Last modified by Helena on 2025/09/10 11:19

From version 6.3
edited by Helena
on 2025/05/16 12:31
Change comment: There is no comment for this version
To version 5.14
edited by Helena
on 2025/05/16 08:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -211,43 +211,55 @@
211 211  
212 212  The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set).
213 213  
214 -With the Basic mapping, one SDMX observation{{footnote}}Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.{{/footnote}} generates one VTL data point.
218 +With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point.
215 215  
216 216  ==== 12.3.3.2 Pivot Mapping ====
217 217  
218 218  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
219 219  
220 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.
224 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the
221 221  
226 +MeasureDimensions considered as a joint variable^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^24^^>>path:#sdfootnote24sym||name="sdfootnote24anc"]](%%)^^.
227 +
222 222  Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension.
223 223  
224 224  If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph).
225 225  
226 -Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.
232 +^^27^^ Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents.
227 227  
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
237 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
238 +
239 +Component;
240 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
244 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
245 +
246 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
247 +
248 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
239 239  The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following:
240 240  
241 -(% style="width:769.294px" %)
242 -|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL**
243 -|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier
244 -|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier
245 -|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)(((
246 -One Measure for each Code of the SDMX MeasureDimension
254 +|**SDMX**|**VTL**
255 +|Dimension|(Simple) Identifier
256 +|TimeDimension|(Time) Identifier
257 +|MeasureDimension & one Measure|(((
258 +One Measure for each Code of the
259 +
260 +SDMX MeasureDimension
247 247  )))
248 -|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute
249 -|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)(((
250 -One Attribute for each Code of the SDMX MeasureDimension
262 +|DataAttribute not depending on the MeasureDimension|Attribute
263 +|DataAttribute depending on the MeasureDimension|(((
264 +One Attribute for each Code of the
265 +
266 +SDMX MeasureDimension
251 251  )))
252 252  
253 253  Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure.
... ... @@ -262,7 +262,7 @@
262 262  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
263 263  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
264 264  
265 -==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
281 +**12.3.3.3 From SDMX DataAttributes to VTL Measures**
266 266  
267 267  * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
268 268  
... ... @@ -274,7 +274,7 @@
274 274  
275 275  === 12.3.4 Mapping from VTL to SDMX data structures ===
276 276  
277 -==== 12.3.4.1 Basic Mapping ====
293 +**12.3.4.1 Basic Mapping**
278 278  
279 279  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
280 280  
... ... @@ -284,12 +284,11 @@
284 284  
285 285  Mapping table:
286 286  
287 -(% style="width:667.294px" %)
288 -|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX**
289 -|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension
290 -|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension
291 -|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure
292 -|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute
303 +|**VTL**|**SDMX**
304 +|(Simple) Identifier|Dimension
305 +|(Time) Identifier|TimeDimension
306 +|Measure|Measure
307 +|Attribute|DataAttribute
293 293  
294 294  If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition.
295 295  
... ... @@ -299,7 +299,7 @@
299 299  
300 300  As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
301 301  
302 -==== 12.3.4.2 Unpivot Mapping ====
317 +**12.3.4.2 Unpivot Mapping**
303 303  
304 304  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.
305 305  
... ... @@ -323,12 +323,11 @@
323 323  
324 324  The summary mapping table of the **unpivot** mapping method is the following:
325 325  
326 -(% style="width:994.294px" %)
327 -|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX**
328 -|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension
329 -|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension
330 -|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure
331 -|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
341 +|**VTL**|**SDMX**
342 +|(Simple) Identifier|Dimension
343 +|(Time) Identifier|TimeDimension
344 +|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure
345 +|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension
332 332  
333 333  At observation / data point level:
334 334  
... ... @@ -342,7 +342,7 @@
342 342  
343 343  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
344 344  
345 -==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ====
359 +**12.3.4.3 From VTL Measures to SDMX Data Attributes**
346 346  
347 347  More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
348 348  
... ... @@ -350,13 +350,12 @@
350 350  
351 351  The mapping table is the following:
352 352  
353 -(% style="width:689.294px" %)
354 -|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
355 -|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
356 -|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
357 -|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
358 -|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute
359 -|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute
367 +|VTL|SDMX
368 +|(Simple) Identifier|Dimension
369 +|(Time) Identifier|TimeDimension
370 +|Some Measures|Measure
371 +|Other Measures|DataAttribute
372 +|Attribute|DataAttribute
360 360  
361 361  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
362 362  
... ... @@ -374,20 +374,20 @@
374 374  
375 375  Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
376 376  
377 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}}
390 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^
378 378  
379 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}}
392 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^
380 380  
381 381  Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets.
382 382  
383 383  For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows:
384 384  
385 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.{{footnote}}This definition is made through the ToVtlSubspace and ToVtlSpaceKey classes and/or the FromVtlSuperspace and FromVtlSpaceKey classes, depending on the direction of the mapping (“key” means “dimension”). The mapping of Dataflow subsets can be applied independently in the two directions, also according to different Dimensions. When no Dimension is declared for a given direction, it is assumed that the option of mapping different parts of a SDMX Dataflow to different VTL Data Sets is not used.{{/footnote}} Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.
398 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^ Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.
386 386  * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts:
387 387  ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0);
388 -** a slash (“/”) as a separator;{{footnote}}As a consequence of this formalism, a slash in the name of the VTL Data Set assumes the specific meaning of separator between the name of the Dataflow and the values of some of its Dimensions.{{/footnote}}
401 +** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^
389 389  
390 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined{{footnote}}This is the order in which the dimensions are defined in the ToVtlSpaceKey class or in the FromVtlSpaceKey class, depending on the direction of the mapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
403 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.
391 391  
392 392  In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules.
393 393  
... ... @@ -403,7 +403,7 @@
403 403  
404 404  Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX.
405 405  
406 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations{{footnote}}It should be remembered that, according to the VTL consistency rules, a given VTL dataset cannot be the result of more than one VTL Transformation.{{/footnote}} need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
419 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^ need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.
407 407  
408 408  First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations.
409 409  
... ... @@ -411,7 +411,7 @@
411 411  
412 412  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
413 413  
414 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
427 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
415 415  
416 416  basic, pivot …).
417 417  
... ... @@ -431,7 +431,7 @@
431 431  
432 432  … … …
433 433  
434 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
447 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^
435 435  
436 436  In the direction from SDMX to VTL it is allowed to omit the value of one or more
437 437  
... ... @@ -459,12 +459,12 @@
459 459  
460 460  Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY:
461 461  
462 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation;{{footnote}}If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one SDMX Dataflow to many VTL datasets) does not apply.{{/footnote}}
463 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.{{footnote}}This is possible as each VTL dataset corresponds to one particular combination of values of INDICATOR and COUNTRY.{{/footnote}}
475 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^
476 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^
464 464  
465 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions{{footnote}}The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the VtlDataflowMapping relevant to DF2(1.0).{{/footnote}}.
478 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^.
466 466  
467 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
480 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^
468 468  
469 469  ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
470 470  
... ... @@ -520,9 +520,9 @@
520 520  
521 521  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
522 522  
523 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
536 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
524 524  
525 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
538 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^
526 526  
527 527  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
528 528  
... ... @@ -530,51 +530,52 @@
530 530  
531 531  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
532 532  
533 -(% style="width:1170.29px" %)
534 -|**VTL**|(% style="width:754px" %)**SDMX**
535 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
536 -|**Represented Variable**|(% style="width:754px" %)(((
546 +|VTL|SDMX
547 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
548 +|**Represented Variable**|(((
537 537  **Concept** with a definite
538 538  
539 539  Representation
540 540  )))
541 -|**Value Domain**|(% style="width:754px" %)(((
553 +|**Value Domain**|(((
542 542  **Representation** (see the Structure
543 543  
544 544  Pattern in the Base Package)
545 545  )))
546 -|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
547 -|**Code**|(% style="width:754px" %)(((
558 +|**Enumerated Value Domain / Code List**|**Codelist**
559 +|**Code**|(((
548 548  **Code** (for enumerated
549 549  
550 550  DimensionComponent, Measure, DataAttribute)
551 551  )))
552 -|**Described Value Domain**|(% style="width:754px" %)(((
553 -non-enumerated** Representation**
564 +|**Described Value Domain**|(((
565 +non-enumerated** &nbsp;&nbsp;&nbsp;Representation**
554 554  
555 555  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
556 556  )))
557 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
558 -| |(% style="width:754px" %)(((
559 -to a valid **value **(for non-enumerated** **Representations)
569 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
570 +| |(((
571 +to a valid **value &nbsp;&nbsp;&nbsp;**(for non-enumerated** &nbsp;&nbsp;&nbsp;**
572 +
573 +Representations)
560 560  )))
561 -|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
562 -|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
563 -|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
564 -|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
575 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
576 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
577 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
578 +|**Set list**|This abstraction does not exist in SDMX
565 565  
566 566  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
567 567  
568 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
582 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
569 569  
570 570  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
571 571  
572 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
586 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
573 573  
574 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
575 -
576 576  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
577 577  
590 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
591 +
578 578  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
579 579  
580 580  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -589,8 +589,7 @@
589 589  
590 590  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
591 591  
592 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
593 -**Figure 22 – VTL Data Types**
606 +==== Figure 22 – VTL Data Types ====
594 594  
595 595  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
596 596  
... ... @@ -597,12 +597,131 @@
597 597  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
598 598  
599 599  
600 -**Figure 23 – VTL Basic Scalar Types**
601 601  
602 602  (((
603 -
615 +//n//
616 +
617 +//a//
618 +
619 +//e//
620 +
621 +//l//
622 +
623 +//o//
624 +
625 +//o//
626 +
627 +//B//
628 +
629 +//n//
630 +
631 +//o//
632 +
633 +//i//
634 +
635 +//t//
636 +
637 +//a//
638 +
639 +//r//
640 +
641 +//u//
642 +
643 +//D//
644 +
645 +//d//
646 +
647 +//o//
648 +
649 +//i//
650 +
651 +//r//
652 +
653 +//e//
654 +
655 +//p//
656 +
657 +//_//
658 +
659 +//e//
660 +
661 +//m//
662 +
663 +//i//
664 +
665 +//T//
666 +
667 +//e//
668 +
669 +//t//
670 +
671 +//a//
672 +
673 +//D//
674 +
675 +//e//
676 +
677 +//m//
678 +
679 +//i//
680 +
681 +//T//
682 +
683 +//r//
684 +
685 +//e//
686 +
687 +//g//
688 +
689 +//e//
690 +
691 +//t//
692 +
693 +//n//
694 +
695 +//I//
696 +
697 +//r//
698 +
699 +//e//
700 +
701 +//b//
702 +
703 +//m//
704 +
705 +//u//
706 +
707 +//N//
708 +
709 +//g//
710 +
711 +//n//
712 +
713 +//i//
714 +
715 +//r//
716 +
717 +//t//
718 +
719 +//S//
720 +
721 +//r//
722 +
723 +//a//
724 +
725 +//l//
726 +
727 +//a//
728 +
729 +//c//
730 +
731 +//S//
732 +
733 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
604 604  )))
605 605  
736 +==== Figure 23 – VTL Basic Scalar Types ====
737 +
606 606  === 12.4.2 VTL basic scalar types and SDMX data types ===
607 607  
608 608  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -625,159 +625,204 @@
625 625  
626 626  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
627 627  
628 -(% style="width:823.294px" %)
629 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
630 -|(% style="width:509px" %)(((
760 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
761 +|(((
631 631  String
763 +
632 632  (string allowing any character)
633 -)))|(% style="width:312px" %)string
634 -|(% style="width:509px" %)(((
765 +)))|string
766 +|(((
635 635  Alpha
768 +
636 636  (string which only allows A-z)
637 -)))|(% style="width:312px" %)string
638 -|(% style="width:509px" %)(((
770 +)))|string
771 +|(((
639 639  AlphaNumeric
773 +
640 640  (string which only allows A-z and 0-9)
641 -)))|(% style="width:312px" %)string
642 -|(% style="width:509px" %)(((
775 +)))|string
776 +|(((
643 643  Numeric
778 +
644 644  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
645 -)))|(% style="width:312px" %)string
646 -|(% style="width:509px" %)(((
780 +)))|string
781 +|(((
647 647  BigInteger
783 +
648 648  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
649 -)))|(% style="width:312px" %)integer
650 -|(% style="width:509px" %)(((
785 +)))|integer
786 +|(((
651 651  Integer
652 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
653 -)))|(% style="width:312px" %)integer
654 -|(% style="width:509px" %)(((
788 +
789 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
790 +
791 +(inclusive))
792 +)))|integer
793 +|(((
655 655  Long
656 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
657 -)))|(% style="width:312px" %)integer
658 -|(% style="width:509px" %)(((
795 +
796 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
797 +
798 ++9223372036854775807 (inclusive))
799 +)))|integer
800 +|(((
659 659  Short
802 +
660 660  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
661 -)))|(% style="width:312px" %)integer
662 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
663 -|(% style="width:509px" %)(((
804 +)))|integer
805 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
806 +|(((
664 664  Float
808 +
665 665  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
666 -)))|(% style="width:312px" %)number
667 -|(% style="width:509px" %)(((
810 +)))|number
811 +|(((
668 668  Double
813 +
669 669  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
670 -)))|(% style="width:312px" %)number
671 -|(% style="width:509px" %)(((
815 +)))|number
816 +|(((
672 672  Boolean
673 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
674 -)))|(% style="width:312px" %)boolean
675 675  
676 -(% style="width:822.294px" %)
677 -|(% colspan="2" style="width:507px" %)(((
819 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
820 +
821 +binary-valued logic: {true, false})
822 +)))|boolean
823 +
824 +| |(% colspan="2" %)(((
678 678  URI
826 +
679 679  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
680 -)))|(% colspan="1" style="width:311px" %)string
681 -|(% colspan="2" style="width:507px" %)(((
828 +)))|(% colspan="2" %)string
829 +| |(% colspan="2" %)(((
682 682  Count
831 +
683 683  (an integer following a sequential pattern, increasing by 1 for each occurrence)
684 -)))|(% colspan="1" style="width:311px" %)integer
685 -|(% colspan="2" style="width:507px" %)(((
833 +)))|(% colspan="2" %)integer
834 +| |(% colspan="2" %)(((
686 686  InclusiveValueRange
836 +
687 687  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
688 -)))|(% colspan="1" style="width:311px" %)number
689 -|(% colspan="2" style="width:507px" %)(((
838 +)))|(% colspan="2" %)number
839 +| |(% colspan="2" %)(((
690 690  ExclusiveValueRange
841 +
691 691  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
692 -)))|(% colspan="1" style="width:311px" %)number
693 -|(% colspan="2" style="width:507px" %)(((
843 +)))|(% colspan="2" %)number
844 +| |(% colspan="2" %)(((
694 694  Incremental
846 +
695 695  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
696 -)))|(% colspan="1" style="width:311px" %)number
697 -|(% colspan="2" style="width:507px" %)(((
848 +)))|(% colspan="2" %)number
849 +| |(% colspan="2" %)(((
698 698  ObservationalTimePeriod
851 +
699 699  (superset of StandardTimePeriod and TimeRange)
700 -)))|(% colspan="1" style="width:311px" %)time
701 -|(% colspan="2" style="width:507px" %)(((
853 +)))|(% colspan="2" %)time
854 +| |(% colspan="2" %)(((
702 702  StandardTimePeriod
703 -(superset of BasicTimePeriod and ReportingTimePeriod)
704 -)))|(% colspan="1" style="width:311px" %)time
705 -|(% colspan="2" style="width:507px" %)(((
856 +
857 +(superset of BasicTimePeriod and
858 +
859 +ReportingTimePeriod)
860 +)))|(% colspan="2" %)time
861 +| |(% colspan="2" %)(((
706 706  BasicTimePeriod
863 +
707 707  (superset of GregorianTimePeriod and DateTime)
708 -)))|(% colspan="1" style="width:311px" %)date
709 -|(% colspan="2" style="width:507px" %)(((
865 +)))|(% colspan="2" %)date
866 +| |(% colspan="2" %)(((
710 710  GregorianTimePeriod
868 +
711 711  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
712 -)))|(% colspan="1" style="width:311px" %)date
713 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
714 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
715 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
716 -|(% colspan="2" style="width:507px" %)(((
870 +)))|(% colspan="2" %)date
871 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
872 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
873 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
874 +| |(% colspan="2" %)(((
717 717  ReportingTimePeriod
718 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
719 -)))|(% colspan="1" style="width:311px" %)time_period
720 -|(% colspan="2" style="width:507px" %)(((
876 +
877 +(superset of RepostingYear, ReportingSemester,
878 +
879 +ReportingTrimester, ReportingQuarter,
880 +
881 +ReportingMonth, ReportingWeek, ReportingDay)
882 +)))|(% colspan="2" %)time_period
883 +| |(% colspan="2" %)(((
721 721  ReportingYear
885 +
722 722  (YYYY-A1 – 1 year period)
723 -)))|(% colspan="1" style="width:311px" %)time_period
724 -|(% colspan="2" style="width:507px" %)(((
887 +)))|(% colspan="2" %)time_period
888 +| |(% colspan="2" %)(((
725 725  ReportingSemester
890 +
726 726  (YYYY-Ss – 6 month period)
727 -)))|(% colspan="1" style="width:311px" %)time_period
728 -|(% colspan="2" style="width:507px" %)(((
892 +)))|(% colspan="2" %)time_period
893 +| |(% colspan="2" %)(((
729 729  ReportingTrimester
895 +
730 730  (YYYY-Tt – 4 month period)
731 -)))|(% colspan="1" style="width:311px" %)time_period
732 -|(% colspan="2" style="width:507px" %)(((
897 +)))|(% colspan="2" %)time_period
898 +| |(% colspan="2" %)(((
733 733  ReportingQuarter
900 +
734 734  (YYYY-Qq – 3 month period)
735 -)))|(% colspan="1" style="width:311px" %)time_period
736 -|(% colspan="2" style="width:507px" %)(((
902 +)))|(% colspan="2" %)time_period
903 +| |(% colspan="2" %)(((
737 737  ReportingMonth
905 +
738 738  (YYYY-Mmm – 1 month period)
739 -)))|(% colspan="1" style="width:311px" %)time_period
740 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
741 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
742 -|(% colspan="1" style="width:507px" %)(((
907 +)))|(% colspan="2" %)time_period
908 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
909 +| |(% colspan="2" %) |(% colspan="2" %)
910 +| |(% colspan="2" %) |(% colspan="2" %)
911 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
912 +|(% colspan="2" %)(((
743 743  ReportingDay
914 +
744 744  (YYYY-Dddd – 1 day period)
745 -)))|(% colspan="2" style="width:312px" %)time_period
746 -|(% colspan="1" style="width:507px" %)(((
916 +)))|(% colspan="2" %)time_period|
917 +|(% colspan="2" %)(((
747 747  DateTime
919 +
748 748  (YYYY-MM-DDThh:mm:ss)
749 -)))|(% colspan="2" style="width:312px" %)date
750 -|(% colspan="1" style="width:507px" %)(((
921 +)))|(% colspan="2" %)date|
922 +|(% colspan="2" %)(((
751 751  TimeRange
924 +
752 752  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
753 -)))|(% colspan="2" style="width:312px" %)time
754 -|(% colspan="1" style="width:507px" %)(((
926 +)))|(% colspan="2" %)time|
927 +|(% colspan="2" %)(((
755 755  Month
929 +
756 756  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
757 -)))|(% colspan="2" style="width:312px" %)string
758 -|(% colspan="1" style="width:507px" %)(((
931 +)))|(% colspan="2" %)string|
932 +|(% colspan="2" %)(((
759 759  MonthDay
934 +
760 760  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
761 -)))|(% colspan="2" style="width:312px" %)string
762 -|(% colspan="1" style="width:507px" %)(((
936 +)))|(% colspan="2" %)string|
937 +|(% colspan="2" %)(((
763 763  Day
939 +
764 764  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
765 -)))|(% colspan="2" style="width:312px" %)string
766 -|(% colspan="1" style="width:507px" %)(((
941 +)))|(% colspan="2" %)string|
942 +|(% colspan="2" %)(((
767 767  Time
944 +
768 768  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
769 -)))|(% colspan="2" style="width:312px" %)string
770 -|(% colspan="1" style="width:507px" %)(((
946 +)))|(% colspan="2" %)string|
947 +|(% colspan="2" %)(((
771 771  Duration
949 +
772 772  (corresponds to XML Schema xs:duration datatype)
773 -)))|(% colspan="2" style="width:312px" %)duration
774 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
775 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
776 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
777 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
951 +)))|(% colspan="2" %)duration|
952 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
953 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
954 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
955 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
778 778  
779 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
780 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
957 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
781 781  
782 782  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
783 783  
... ... @@ -785,32 +785,39 @@
785 785  
786 786  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
787 787  
788 -(% style="width:1073.29px" %)
789 -|(% style="width:207px" %)(((
790 -**VTL basic scalar type**
791 -)))|(% style="width:462px" %)(((
792 -**Default SDMX data type (BasicComponentDataType)**
793 -)))|(% style="width:402px" %)**Default output format**
794 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
795 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
796 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
797 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
798 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
799 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
965 +|(((
966 +VTL basic
967 +
968 +scalar type
969 +)))|(((
970 +Default SDMX data type
971 +
972 +(BasicComponentDataType
973 +
974 +)
975 +)))|Default output format
976 +|String|String|Like XML (xs:string)
977 +|Number|Float|Like XML (xs:float)
978 +|Integer|Integer|Like XML (xs:int)
979 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
980 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
981 +|time_period|(((
800 800  ReportingTimePeriod
983 +
801 801  (StandardReportingPeriod)
802 -)))|(% style="width:402px" %)(((
985 +)))|(((
803 803  YYYY-Pppp
987 +
804 804  (according to SDMX )
805 805  )))
806 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
990 +|Duration|Duration|(((
807 807  Like XML (xs:duration)
992 +
808 808  PnYnMnDTnHnMnS
809 809  )))
810 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
995 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
811 811  
812 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
813 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
997 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
814 814  
815 815  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
816 816  
... ... @@ -864,7 +864,7 @@
864 864  |N|fixed number of digits used in the preceding textual representation of the month or the day
865 865  | |
866 866  
867 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1051 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
868 868  
869 869  === 12.4.5 Null Values ===
870 870  
... ... @@ -882,8 +882,10 @@
882 882  
883 883  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
884 884  
885 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1069 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
886 886  
1071 +TransformationScheme.
1072 +
887 887  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
888 888  
889 889  {{putFootnotes/}}