Last modified by Helena on 2025/09/10 11:19

From version 6.3
edited by Helena
on 2025/05/16 12:31
Change comment: There is no comment for this version
To version 5.22
edited by Helena
on 2025/05/16 08:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -228,11 +228,18 @@
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 +
237 +Component;
238 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 +
244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 +
246 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
... ... @@ -569,10 +569,8 @@
569 569  
570 570  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
571 571  
572 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
573 573  
574 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
575 -
576 576  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
577 577  
578 578  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
... ... @@ -589,8 +589,7 @@
589 589  
590 590  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
591 591  
592 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
593 -**Figure 22 – VTL Data Types**
601 +==== Figure 22 – VTL Data Types ====
594 594  
595 595  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
596 596  
... ... @@ -597,12 +597,131 @@
597 597  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
598 598  
599 599  
600 -**Figure 23 – VTL Basic Scalar Types**
601 601  
602 602  (((
603 -
610 +//n//
611 +
612 +//a//
613 +
614 +//e//
615 +
616 +//l//
617 +
618 +//o//
619 +
620 +//o//
621 +
622 +//B//
623 +
624 +//n//
625 +
626 +//o//
627 +
628 +//i//
629 +
630 +//t//
631 +
632 +//a//
633 +
634 +//r//
635 +
636 +//u//
637 +
638 +//D//
639 +
640 +//d//
641 +
642 +//o//
643 +
644 +//i//
645 +
646 +//r//
647 +
648 +//e//
649 +
650 +//p//
651 +
652 +//_//
653 +
654 +//e//
655 +
656 +//m//
657 +
658 +//i//
659 +
660 +//T//
661 +
662 +//e//
663 +
664 +//t//
665 +
666 +//a//
667 +
668 +//D//
669 +
670 +//e//
671 +
672 +//m//
673 +
674 +//i//
675 +
676 +//T//
677 +
678 +//r//
679 +
680 +//e//
681 +
682 +//g//
683 +
684 +//e//
685 +
686 +//t//
687 +
688 +//n//
689 +
690 +//I//
691 +
692 +//r//
693 +
694 +//e//
695 +
696 +//b//
697 +
698 +//m//
699 +
700 +//u//
701 +
702 +//N//
703 +
704 +//g//
705 +
706 +//n//
707 +
708 +//i//
709 +
710 +//r//
711 +
712 +//t//
713 +
714 +//S//
715 +
716 +//r//
717 +
718 +//a//
719 +
720 +//l//
721 +
722 +//a//
723 +
724 +//c//
725 +
726 +//S//
727 +
728 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
604 604  )))
605 605  
731 +==== Figure 23 – VTL Basic Scalar Types ====
732 +
606 606  === 12.4.2 VTL basic scalar types and SDMX data types ===
607 607  
608 608  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -625,159 +625,204 @@
625 625  
626 626  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
627 627  
628 -(% style="width:823.294px" %)
629 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
630 -|(% style="width:509px" %)(((
755 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
756 +|(((
631 631  String
758 +
632 632  (string allowing any character)
633 -)))|(% style="width:312px" %)string
634 -|(% style="width:509px" %)(((
760 +)))|string
761 +|(((
635 635  Alpha
763 +
636 636  (string which only allows A-z)
637 -)))|(% style="width:312px" %)string
638 -|(% style="width:509px" %)(((
765 +)))|string
766 +|(((
639 639  AlphaNumeric
768 +
640 640  (string which only allows A-z and 0-9)
641 -)))|(% style="width:312px" %)string
642 -|(% style="width:509px" %)(((
770 +)))|string
771 +|(((
643 643  Numeric
773 +
644 644  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
645 -)))|(% style="width:312px" %)string
646 -|(% style="width:509px" %)(((
775 +)))|string
776 +|(((
647 647  BigInteger
778 +
648 648  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
649 -)))|(% style="width:312px" %)integer
650 -|(% style="width:509px" %)(((
780 +)))|integer
781 +|(((
651 651  Integer
652 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
653 -)))|(% style="width:312px" %)integer
654 -|(% style="width:509px" %)(((
783 +
784 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
785 +
786 +(inclusive))
787 +)))|integer
788 +|(((
655 655  Long
656 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
657 -)))|(% style="width:312px" %)integer
658 -|(% style="width:509px" %)(((
790 +
791 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
792 +
793 ++9223372036854775807 (inclusive))
794 +)))|integer
795 +|(((
659 659  Short
797 +
660 660  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
661 -)))|(% style="width:312px" %)integer
662 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
663 -|(% style="width:509px" %)(((
799 +)))|integer
800 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
801 +|(((
664 664  Float
803 +
665 665  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
666 -)))|(% style="width:312px" %)number
667 -|(% style="width:509px" %)(((
805 +)))|number
806 +|(((
668 668  Double
808 +
669 669  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
670 -)))|(% style="width:312px" %)number
671 -|(% style="width:509px" %)(((
810 +)))|number
811 +|(((
672 672  Boolean
673 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
674 -)))|(% style="width:312px" %)boolean
675 675  
676 -(% style="width:822.294px" %)
677 -|(% colspan="2" style="width:507px" %)(((
814 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
815 +
816 +binary-valued logic: {true, false})
817 +)))|boolean
818 +
819 +| |(% colspan="2" %)(((
678 678  URI
821 +
679 679  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
680 -)))|(% colspan="1" style="width:311px" %)string
681 -|(% colspan="2" style="width:507px" %)(((
823 +)))|(% colspan="2" %)string
824 +| |(% colspan="2" %)(((
682 682  Count
826 +
683 683  (an integer following a sequential pattern, increasing by 1 for each occurrence)
684 -)))|(% colspan="1" style="width:311px" %)integer
685 -|(% colspan="2" style="width:507px" %)(((
828 +)))|(% colspan="2" %)integer
829 +| |(% colspan="2" %)(((
686 686  InclusiveValueRange
831 +
687 687  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
688 -)))|(% colspan="1" style="width:311px" %)number
689 -|(% colspan="2" style="width:507px" %)(((
833 +)))|(% colspan="2" %)number
834 +| |(% colspan="2" %)(((
690 690  ExclusiveValueRange
836 +
691 691  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
692 -)))|(% colspan="1" style="width:311px" %)number
693 -|(% colspan="2" style="width:507px" %)(((
838 +)))|(% colspan="2" %)number
839 +| |(% colspan="2" %)(((
694 694  Incremental
841 +
695 695  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
696 -)))|(% colspan="1" style="width:311px" %)number
697 -|(% colspan="2" style="width:507px" %)(((
843 +)))|(% colspan="2" %)number
844 +| |(% colspan="2" %)(((
698 698  ObservationalTimePeriod
846 +
699 699  (superset of StandardTimePeriod and TimeRange)
700 -)))|(% colspan="1" style="width:311px" %)time
701 -|(% colspan="2" style="width:507px" %)(((
848 +)))|(% colspan="2" %)time
849 +| |(% colspan="2" %)(((
702 702  StandardTimePeriod
703 -(superset of BasicTimePeriod and ReportingTimePeriod)
704 -)))|(% colspan="1" style="width:311px" %)time
705 -|(% colspan="2" style="width:507px" %)(((
851 +
852 +(superset of BasicTimePeriod and
853 +
854 +ReportingTimePeriod)
855 +)))|(% colspan="2" %)time
856 +| |(% colspan="2" %)(((
706 706  BasicTimePeriod
858 +
707 707  (superset of GregorianTimePeriod and DateTime)
708 -)))|(% colspan="1" style="width:311px" %)date
709 -|(% colspan="2" style="width:507px" %)(((
860 +)))|(% colspan="2" %)date
861 +| |(% colspan="2" %)(((
710 710  GregorianTimePeriod
863 +
711 711  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
712 -)))|(% colspan="1" style="width:311px" %)date
713 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
714 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
715 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
716 -|(% colspan="2" style="width:507px" %)(((
865 +)))|(% colspan="2" %)date
866 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
867 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
868 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
869 +| |(% colspan="2" %)(((
717 717  ReportingTimePeriod
718 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
719 -)))|(% colspan="1" style="width:311px" %)time_period
720 -|(% colspan="2" style="width:507px" %)(((
871 +
872 +(superset of RepostingYear, ReportingSemester,
873 +
874 +ReportingTrimester, ReportingQuarter,
875 +
876 +ReportingMonth, ReportingWeek, ReportingDay)
877 +)))|(% colspan="2" %)time_period
878 +| |(% colspan="2" %)(((
721 721  ReportingYear
880 +
722 722  (YYYY-A1 – 1 year period)
723 -)))|(% colspan="1" style="width:311px" %)time_period
724 -|(% colspan="2" style="width:507px" %)(((
882 +)))|(% colspan="2" %)time_period
883 +| |(% colspan="2" %)(((
725 725  ReportingSemester
885 +
726 726  (YYYY-Ss – 6 month period)
727 -)))|(% colspan="1" style="width:311px" %)time_period
728 -|(% colspan="2" style="width:507px" %)(((
887 +)))|(% colspan="2" %)time_period
888 +| |(% colspan="2" %)(((
729 729  ReportingTrimester
890 +
730 730  (YYYY-Tt – 4 month period)
731 -)))|(% colspan="1" style="width:311px" %)time_period
732 -|(% colspan="2" style="width:507px" %)(((
892 +)))|(% colspan="2" %)time_period
893 +| |(% colspan="2" %)(((
733 733  ReportingQuarter
895 +
734 734  (YYYY-Qq – 3 month period)
735 -)))|(% colspan="1" style="width:311px" %)time_period
736 -|(% colspan="2" style="width:507px" %)(((
897 +)))|(% colspan="2" %)time_period
898 +| |(% colspan="2" %)(((
737 737  ReportingMonth
900 +
738 738  (YYYY-Mmm – 1 month period)
739 -)))|(% colspan="1" style="width:311px" %)time_period
740 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
741 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
742 -|(% colspan="1" style="width:507px" %)(((
902 +)))|(% colspan="2" %)time_period
903 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
904 +| |(% colspan="2" %) |(% colspan="2" %)
905 +| |(% colspan="2" %) |(% colspan="2" %)
906 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
907 +|(% colspan="2" %)(((
743 743  ReportingDay
909 +
744 744  (YYYY-Dddd – 1 day period)
745 -)))|(% colspan="2" style="width:312px" %)time_period
746 -|(% colspan="1" style="width:507px" %)(((
911 +)))|(% colspan="2" %)time_period|
912 +|(% colspan="2" %)(((
747 747  DateTime
914 +
748 748  (YYYY-MM-DDThh:mm:ss)
749 -)))|(% colspan="2" style="width:312px" %)date
750 -|(% colspan="1" style="width:507px" %)(((
916 +)))|(% colspan="2" %)date|
917 +|(% colspan="2" %)(((
751 751  TimeRange
919 +
752 752  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
753 -)))|(% colspan="2" style="width:312px" %)time
754 -|(% colspan="1" style="width:507px" %)(((
921 +)))|(% colspan="2" %)time|
922 +|(% colspan="2" %)(((
755 755  Month
924 +
756 756  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
757 -)))|(% colspan="2" style="width:312px" %)string
758 -|(% colspan="1" style="width:507px" %)(((
926 +)))|(% colspan="2" %)string|
927 +|(% colspan="2" %)(((
759 759  MonthDay
929 +
760 760  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
761 -)))|(% colspan="2" style="width:312px" %)string
762 -|(% colspan="1" style="width:507px" %)(((
931 +)))|(% colspan="2" %)string|
932 +|(% colspan="2" %)(((
763 763  Day
934 +
764 764  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
765 -)))|(% colspan="2" style="width:312px" %)string
766 -|(% colspan="1" style="width:507px" %)(((
936 +)))|(% colspan="2" %)string|
937 +|(% colspan="2" %)(((
767 767  Time
939 +
768 768  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
769 -)))|(% colspan="2" style="width:312px" %)string
770 -|(% colspan="1" style="width:507px" %)(((
941 +)))|(% colspan="2" %)string|
942 +|(% colspan="2" %)(((
771 771  Duration
944 +
772 772  (corresponds to XML Schema xs:duration datatype)
773 -)))|(% colspan="2" style="width:312px" %)duration
774 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
775 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
776 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
777 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
946 +)))|(% colspan="2" %)duration|
947 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
948 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
949 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
950 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
778 778  
779 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
780 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
952 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
781 781  
782 782  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
783 783  
... ... @@ -785,32 +785,39 @@
785 785  
786 786  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
787 787  
788 -(% style="width:1073.29px" %)
789 -|(% style="width:207px" %)(((
790 -**VTL basic scalar type**
791 -)))|(% style="width:462px" %)(((
792 -**Default SDMX data type (BasicComponentDataType)**
793 -)))|(% style="width:402px" %)**Default output format**
794 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
795 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
796 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
797 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
798 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
799 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
960 +|(((
961 +VTL basic
962 +
963 +scalar type
964 +)))|(((
965 +Default SDMX data type
966 +
967 +(BasicComponentDataType
968 +
969 +)
970 +)))|Default output format
971 +|String|String|Like XML (xs:string)
972 +|Number|Float|Like XML (xs:float)
973 +|Integer|Integer|Like XML (xs:int)
974 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
975 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
976 +|time_period|(((
800 800  ReportingTimePeriod
978 +
801 801  (StandardReportingPeriod)
802 -)))|(% style="width:402px" %)(((
980 +)))|(((
803 803  YYYY-Pppp
982 +
804 804  (according to SDMX )
805 805  )))
806 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
985 +|Duration|Duration|(((
807 807  Like XML (xs:duration)
987 +
808 808  PnYnMnDTnHnMnS
809 809  )))
810 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
990 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
811 811  
812 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
813 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
992 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
814 814  
815 815  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
816 816  
... ... @@ -864,7 +864,7 @@
864 864  |N|fixed number of digits used in the preceding textual representation of the month or the day
865 865  | |
866 866  
867 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1046 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
868 868  
869 869  === 12.4.5 Null Values ===
870 870  
... ... @@ -882,8 +882,10 @@
882 882  
883 883  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
884 884  
885 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1064 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
886 886  
1066 +TransformationScheme.
1067 +
887 887  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
888 888  
889 889  {{putFootnotes/}}