMXis used,theset of Transformationsdescribedaboveisimplicitly performed;therefore,inorder to testtheoverallcomplianceoftheVTL programtotheVTLconsistencyrules,theseimplicitTransformationshaveto beconsideredaspartof theVTL programevenifthey arenotexplicitlycoded.{{/footnote}}544 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^ 535 535 536 536 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 537 537 ... ... @@ -539,51 +539,52 @@ 539 539 540 540 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 541 541 542 -(% style="width:1170.29px" %) 543 -|**VTL**|(% style="width:754px" %)**SDMX** 544 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 545 -|**Represented Variable**|(% style="width:754px" %)((( 552 +|VTL|SDMX 553 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 554 +|**Represented Variable**|((( 546 546 **Concept** with a definite 547 547 548 548 Representation 549 549 ))) 550 -|**Value Domain**|( % style="width:754px" %)(((559 +|**Value Domain**|((( 551 551 **Representation** (see the Structure 552 552 553 553 Pattern in the Base Package) 554 554 ))) 555 -|**Enumerated Value Domain / Code List**| (% style="width:754px" %)**Codelist**556 -|**Code**|( % style="width:754px" %)(((564 +|**Enumerated Value Domain / Code List**|**Codelist** 565 +|**Code**|((( 557 557 **Code** (for enumerated 558 558 559 559 DimensionComponent, Measure, DataAttribute) 560 560 ))) 561 -|**Described Value Domain**|( % style="width:754px" %)(((562 -non-enumerated** Representation** 570 +|**Described Value Domain**|((( 571 +non-enumerated** Representation** 563 563 564 564 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 565 565 ))) 566 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 567 -| |(% style="width:754px" %)((( 568 -to a valid **value **(for non-enumerated** **Representations) 575 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 576 +| |((( 577 +to a valid **value **(for non-enumerated** ** 578 + 579 +Representations) 569 569 ))) 570 -|**Value Domain Subset / Set**| (% style="width:754px" %)This abstraction does not exist in SDMX571 -|**Enumerated Value Domain Subset / Enumerated Set**| (% style="width:754px" %)This abstraction does not exist in SDMX572 -|**Described Value Domain Subset / Described Set**| (% style="width:754px" %)This abstraction does not exist in SDMX573 -|**Set list**| (% style="width:754px" %)This abstraction does not exist in SDMX581 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 582 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 583 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 584 +|**Set list**|This abstraction does not exist in SDMX 574 574 575 575 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 576 576 577 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear {{footnote}}Byusing represented variables, VTL canassumethatdatastructures havingthesame variables asidentifiers canbe composed oneanotherbecausethe correspondentvaluescanmatch.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}AConceptbecomesaComponentina DataStructureDefinition,andComponents canhave different LocalRepresentationsin different DataStructureDefinitions,alsooverridingthe(possible)base representationoftheConcept.{{/footnote}}This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.588 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 578 578 579 579 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 580 580 581 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 592 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 582 582 583 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 584 - 585 585 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 586 586 596 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 597 + 587 587 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 588 588 589 589 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -598,8 +598,7 @@ 598 598 599 599 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 600 600 601 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 602 -**Figure 22 – VTL Data Types** 612 +==== Figure 22 – VTL Data Types ==== 603 603 604 604 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 605 605 ... ... @@ -606,12 +606,131 @@ 606 606 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 607 607 608 608 609 -**Figure 23 – VTL Basic Scalar Types** 610 610 611 611 ((( 612 - 621 +//n// 622 + 623 +//a// 624 + 625 +//e// 626 + 627 +//l// 628 + 629 +//o// 630 + 631 +//o// 632 + 633 +//B// 634 + 635 +//n// 636 + 637 +//o// 638 + 639 +//i// 640 + 641 +//t// 642 + 643 +//a// 644 + 645 +//r// 646 + 647 +//u// 648 + 649 +//D// 650 + 651 +//d// 652 + 653 +//o// 654 + 655 +//i// 656 + 657 +//r// 658 + 659 +//e// 660 + 661 +//p// 662 + 663 +//_// 664 + 665 +//e// 666 + 667 +//m// 668 + 669 +//i// 670 + 671 +//T// 672 + 673 +//e// 674 + 675 +//t// 676 + 677 +//a// 678 + 679 +//D// 680 + 681 +//e// 682 + 683 +//m// 684 + 685 +//i// 686 + 687 +//T// 688 + 689 +//r// 690 + 691 +//e// 692 + 693 +//g// 694 + 695 +//e// 696 + 697 +//t// 698 + 699 +//n// 700 + 701 +//I// 702 + 703 +//r// 704 + 705 +//e// 706 + 707 +//b// 708 + 709 +//m// 710 + 711 +//u// 712 + 713 +//N// 714 + 715 +//g// 716 + 717 +//n// 718 + 719 +//i// 720 + 721 +//r// 722 + 723 +//t// 724 + 725 +//S// 726 + 727 +//r// 728 + 729 +//a// 730 + 731 +//l// 732 + 733 +//a// 734 + 735 +//c// 736 + 737 +//S// 738 + 739 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 613 613 ))) 614 614 742 +==== Figure 23 – VTL Basic Scalar Types ==== 743 + 615 615 === 12.4.2 VTL basic scalar types and SDMX data types === 616 616 617 617 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -634,159 +634,204 @@ 634 634 635 635 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 636 636 637 -(% style="width:823.294px" %) 638 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 639 -|(% style="width:509px" %)((( 766 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 767 +|((( 640 640 String 769 + 641 641 (string allowing any character) 642 -)))| (%style="width:312px" %)string643 -|( % style="width:509px" %)(((771 +)))|string 772 +|((( 644 644 Alpha 774 + 645 645 (string which only allows A-z) 646 -)))| (%style="width:312px" %)string647 -|( % style="width:509px" %)(((776 +)))|string 777 +|((( 648 648 AlphaNumeric 779 + 649 649 (string which only allows A-z and 0-9) 650 -)))| (%style="width:312px" %)string651 -|( % style="width:509px" %)(((781 +)))|string 782 +|((( 652 652 Numeric 784 + 653 653 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 654 -)))| (%style="width:312px" %)string655 -|( % style="width:509px" %)(((786 +)))|string 787 +|((( 656 656 BigInteger 789 + 657 657 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 658 -)))| (% style="width:312px" %)integer659 -|( % style="width:509px" %)(((791 +)))|integer 792 +|((( 660 660 Integer 661 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 662 -)))|(% style="width:312px" %)integer 663 -|(% style="width:509px" %)((( 794 + 795 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 796 + 797 +(inclusive)) 798 +)))|integer 799 +|((( 664 664 Long 665 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 666 -)))|(% style="width:312px" %)integer 667 -|(% style="width:509px" %)((( 801 + 802 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 803 + 804 ++9223372036854775807 (inclusive)) 805 +)))|integer 806 +|((( 668 668 Short 808 + 669 669 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 670 -)))| (% style="width:312px" %)integer671 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number672 -|( % style="width:509px" %)(((810 +)))|integer 811 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 812 +|((( 673 673 Float 814 + 674 674 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 675 -)))| (% style="width:312px" %)number676 -|( % style="width:509px" %)(((816 +)))|number 817 +|((( 677 677 Double 819 + 678 678 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 679 -)))| (% style="width:312px" %)number680 -|( % style="width:509px" %)(((821 +)))|number 822 +|((( 681 681 Boolean 682 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 683 -)))|(% style="width:312px" %)boolean 684 684 685 -(% style="width:822.294px" %) 686 -|(% colspan="2" style="width:507px" %)((( 825 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 826 + 827 +binary-valued logic: {true, false}) 828 +)))|boolean 829 + 830 +| |(% colspan="2" %)((( 687 687 URI 832 + 688 688 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 689 -)))|(% colspan=" 1"style="width:311px"%)string690 -|(% colspan="2" style="width:507px"%)(((834 +)))|(% colspan="2" %)string 835 +| |(% colspan="2" %)((( 691 691 Count 837 + 692 692 (an integer following a sequential pattern, increasing by 1 for each occurrence) 693 -)))|(% colspan=" 1"style="width:311px"%)integer694 -|(% colspan="2" style="width:507px"%)(((839 +)))|(% colspan="2" %)integer 840 +| |(% colspan="2" %)((( 695 695 InclusiveValueRange 842 + 696 696 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 697 -)))|(% colspan=" 1"style="width:311px"%)number698 -|(% colspan="2" style="width:507px"%)(((844 +)))|(% colspan="2" %)number 845 +| |(% colspan="2" %)((( 699 699 ExclusiveValueRange 847 + 700 700 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 701 -)))|(% colspan=" 1"style="width:311px"%)number702 -|(% colspan="2" style="width:507px"%)(((849 +)))|(% colspan="2" %)number 850 +| |(% colspan="2" %)((( 703 703 Incremental 852 + 704 704 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 705 -)))|(% colspan=" 1"style="width:311px"%)number706 -|(% colspan="2" style="width:507px"%)(((854 +)))|(% colspan="2" %)number 855 +| |(% colspan="2" %)((( 707 707 ObservationalTimePeriod 857 + 708 708 (superset of StandardTimePeriod and TimeRange) 709 -)))|(% colspan=" 1"style="width:311px"%)time710 -|(% colspan="2" style="width:507px"%)(((859 +)))|(% colspan="2" %)time 860 +| |(% colspan="2" %)((( 711 711 StandardTimePeriod 712 -(superset of BasicTimePeriod and ReportingTimePeriod) 713 -)))|(% colspan="1" style="width:311px" %)time 714 -|(% colspan="2" style="width:507px" %)((( 862 + 863 +(superset of BasicTimePeriod and 864 + 865 +ReportingTimePeriod) 866 +)))|(% colspan="2" %)time 867 +| |(% colspan="2" %)((( 715 715 BasicTimePeriod 869 + 716 716 (superset of GregorianTimePeriod and DateTime) 717 -)))|(% colspan=" 1"style="width:311px"%)date718 -|(% colspan="2" style="width:507px"%)(((871 +)))|(% colspan="2" %)date 872 +| |(% colspan="2" %)((( 719 719 GregorianTimePeriod 874 + 720 720 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 721 -)))|(% colspan=" 1"style="width:311px"%)date722 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date723 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date724 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date725 -|(% colspan="2" style="width:507px"%)(((876 +)))|(% colspan="2" %)date 877 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 878 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 879 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 880 +| |(% colspan="2" %)((( 726 726 ReportingTimePeriod 727 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 728 -)))|(% colspan="1" style="width:311px" %)time_period 729 -|(% colspan="2" style="width:507px" %)((( 882 + 883 +(superset of RepostingYear, ReportingSemester, 884 + 885 +ReportingTrimester, ReportingQuarter, 886 + 887 +ReportingMonth, ReportingWeek, ReportingDay) 888 +)))|(% colspan="2" %)time_period 889 +| |(% colspan="2" %)((( 730 730 ReportingYear 891 + 731 731 (YYYY-A1 – 1 year period) 732 -)))|(% colspan=" 1"style="width:311px"%)time_period733 -|(% colspan="2" style="width:507px"%)(((893 +)))|(% colspan="2" %)time_period 894 +| |(% colspan="2" %)((( 734 734 ReportingSemester 896 + 735 735 (YYYY-Ss – 6 month period) 736 -)))|(% colspan=" 1"style="width:311px"%)time_period737 -|(% colspan="2" style="width:507px"%)(((898 +)))|(% colspan="2" %)time_period 899 +| |(% colspan="2" %)((( 738 738 ReportingTrimester 901 + 739 739 (YYYY-Tt – 4 month period) 740 -)))|(% colspan=" 1"style="width:311px"%)time_period741 -|(% colspan="2" style="width:507px"%)(((903 +)))|(% colspan="2" %)time_period 904 +| |(% colspan="2" %)((( 742 742 ReportingQuarter 906 + 743 743 (YYYY-Qq – 3 month period) 744 -)))|(% colspan=" 1"style="width:311px"%)time_period745 -|(% colspan="2" style="width:507px"%)(((908 +)))|(% colspan="2" %)time_period 909 +| |(% colspan="2" %)((( 746 746 ReportingMonth 911 + 747 747 (YYYY-Mmm – 1 month period) 748 -)))|(% colspan="1" style="width:311px" %)time_period 749 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 750 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 751 -|(% colspan="1" style="width:507px" %)((( 913 +)))|(% colspan="2" %)time_period 914 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 915 +| |(% colspan="2" %) |(% colspan="2" %) 916 +| |(% colspan="2" %) |(% colspan="2" %) 917 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 918 +|(% colspan="2" %)((( 752 752 ReportingDay 920 + 753 753 (YYYY-Dddd – 1 day period) 754 -)))|(% colspan="2" style="width:312px"%)time_period755 -|(% colspan=" 1"style="width:507px"%)(((922 +)))|(% colspan="2" %)time_period| 923 +|(% colspan="2" %)((( 756 756 DateTime 925 + 757 757 (YYYY-MM-DDThh:mm:ss) 758 -)))|(% colspan="2" style="width:312px"%)date759 -|(% colspan=" 1"style="width:507px"%)(((927 +)))|(% colspan="2" %)date| 928 +|(% colspan="2" %)((( 760 760 TimeRange 930 + 761 761 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 762 -)))|(% colspan="2" style="width:312px"%)time763 -|(% colspan=" 1"style="width:507px"%)(((932 +)))|(% colspan="2" %)time| 933 +|(% colspan="2" %)((( 764 764 Month 935 + 765 765 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 766 -)))|(% colspan="2" style="width:312px"%)string767 -|(% colspan=" 1"style="width:507px"%)(((937 +)))|(% colspan="2" %)string| 938 +|(% colspan="2" %)((( 768 768 MonthDay 940 + 769 769 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 770 -)))|(% colspan="2" style="width:312px"%)string771 -|(% colspan=" 1"style="width:507px"%)(((942 +)))|(% colspan="2" %)string| 943 +|(% colspan="2" %)((( 772 772 Day 945 + 773 773 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 774 -)))|(% colspan="2" style="width:312px"%)string775 -|(% colspan=" 1"style="width:507px"%)(((947 +)))|(% colspan="2" %)string| 948 +|(% colspan="2" %)((( 776 776 Time 950 + 777 777 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 778 -)))|(% colspan="2" style="width:312px"%)string779 -|(% colspan=" 1"style="width:507px"%)(((952 +)))|(% colspan="2" %)string| 953 +|(% colspan="2" %)((( 780 780 Duration 955 + 781 781 (corresponds to XML Schema xs:duration datatype) 782 -)))|(% colspan="2" style="width:312px"%)duration783 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable784 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable785 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable786 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable957 +)))|(% colspan="2" %)duration| 958 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 959 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 960 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 961 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 787 787 788 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 789 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 963 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 790 790 791 791 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 792 792 ... ... @@ -794,32 +794,39 @@ 794 794 795 795 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 796 796 797 -(% style="width:1073.29px" %) 798 -|(% style="width:207px" %)((( 799 -**VTL basic scalar type** 800 -)))|(% style="width:462px" %)((( 801 -**Default SDMX data type (BasicComponentDataType)** 802 -)))|(% style="width:402px" %)**Default output format** 803 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 804 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 805 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 806 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 807 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 808 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 971 +|((( 972 +VTL basic 973 + 974 +scalar type 975 +)))|((( 976 +Default SDMX data type 977 + 978 +(BasicComponentDataType 979 + 980 +) 981 +)))|Default output format 982 +|String|String|Like XML (xs:string) 983 +|Number|Float|Like XML (xs:float) 984 +|Integer|Integer|Like XML (xs:int) 985 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 986 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 987 +|time_period|((( 809 809 ReportingTimePeriod 989 + 810 810 (StandardReportingPeriod) 811 -)))|( % style="width:402px" %)(((991 +)))|((( 812 812 YYYY-Pppp 993 + 813 813 (according to SDMX ) 814 814 ))) 815 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((996 +|Duration|Duration|((( 816 816 Like XML (xs:duration) 998 + 817 817 PnYnMnDTnHnMnS 818 818 ))) 819 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"1001 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 820 820 821 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 822 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 1003 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 823 823 824 824 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 825 825 ... ... @@ -873,7 +873,7 @@ 873 873 |N|fixed number of digits used in the preceding textual representation of the month or the day 874 874 | | 875 875 876 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}Therepresentationgivenin theDSD shouldobviouslybecompatiblewiththeVTL data type.{{/footnote}}.1057 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 877 877 878 878 === 12.4.5 Null Values === 879 879 ... ... @@ -891,8 +891,10 @@ 891 891 892 892 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 893 893 894 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.1075 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 895 895 1077 +TransformationScheme. 1078 + 896 896 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 897 897 898 898 {{putFootnotes/}}