Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -26,8 +26,10 @@ 26 26 27 27 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 28 28 29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.31 +In any case, the aliases used in the VTL Transformations have to be mapped to the 30 30 33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 + 31 31 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 32 32 33 33 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -198,7 +198,7 @@ 198 198 199 199 === 12.3.3 Mapping from SDMX to VTL data structures === 200 200 201 - ====12.3.3.1 Basic Mapping====205 +**12.3.3.1 Basic Mapping** 202 202 203 203 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 204 204 ... ... @@ -228,11 +228,18 @@ 228 228 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 229 229 230 230 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 + 237 +Component; 238 + 232 232 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 233 233 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 234 234 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 + 244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 + 246 +* 236 236 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 237 237 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 238 ... ... @@ -255,7 +255,10 @@ 255 255 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 256 256 257 257 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 270 + 271 +Identifiers, (time) Identifier and Attributes. 272 + 259 259 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 260 260 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 261 261 ... ... @@ -566,10 +566,8 @@ 566 566 567 567 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 568 568 569 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 570 570 571 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 572 - 573 573 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 574 574 575 575 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. ... ... @@ -586,8 +586,7 @@ 586 586 587 587 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 588 588 589 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 590 -**Figure 22 – VTL Data Types** 601 +==== Figure 22 – VTL Data Types ==== 591 591 592 592 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 593 593 ... ... @@ -594,12 +594,131 @@ 594 594 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 595 595 596 596 597 -**Figure 23 – VTL Basic Scalar Types** 598 598 599 599 ((( 600 - 610 +//n// 611 + 612 +//a// 613 + 614 +//e// 615 + 616 +//l// 617 + 618 +//o// 619 + 620 +//o// 621 + 622 +//B// 623 + 624 +//n// 625 + 626 +//o// 627 + 628 +//i// 629 + 630 +//t// 631 + 632 +//a// 633 + 634 +//r// 635 + 636 +//u// 637 + 638 +//D// 639 + 640 +//d// 641 + 642 +//o// 643 + 644 +//i// 645 + 646 +//r// 647 + 648 +//e// 649 + 650 +//p// 651 + 652 +//_// 653 + 654 +//e// 655 + 656 +//m// 657 + 658 +//i// 659 + 660 +//T// 661 + 662 +//e// 663 + 664 +//t// 665 + 666 +//a// 667 + 668 +//D// 669 + 670 +//e// 671 + 672 +//m// 673 + 674 +//i// 675 + 676 +//T// 677 + 678 +//r// 679 + 680 +//e// 681 + 682 +//g// 683 + 684 +//e// 685 + 686 +//t// 687 + 688 +//n// 689 + 690 +//I// 691 + 692 +//r// 693 + 694 +//e// 695 + 696 +//b// 697 + 698 +//m// 699 + 700 +//u// 701 + 702 +//N// 703 + 704 +//g// 705 + 706 +//n// 707 + 708 +//i// 709 + 710 +//r// 711 + 712 +//t// 713 + 714 +//S// 715 + 716 +//r// 717 + 718 +//a// 719 + 720 +//l// 721 + 722 +//a// 723 + 724 +//c// 725 + 726 +//S// 727 + 728 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 601 601 ))) 602 602 731 +==== Figure 23 – VTL Basic Scalar Types ==== 732 + 603 603 === 12.4.2 VTL basic scalar types and SDMX data types === 604 604 605 605 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -622,159 +622,204 @@ 622 622 623 623 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 624 624 625 -(% style="width:823.294px" %) 626 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 627 -|(% style="width:509px" %)((( 755 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 756 +|((( 628 628 String 758 + 629 629 (string allowing any character) 630 -)))| (%style="width:312px" %)string631 -|( % style="width:509px" %)(((760 +)))|string 761 +|((( 632 632 Alpha 763 + 633 633 (string which only allows A-z) 634 -)))| (%style="width:312px" %)string635 -|( % style="width:509px" %)(((765 +)))|string 766 +|((( 636 636 AlphaNumeric 768 + 637 637 (string which only allows A-z and 0-9) 638 -)))| (%style="width:312px" %)string639 -|( % style="width:509px" %)(((770 +)))|string 771 +|((( 640 640 Numeric 773 + 641 641 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 642 -)))| (%style="width:312px" %)string643 -|( % style="width:509px" %)(((775 +)))|string 776 +|((( 644 644 BigInteger 778 + 645 645 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 646 -)))| (% style="width:312px" %)integer647 -|( % style="width:509px" %)(((780 +)))|integer 781 +|((( 648 648 Integer 649 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 650 -)))|(% style="width:312px" %)integer 651 -|(% style="width:509px" %)((( 783 + 784 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 785 + 786 +(inclusive)) 787 +)))|integer 788 +|((( 652 652 Long 653 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 654 -)))|(% style="width:312px" %)integer 655 -|(% style="width:509px" %)((( 790 + 791 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 792 + 793 ++9223372036854775807 (inclusive)) 794 +)))|integer 795 +|((( 656 656 Short 797 + 657 657 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 658 -)))| (% style="width:312px" %)integer659 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number660 -|( % style="width:509px" %)(((799 +)))|integer 800 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 801 +|((( 661 661 Float 803 + 662 662 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 663 -)))| (% style="width:312px" %)number664 -|( % style="width:509px" %)(((805 +)))|number 806 +|((( 665 665 Double 808 + 666 666 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 667 -)))| (% style="width:312px" %)number668 -|( % style="width:509px" %)(((810 +)))|number 811 +|((( 669 669 Boolean 670 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 671 -)))|(% style="width:312px" %)boolean 672 672 673 -(% style="width:822.294px" %) 674 -|(% colspan="2" style="width:507px" %)((( 814 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 815 + 816 +binary-valued logic: {true, false}) 817 +)))|boolean 818 + 819 +| |(% colspan="2" %)((( 675 675 URI 821 + 676 676 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 677 -)))|(% colspan=" 1"style="width:311px"%)string678 -|(% colspan="2" style="width:507px"%)(((823 +)))|(% colspan="2" %)string 824 +| |(% colspan="2" %)((( 679 679 Count 826 + 680 680 (an integer following a sequential pattern, increasing by 1 for each occurrence) 681 -)))|(% colspan=" 1"style="width:311px"%)integer682 -|(% colspan="2" style="width:507px"%)(((828 +)))|(% colspan="2" %)integer 829 +| |(% colspan="2" %)((( 683 683 InclusiveValueRange 831 + 684 684 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 685 -)))|(% colspan=" 1"style="width:311px"%)number686 -|(% colspan="2" style="width:507px"%)(((833 +)))|(% colspan="2" %)number 834 +| |(% colspan="2" %)((( 687 687 ExclusiveValueRange 836 + 688 688 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 689 -)))|(% colspan=" 1"style="width:311px"%)number690 -|(% colspan="2" style="width:507px"%)(((838 +)))|(% colspan="2" %)number 839 +| |(% colspan="2" %)((( 691 691 Incremental 841 + 692 692 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 693 -)))|(% colspan=" 1"style="width:311px"%)number694 -|(% colspan="2" style="width:507px"%)(((843 +)))|(% colspan="2" %)number 844 +| |(% colspan="2" %)((( 695 695 ObservationalTimePeriod 846 + 696 696 (superset of StandardTimePeriod and TimeRange) 697 -)))|(% colspan=" 1"style="width:311px"%)time698 -|(% colspan="2" style="width:507px"%)(((848 +)))|(% colspan="2" %)time 849 +| |(% colspan="2" %)((( 699 699 StandardTimePeriod 700 -(superset of BasicTimePeriod and ReportingTimePeriod) 701 -)))|(% colspan="1" style="width:311px" %)time 702 -|(% colspan="2" style="width:507px" %)((( 851 + 852 +(superset of BasicTimePeriod and 853 + 854 +ReportingTimePeriod) 855 +)))|(% colspan="2" %)time 856 +| |(% colspan="2" %)((( 703 703 BasicTimePeriod 858 + 704 704 (superset of GregorianTimePeriod and DateTime) 705 -)))|(% colspan=" 1"style="width:311px"%)date706 -|(% colspan="2" style="width:507px"%)(((860 +)))|(% colspan="2" %)date 861 +| |(% colspan="2" %)((( 707 707 GregorianTimePeriod 863 + 708 708 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 709 -)))|(% colspan=" 1"style="width:311px"%)date710 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date711 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date712 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date713 -|(% colspan="2" style="width:507px"%)(((865 +)))|(% colspan="2" %)date 866 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 867 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 868 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 869 +| |(% colspan="2" %)((( 714 714 ReportingTimePeriod 715 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 716 -)))|(% colspan="1" style="width:311px" %)time_period 717 -|(% colspan="2" style="width:507px" %)((( 871 + 872 +(superset of RepostingYear, ReportingSemester, 873 + 874 +ReportingTrimester, ReportingQuarter, 875 + 876 +ReportingMonth, ReportingWeek, ReportingDay) 877 +)))|(% colspan="2" %)time_period 878 +| |(% colspan="2" %)((( 718 718 ReportingYear 880 + 719 719 (YYYY-A1 – 1 year period) 720 -)))|(% colspan=" 1"style="width:311px"%)time_period721 -|(% colspan="2" style="width:507px"%)(((882 +)))|(% colspan="2" %)time_period 883 +| |(% colspan="2" %)((( 722 722 ReportingSemester 885 + 723 723 (YYYY-Ss – 6 month period) 724 -)))|(% colspan=" 1"style="width:311px"%)time_period725 -|(% colspan="2" style="width:507px"%)(((887 +)))|(% colspan="2" %)time_period 888 +| |(% colspan="2" %)((( 726 726 ReportingTrimester 890 + 727 727 (YYYY-Tt – 4 month period) 728 -)))|(% colspan=" 1"style="width:311px"%)time_period729 -|(% colspan="2" style="width:507px"%)(((892 +)))|(% colspan="2" %)time_period 893 +| |(% colspan="2" %)((( 730 730 ReportingQuarter 895 + 731 731 (YYYY-Qq – 3 month period) 732 -)))|(% colspan=" 1"style="width:311px"%)time_period733 -|(% colspan="2" style="width:507px"%)(((897 +)))|(% colspan="2" %)time_period 898 +| |(% colspan="2" %)((( 734 734 ReportingMonth 900 + 735 735 (YYYY-Mmm – 1 month period) 736 -)))|(% colspan="1" style="width:311px" %)time_period 737 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 738 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 739 -|(% colspan="1" style="width:507px" %)((( 902 +)))|(% colspan="2" %)time_period 903 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 904 +| |(% colspan="2" %) |(% colspan="2" %) 905 +| |(% colspan="2" %) |(% colspan="2" %) 906 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 907 +|(% colspan="2" %)((( 740 740 ReportingDay 909 + 741 741 (YYYY-Dddd – 1 day period) 742 -)))|(% colspan="2" style="width:312px"%)time_period743 -|(% colspan=" 1"style="width:507px"%)(((911 +)))|(% colspan="2" %)time_period| 912 +|(% colspan="2" %)((( 744 744 DateTime 914 + 745 745 (YYYY-MM-DDThh:mm:ss) 746 -)))|(% colspan="2" style="width:312px"%)date747 -|(% colspan=" 1"style="width:507px"%)(((916 +)))|(% colspan="2" %)date| 917 +|(% colspan="2" %)((( 748 748 TimeRange 919 + 749 749 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 750 -)))|(% colspan="2" style="width:312px"%)time751 -|(% colspan=" 1"style="width:507px"%)(((921 +)))|(% colspan="2" %)time| 922 +|(% colspan="2" %)((( 752 752 Month 924 + 753 753 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 754 -)))|(% colspan="2" style="width:312px"%)string755 -|(% colspan=" 1"style="width:507px"%)(((926 +)))|(% colspan="2" %)string| 927 +|(% colspan="2" %)((( 756 756 MonthDay 929 + 757 757 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 758 -)))|(% colspan="2" style="width:312px"%)string759 -|(% colspan=" 1"style="width:507px"%)(((931 +)))|(% colspan="2" %)string| 932 +|(% colspan="2" %)((( 760 760 Day 934 + 761 761 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 762 -)))|(% colspan="2" style="width:312px"%)string763 -|(% colspan=" 1"style="width:507px"%)(((936 +)))|(% colspan="2" %)string| 937 +|(% colspan="2" %)((( 764 764 Time 939 + 765 765 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 766 -)))|(% colspan="2" style="width:312px"%)string767 -|(% colspan=" 1"style="width:507px"%)(((941 +)))|(% colspan="2" %)string| 942 +|(% colspan="2" %)((( 768 768 Duration 944 + 769 769 (corresponds to XML Schema xs:duration datatype) 770 -)))|(% colspan="2" style="width:312px"%)duration771 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable772 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable773 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable774 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable946 +)))|(% colspan="2" %)duration| 947 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 948 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 949 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 950 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 775 775 776 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 777 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 952 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 778 778 779 779 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 780 780 ... ... @@ -782,32 +782,39 @@ 782 782 783 783 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 784 784 785 -(% style="width:1073.29px" %) 786 -|(% style="width:207px" %)((( 787 -**VTL basic scalar type** 788 -)))|(% style="width:462px" %)((( 789 -**Default SDMX data type (BasicComponentDataType)** 790 -)))|(% style="width:402px" %)**Default output format** 791 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 792 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 793 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 794 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 795 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 796 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 960 +|((( 961 +VTL basic 962 + 963 +scalar type 964 +)))|((( 965 +Default SDMX data type 966 + 967 +(BasicComponentDataType 968 + 969 +) 970 +)))|Default output format 971 +|String|String|Like XML (xs:string) 972 +|Number|Float|Like XML (xs:float) 973 +|Integer|Integer|Like XML (xs:int) 974 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 975 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 976 +|time_period|((( 797 797 ReportingTimePeriod 978 + 798 798 (StandardReportingPeriod) 799 -)))|( % style="width:402px" %)(((980 +)))|((( 800 800 YYYY-Pppp 982 + 801 801 (according to SDMX ) 802 802 ))) 803 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((985 +|Duration|Duration|((( 804 804 Like XML (xs:duration) 987 + 805 805 PnYnMnDTnHnMnS 806 806 ))) 807 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"990 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 808 808 809 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 810 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 992 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 811 811 812 812 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 813 813 ... ... @@ -861,7 +861,7 @@ 861 861 |N|fixed number of digits used in the preceding textual representation of the month or the day 862 862 | | 863 863 864 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}The representationgiven in theDSDshouldobviouslybecompatible withtheVTLdata type.{{/footnote}}.1046 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 865 865 866 866 === 12.4.5 Null Values === 867 867 ... ... @@ -879,8 +879,10 @@ 879 879 880 880 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 881 881 882 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.1064 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 883 883 1066 +TransformationScheme. 1067 + 884 884 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 885 885 886 886 {{putFootnotes/}}