Last modified by Helena on 2025/09/10 11:19

From version 6.4
edited by Helena
on 2025/05/16 12:31
Change comment: There is no comment for this version
To version 5.17
edited by Helena
on 2025/05/16 08:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -228,11 +228,18 @@
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 +
237 +Component;
238 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 +
244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 +
246 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
... ... @@ -255,7 +255,10 @@
255 255  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
256 256  
257 257  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 +
271 +Identifiers, (time) Identifier and Attributes.
272 +
259 259  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
260 260  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
261 261  
... ... @@ -517,9 +517,9 @@
517 517  
518 518  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
519 519  
520 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
534 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
521 521  
522 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^
523 523  
524 524  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
525 525  
... ... @@ -527,51 +527,52 @@
527 527  
528 528  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
529 529  
530 -(% style="width:1170.29px" %)
531 -|**VTL**|(% style="width:754px" %)**SDMX**
532 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
533 -|**Represented Variable**|(% style="width:754px" %)(((
544 +|VTL|SDMX
545 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
546 +|**Represented Variable**|(((
534 534  **Concept** with a definite
535 535  
536 536  Representation
537 537  )))
538 -|**Value Domain**|(% style="width:754px" %)(((
551 +|**Value Domain**|(((
539 539  **Representation** (see the Structure
540 540  
541 541  Pattern in the Base Package)
542 542  )))
543 -|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
544 -|**Code**|(% style="width:754px" %)(((
556 +|**Enumerated Value Domain / Code List**|**Codelist**
557 +|**Code**|(((
545 545  **Code** (for enumerated
546 546  
547 547  DimensionComponent, Measure, DataAttribute)
548 548  )))
549 -|**Described Value Domain**|(% style="width:754px" %)(((
550 -non-enumerated** Representation**
562 +|**Described Value Domain**|(((
563 +non-enumerated**    Representation**
551 551  
552 552  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
553 553  )))
554 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
555 -| |(% style="width:754px" %)(((
556 -to a valid **value **(for non-enumerated** **Representations)
567 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
568 +| |(((
569 +to a valid **value    **(for non-enumerated**    **
570 +
571 +Representations)
557 557  )))
558 -|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
559 -|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
560 -|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
561 -|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
573 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
574 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
575 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
576 +|**Set list**|This abstraction does not exist in SDMX
562 562  
563 563  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
564 564  
565 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
580 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
566 566  
567 567  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
568 568  
569 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
584 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
570 570  
571 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
572 -
573 573  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
574 574  
588 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
589 +
575 575  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
576 576  
577 577  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -586,8 +586,7 @@
586 586  
587 587  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
588 588  
589 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
590 -**Figure 22 – VTL Data Types**
604 +==== Figure 22 – VTL Data Types ====
591 591  
592 592  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
593 593  
... ... @@ -594,12 +594,131 @@
594 594  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
595 595  
596 596  
597 -**Figure 23 – VTL Basic Scalar Types**
598 598  
599 599  (((
600 -
613 +//n//
614 +
615 +//a//
616 +
617 +//e//
618 +
619 +//l//
620 +
621 +//o//
622 +
623 +//o//
624 +
625 +//B//
626 +
627 +//n//
628 +
629 +//o//
630 +
631 +//i//
632 +
633 +//t//
634 +
635 +//a//
636 +
637 +//r//
638 +
639 +//u//
640 +
641 +//D//
642 +
643 +//d//
644 +
645 +//o//
646 +
647 +//i//
648 +
649 +//r//
650 +
651 +//e//
652 +
653 +//p//
654 +
655 +//_//
656 +
657 +//e//
658 +
659 +//m//
660 +
661 +//i//
662 +
663 +//T//
664 +
665 +//e//
666 +
667 +//t//
668 +
669 +//a//
670 +
671 +//D//
672 +
673 +//e//
674 +
675 +//m//
676 +
677 +//i//
678 +
679 +//T//
680 +
681 +//r//
682 +
683 +//e//
684 +
685 +//g//
686 +
687 +//e//
688 +
689 +//t//
690 +
691 +//n//
692 +
693 +//I//
694 +
695 +//r//
696 +
697 +//e//
698 +
699 +//b//
700 +
701 +//m//
702 +
703 +//u//
704 +
705 +//N//
706 +
707 +//g//
708 +
709 +//n//
710 +
711 +//i//
712 +
713 +//r//
714 +
715 +//t//
716 +
717 +//S//
718 +
719 +//r//
720 +
721 +//a//
722 +
723 +//l//
724 +
725 +//a//
726 +
727 +//c//
728 +
729 +//S//
730 +
731 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
601 601  )))
602 602  
734 +==== Figure 23 – VTL Basic Scalar Types ====
735 +
603 603  === 12.4.2 VTL basic scalar types and SDMX data types ===
604 604  
605 605  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -622,159 +622,204 @@
622 622  
623 623  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
624 624  
625 -(% style="width:823.294px" %)
626 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
627 -|(% style="width:509px" %)(((
758 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
759 +|(((
628 628  String
761 +
629 629  (string allowing any character)
630 -)))|(% style="width:312px" %)string
631 -|(% style="width:509px" %)(((
763 +)))|string
764 +|(((
632 632  Alpha
766 +
633 633  (string which only allows A-z)
634 -)))|(% style="width:312px" %)string
635 -|(% style="width:509px" %)(((
768 +)))|string
769 +|(((
636 636  AlphaNumeric
771 +
637 637  (string which only allows A-z and 0-9)
638 -)))|(% style="width:312px" %)string
639 -|(% style="width:509px" %)(((
773 +)))|string
774 +|(((
640 640  Numeric
776 +
641 641  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
642 -)))|(% style="width:312px" %)string
643 -|(% style="width:509px" %)(((
778 +)))|string
779 +|(((
644 644  BigInteger
781 +
645 645  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
646 -)))|(% style="width:312px" %)integer
647 -|(% style="width:509px" %)(((
783 +)))|integer
784 +|(((
648 648  Integer
649 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
650 -)))|(% style="width:312px" %)integer
651 -|(% style="width:509px" %)(((
786 +
787 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
788 +
789 +(inclusive))
790 +)))|integer
791 +|(((
652 652  Long
653 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
654 -)))|(% style="width:312px" %)integer
655 -|(% style="width:509px" %)(((
793 +
794 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
795 +
796 ++9223372036854775807 (inclusive))
797 +)))|integer
798 +|(((
656 656  Short
800 +
657 657  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
658 -)))|(% style="width:312px" %)integer
659 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
660 -|(% style="width:509px" %)(((
802 +)))|integer
803 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
804 +|(((
661 661  Float
806 +
662 662  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
663 -)))|(% style="width:312px" %)number
664 -|(% style="width:509px" %)(((
808 +)))|number
809 +|(((
665 665  Double
811 +
666 666  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
667 -)))|(% style="width:312px" %)number
668 -|(% style="width:509px" %)(((
813 +)))|number
814 +|(((
669 669  Boolean
670 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
671 -)))|(% style="width:312px" %)boolean
672 672  
673 -(% style="width:822.294px" %)
674 -|(% colspan="2" style="width:507px" %)(((
817 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
818 +
819 +binary-valued logic: {true, false})
820 +)))|boolean
821 +
822 +| |(% colspan="2" %)(((
675 675  URI
824 +
676 676  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
677 -)))|(% colspan="1" style="width:311px" %)string
678 -|(% colspan="2" style="width:507px" %)(((
826 +)))|(% colspan="2" %)string
827 +| |(% colspan="2" %)(((
679 679  Count
829 +
680 680  (an integer following a sequential pattern, increasing by 1 for each occurrence)
681 -)))|(% colspan="1" style="width:311px" %)integer
682 -|(% colspan="2" style="width:507px" %)(((
831 +)))|(% colspan="2" %)integer
832 +| |(% colspan="2" %)(((
683 683  InclusiveValueRange
834 +
684 684  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
685 -)))|(% colspan="1" style="width:311px" %)number
686 -|(% colspan="2" style="width:507px" %)(((
836 +)))|(% colspan="2" %)number
837 +| |(% colspan="2" %)(((
687 687  ExclusiveValueRange
839 +
688 688  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
689 -)))|(% colspan="1" style="width:311px" %)number
690 -|(% colspan="2" style="width:507px" %)(((
841 +)))|(% colspan="2" %)number
842 +| |(% colspan="2" %)(((
691 691  Incremental
844 +
692 692  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
693 -)))|(% colspan="1" style="width:311px" %)number
694 -|(% colspan="2" style="width:507px" %)(((
846 +)))|(% colspan="2" %)number
847 +| |(% colspan="2" %)(((
695 695  ObservationalTimePeriod
849 +
696 696  (superset of StandardTimePeriod and TimeRange)
697 -)))|(% colspan="1" style="width:311px" %)time
698 -|(% colspan="2" style="width:507px" %)(((
851 +)))|(% colspan="2" %)time
852 +| |(% colspan="2" %)(((
699 699  StandardTimePeriod
700 -(superset of BasicTimePeriod and ReportingTimePeriod)
701 -)))|(% colspan="1" style="width:311px" %)time
702 -|(% colspan="2" style="width:507px" %)(((
854 +
855 +(superset of BasicTimePeriod and
856 +
857 +ReportingTimePeriod)
858 +)))|(% colspan="2" %)time
859 +| |(% colspan="2" %)(((
703 703  BasicTimePeriod
861 +
704 704  (superset of GregorianTimePeriod and DateTime)
705 -)))|(% colspan="1" style="width:311px" %)date
706 -|(% colspan="2" style="width:507px" %)(((
863 +)))|(% colspan="2" %)date
864 +| |(% colspan="2" %)(((
707 707  GregorianTimePeriod
866 +
708 708  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
709 -)))|(% colspan="1" style="width:311px" %)date
710 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
711 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
712 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
713 -|(% colspan="2" style="width:507px" %)(((
868 +)))|(% colspan="2" %)date
869 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
870 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
871 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
872 +| |(% colspan="2" %)(((
714 714  ReportingTimePeriod
715 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
716 -)))|(% colspan="1" style="width:311px" %)time_period
717 -|(% colspan="2" style="width:507px" %)(((
874 +
875 +(superset of RepostingYear, ReportingSemester,
876 +
877 +ReportingTrimester, ReportingQuarter,
878 +
879 +ReportingMonth, ReportingWeek, ReportingDay)
880 +)))|(% colspan="2" %)time_period
881 +| |(% colspan="2" %)(((
718 718  ReportingYear
883 +
719 719  (YYYY-A1 – 1 year period)
720 -)))|(% colspan="1" style="width:311px" %)time_period
721 -|(% colspan="2" style="width:507px" %)(((
885 +)))|(% colspan="2" %)time_period
886 +| |(% colspan="2" %)(((
722 722  ReportingSemester
888 +
723 723  (YYYY-Ss – 6 month period)
724 -)))|(% colspan="1" style="width:311px" %)time_period
725 -|(% colspan="2" style="width:507px" %)(((
890 +)))|(% colspan="2" %)time_period
891 +| |(% colspan="2" %)(((
726 726  ReportingTrimester
893 +
727 727  (YYYY-Tt – 4 month period)
728 -)))|(% colspan="1" style="width:311px" %)time_period
729 -|(% colspan="2" style="width:507px" %)(((
895 +)))|(% colspan="2" %)time_period
896 +| |(% colspan="2" %)(((
730 730  ReportingQuarter
898 +
731 731  (YYYY-Qq – 3 month period)
732 -)))|(% colspan="1" style="width:311px" %)time_period
733 -|(% colspan="2" style="width:507px" %)(((
900 +)))|(% colspan="2" %)time_period
901 +| |(% colspan="2" %)(((
734 734  ReportingMonth
903 +
735 735  (YYYY-Mmm – 1 month period)
736 -)))|(% colspan="1" style="width:311px" %)time_period
737 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
738 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
739 -|(% colspan="1" style="width:507px" %)(((
905 +)))|(% colspan="2" %)time_period
906 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
907 +| |(% colspan="2" %) |(% colspan="2" %)
908 +| |(% colspan="2" %) |(% colspan="2" %)
909 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
910 +|(% colspan="2" %)(((
740 740  ReportingDay
912 +
741 741  (YYYY-Dddd – 1 day period)
742 -)))|(% colspan="2" style="width:312px" %)time_period
743 -|(% colspan="1" style="width:507px" %)(((
914 +)))|(% colspan="2" %)time_period|
915 +|(% colspan="2" %)(((
744 744  DateTime
917 +
745 745  (YYYY-MM-DDThh:mm:ss)
746 -)))|(% colspan="2" style="width:312px" %)date
747 -|(% colspan="1" style="width:507px" %)(((
919 +)))|(% colspan="2" %)date|
920 +|(% colspan="2" %)(((
748 748  TimeRange
922 +
749 749  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
750 -)))|(% colspan="2" style="width:312px" %)time
751 -|(% colspan="1" style="width:507px" %)(((
924 +)))|(% colspan="2" %)time|
925 +|(% colspan="2" %)(((
752 752  Month
927 +
753 753  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
754 -)))|(% colspan="2" style="width:312px" %)string
755 -|(% colspan="1" style="width:507px" %)(((
929 +)))|(% colspan="2" %)string|
930 +|(% colspan="2" %)(((
756 756  MonthDay
932 +
757 757  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
758 -)))|(% colspan="2" style="width:312px" %)string
759 -|(% colspan="1" style="width:507px" %)(((
934 +)))|(% colspan="2" %)string|
935 +|(% colspan="2" %)(((
760 760  Day
937 +
761 761  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
762 -)))|(% colspan="2" style="width:312px" %)string
763 -|(% colspan="1" style="width:507px" %)(((
939 +)))|(% colspan="2" %)string|
940 +|(% colspan="2" %)(((
764 764  Time
942 +
765 765  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
766 -)))|(% colspan="2" style="width:312px" %)string
767 -|(% colspan="1" style="width:507px" %)(((
944 +)))|(% colspan="2" %)string|
945 +|(% colspan="2" %)(((
768 768  Duration
947 +
769 769  (corresponds to XML Schema xs:duration datatype)
770 -)))|(% colspan="2" style="width:312px" %)duration
771 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
772 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
773 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
774 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
949 +)))|(% colspan="2" %)duration|
950 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
951 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
952 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
953 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
775 775  
776 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
777 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
955 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
778 778  
779 779  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
780 780  
... ... @@ -782,32 +782,39 @@
782 782  
783 783  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
784 784  
785 -(% style="width:1073.29px" %)
786 -|(% style="width:207px" %)(((
787 -**VTL basic scalar type**
788 -)))|(% style="width:462px" %)(((
789 -**Default SDMX data type (BasicComponentDataType)**
790 -)))|(% style="width:402px" %)**Default output format**
791 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
792 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
793 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
794 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
795 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
796 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
963 +|(((
964 +VTL basic
965 +
966 +scalar type
967 +)))|(((
968 +Default SDMX data type
969 +
970 +(BasicComponentDataType
971 +
972 +)
973 +)))|Default output format
974 +|String|String|Like XML (xs:string)
975 +|Number|Float|Like XML (xs:float)
976 +|Integer|Integer|Like XML (xs:int)
977 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
978 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
979 +|time_period|(((
797 797  ReportingTimePeriod
981 +
798 798  (StandardReportingPeriod)
799 -)))|(% style="width:402px" %)(((
983 +)))|(((
800 800  YYYY-Pppp
985 +
801 801  (according to SDMX )
802 802  )))
803 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
988 +|Duration|Duration|(((
804 804  Like XML (xs:duration)
990 +
805 805  PnYnMnDTnHnMnS
806 806  )))
807 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
993 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
808 808  
809 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
810 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
995 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
811 811  
812 812  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
813 813  
... ... @@ -861,7 +861,7 @@
861 861  |N|fixed number of digits used in the preceding textual representation of the month or the day
862 862  | |
863 863  
864 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1049 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
865 865  
866 866  === 12.4.5 Null Values ===
867 867  
... ... @@ -879,8 +879,10 @@
879 879  
880 880  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
881 881  
882 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1067 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
883 883  
1069 +TransformationScheme.
1070 +
884 884  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
885 885  
886 886  {{putFootnotes/}}