Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -26,8 +26,10 @@ 26 26 27 27 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 28 28 29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.31 +In any case, the aliases used in the VTL Transformations have to be mapped to the 30 30 33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 + 31 31 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 32 32 33 33 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -198,7 +198,7 @@ 198 198 199 199 === 12.3.3 Mapping from SDMX to VTL data structures === 200 200 201 - ====12.3.3.1 Basic Mapping====205 +**12.3.3.1 Basic Mapping** 202 202 203 203 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 204 204 ... ... @@ -228,11 +228,18 @@ 228 228 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 229 229 230 230 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 + 237 +Component; 238 + 232 232 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 233 233 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 234 234 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 + 244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 + 246 +* 236 236 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 237 237 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 238 ... ... @@ -255,7 +255,10 @@ 255 255 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 256 256 257 257 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 270 + 271 +Identifiers, (time) Identifier and Attributes. 272 + 259 259 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 260 260 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 261 261 ... ... @@ -348,7 +348,7 @@ 348 348 The mapping table is the following: 349 349 350 350 (% style="width:689.294px" %) 351 -|(% style="width:344px" %) **VTL**|(% style="width:341px" %)**SDMX**365 +|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX 352 352 |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 353 353 |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 354 354 |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure ... ... @@ -408,16 +408,22 @@ 408 408 409 409 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 410 410 411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).425 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 412 412 413 - In the example above, forall the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’,the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would havetheidentifier TIME_PERIOD only.427 +basic, pivot …). 414 414 429 +In the example above, for all the datasets of the kind 430 + 431 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 432 + 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 417 ‘DF1(1.0.0)/POPULATION.USA’ := 436 + 418 418 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 419 419 420 420 ‘DF1(1.0.0)/POPULATION.CANADA’ := 440 + 421 421 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 422 422 423 423 … … … ... ... @@ -433,6 +433,7 @@ 433 433 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 434 434 435 435 ‘DF1(1.0.0)/POPULATION.’ := 456 + 436 436 DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 437 437 438 438 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. ... ... @@ -463,8 +463,11 @@ 463 463 ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 464 464 465 465 … … … 487 + 466 466 ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 489 + 467 467 ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 491 + 468 468 … … … 469 469 470 470 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: ... ... @@ -612,159 +612,204 @@ 612 612 613 613 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 614 614 615 -(% style="width:823.294px" %) 616 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 617 -|(% style="width:509px" %)((( 639 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 640 +|((( 618 618 String 642 + 619 619 (string allowing any character) 620 -)))| (%style="width:312px" %)string621 -|( % style="width:509px" %)(((644 +)))|string 645 +|((( 622 622 Alpha 647 + 623 623 (string which only allows A-z) 624 -)))| (%style="width:312px" %)string625 -|( % style="width:509px" %)(((649 +)))|string 650 +|((( 626 626 AlphaNumeric 652 + 627 627 (string which only allows A-z and 0-9) 628 -)))| (%style="width:312px" %)string629 -|( % style="width:509px" %)(((654 +)))|string 655 +|((( 630 630 Numeric 657 + 631 631 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 632 -)))| (%style="width:312px" %)string633 -|( % style="width:509px" %)(((659 +)))|string 660 +|((( 634 634 BigInteger 662 + 635 635 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 636 -)))| (% style="width:312px" %)integer637 -|( % style="width:509px" %)(((664 +)))|integer 665 +|((( 638 638 Integer 639 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 640 -)))|(% style="width:312px" %)integer 641 -|(% style="width:509px" %)((( 667 + 668 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 669 + 670 +(inclusive)) 671 +)))|integer 672 +|((( 642 642 Long 643 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 644 -)))|(% style="width:312px" %)integer 645 -|(% style="width:509px" %)((( 674 + 675 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 676 + 677 ++9223372036854775807 (inclusive)) 678 +)))|integer 679 +|((( 646 646 Short 681 + 647 647 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 648 -)))| (% style="width:312px" %)integer649 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number650 -|( % style="width:509px" %)(((683 +)))|integer 684 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 685 +|((( 651 651 Float 687 + 652 652 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 653 -)))| (% style="width:312px" %)number654 -|( % style="width:509px" %)(((689 +)))|number 690 +|((( 655 655 Double 692 + 656 656 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 657 -)))| (% style="width:312px" %)number658 -|( % style="width:509px" %)(((694 +)))|number 695 +|((( 659 659 Boolean 660 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 661 -)))|(% style="width:312px" %)boolean 662 662 663 -(% style="width:822.294px" %) 664 -|(% colspan="2" style="width:507px" %)((( 698 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 699 + 700 +binary-valued logic: {true, false}) 701 +)))|boolean 702 + 703 +| |(% colspan="2" %)((( 665 665 URI 705 + 666 666 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 667 -)))|(% colspan=" 1"style="width:311px"%)string668 -|(% colspan="2" style="width:507px"%)(((707 +)))|(% colspan="2" %)string 708 +| |(% colspan="2" %)((( 669 669 Count 710 + 670 670 (an integer following a sequential pattern, increasing by 1 for each occurrence) 671 -)))|(% colspan=" 1"style="width:311px"%)integer672 -|(% colspan="2" style="width:507px"%)(((712 +)))|(% colspan="2" %)integer 713 +| |(% colspan="2" %)((( 673 673 InclusiveValueRange 715 + 674 674 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 675 -)))|(% colspan=" 1"style="width:311px"%)number676 -|(% colspan="2" style="width:507px"%)(((717 +)))|(% colspan="2" %)number 718 +| |(% colspan="2" %)((( 677 677 ExclusiveValueRange 720 + 678 678 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 679 -)))|(% colspan=" 1"style="width:311px"%)number680 -|(% colspan="2" style="width:507px"%)(((722 +)))|(% colspan="2" %)number 723 +| |(% colspan="2" %)((( 681 681 Incremental 725 + 682 682 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 683 -)))|(% colspan=" 1"style="width:311px"%)number684 -|(% colspan="2" style="width:507px"%)(((727 +)))|(% colspan="2" %)number 728 +| |(% colspan="2" %)((( 685 685 ObservationalTimePeriod 730 + 686 686 (superset of StandardTimePeriod and TimeRange) 687 -)))|(% colspan=" 1"style="width:311px"%)time688 -|(% colspan="2" style="width:507px"%)(((732 +)))|(% colspan="2" %)time 733 +| |(% colspan="2" %)((( 689 689 StandardTimePeriod 690 -(superset of BasicTimePeriod and ReportingTimePeriod) 691 -)))|(% colspan="1" style="width:311px" %)time 692 -|(% colspan="2" style="width:507px" %)((( 735 + 736 +(superset of BasicTimePeriod and 737 + 738 +ReportingTimePeriod) 739 +)))|(% colspan="2" %)time 740 +| |(% colspan="2" %)((( 693 693 BasicTimePeriod 742 + 694 694 (superset of GregorianTimePeriod and DateTime) 695 -)))|(% colspan=" 1"style="width:311px"%)date696 -|(% colspan="2" style="width:507px"%)(((744 +)))|(% colspan="2" %)date 745 +| |(% colspan="2" %)((( 697 697 GregorianTimePeriod 747 + 698 698 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 699 -)))|(% colspan=" 1"style="width:311px"%)date700 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date701 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date702 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date703 -|(% colspan="2" style="width:507px"%)(((749 +)))|(% colspan="2" %)date 750 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 751 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 752 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 753 +| |(% colspan="2" %)((( 704 704 ReportingTimePeriod 705 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 706 -)))|(% colspan="1" style="width:311px" %)time_period 707 -|(% colspan="2" style="width:507px" %)((( 755 + 756 +(superset of RepostingYear, ReportingSemester, 757 + 758 +ReportingTrimester, ReportingQuarter, 759 + 760 +ReportingMonth, ReportingWeek, ReportingDay) 761 +)))|(% colspan="2" %)time_period 762 +| |(% colspan="2" %)((( 708 708 ReportingYear 764 + 709 709 (YYYY-A1 – 1 year period) 710 -)))|(% colspan=" 1"style="width:311px"%)time_period711 -|(% colspan="2" style="width:507px"%)(((766 +)))|(% colspan="2" %)time_period 767 +| |(% colspan="2" %)((( 712 712 ReportingSemester 769 + 713 713 (YYYY-Ss – 6 month period) 714 -)))|(% colspan=" 1"style="width:311px"%)time_period715 -|(% colspan="2" style="width:507px"%)(((771 +)))|(% colspan="2" %)time_period 772 +| |(% colspan="2" %)((( 716 716 ReportingTrimester 774 + 717 717 (YYYY-Tt – 4 month period) 718 -)))|(% colspan=" 1"style="width:311px"%)time_period719 -|(% colspan="2" style="width:507px"%)(((776 +)))|(% colspan="2" %)time_period 777 +| |(% colspan="2" %)((( 720 720 ReportingQuarter 779 + 721 721 (YYYY-Qq – 3 month period) 722 -)))|(% colspan=" 1"style="width:311px"%)time_period723 -|(% colspan="2" style="width:507px"%)(((781 +)))|(% colspan="2" %)time_period 782 +| |(% colspan="2" %)((( 724 724 ReportingMonth 784 + 725 725 (YYYY-Mmm – 1 month period) 726 -)))|(% colspan="1" style="width:311px" %)time_period 727 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 728 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 729 -|(% colspan="1" style="width:507px" %)((( 786 +)))|(% colspan="2" %)time_period 787 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 788 +| |(% colspan="2" %) |(% colspan="2" %) 789 +| |(% colspan="2" %) |(% colspan="2" %) 790 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 791 +|(% colspan="2" %)((( 730 730 ReportingDay 793 + 731 731 (YYYY-Dddd – 1 day period) 732 -)))|(% colspan="2" style="width:312px"%)time_period733 -|(% colspan=" 1"style="width:507px"%)(((795 +)))|(% colspan="2" %)time_period| 796 +|(% colspan="2" %)((( 734 734 DateTime 798 + 735 735 (YYYY-MM-DDThh:mm:ss) 736 -)))|(% colspan="2" style="width:312px"%)date737 -|(% colspan=" 1"style="width:507px"%)(((800 +)))|(% colspan="2" %)date| 801 +|(% colspan="2" %)((( 738 738 TimeRange 803 + 739 739 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 740 -)))|(% colspan="2" style="width:312px"%)time741 -|(% colspan=" 1"style="width:507px"%)(((805 +)))|(% colspan="2" %)time| 806 +|(% colspan="2" %)((( 742 742 Month 808 + 743 743 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 744 -)))|(% colspan="2" style="width:312px"%)string745 -|(% colspan=" 1"style="width:507px"%)(((810 +)))|(% colspan="2" %)string| 811 +|(% colspan="2" %)((( 746 746 MonthDay 813 + 747 747 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 748 -)))|(% colspan="2" style="width:312px"%)string749 -|(% colspan=" 1"style="width:507px"%)(((815 +)))|(% colspan="2" %)string| 816 +|(% colspan="2" %)((( 750 750 Day 818 + 751 751 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 752 -)))|(% colspan="2" style="width:312px"%)string753 -|(% colspan=" 1"style="width:507px"%)(((820 +)))|(% colspan="2" %)string| 821 +|(% colspan="2" %)((( 754 754 Time 823 + 755 755 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 756 -)))|(% colspan="2" style="width:312px"%)string757 -|(% colspan=" 1"style="width:507px"%)(((825 +)))|(% colspan="2" %)string| 826 +|(% colspan="2" %)((( 758 758 Duration 828 + 759 759 (corresponds to XML Schema xs:duration datatype) 760 -)))|(% colspan="2" style="width:312px"%)duration761 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable762 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable763 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable764 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable830 +)))|(% colspan="2" %)duration| 831 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 832 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 833 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 834 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 765 765 766 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 767 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 836 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 768 768 769 769 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 770 770 ... ... @@ -772,32 +772,39 @@ 772 772 773 773 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 774 774 775 -(% style="width:1073.29px" %) 776 -|(% style="width:207px" %)((( 777 -**VTL basic scalar type** 778 -)))|(% style="width:462px" %)((( 779 -**Default SDMX data type (BasicComponentDataType)** 780 -)))|(% style="width:402px" %)**Default output format** 781 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 782 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 783 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 784 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 785 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 786 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 844 +|((( 845 +VTL basic 846 + 847 +scalar type 848 +)))|((( 849 +Default SDMX data type 850 + 851 +(BasicComponentDataType 852 + 853 +) 854 +)))|Default output format 855 +|String|String|Like XML (xs:string) 856 +|Number|Float|Like XML (xs:float) 857 +|Integer|Integer|Like XML (xs:int) 858 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 859 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 860 +|time_period|((( 787 787 ReportingTimePeriod 862 + 788 788 (StandardReportingPeriod) 789 -)))|( % style="width:402px" %)(((864 +)))|((( 790 790 YYYY-Pppp 866 + 791 791 (according to SDMX ) 792 792 ))) 793 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((869 +|Duration|Duration|((( 794 794 Like XML (xs:duration) 871 + 795 795 PnYnMnDTnHnMnS 796 796 ))) 797 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"874 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 798 798 799 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 800 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 876 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 801 801 802 802 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 803 803 ... ... @@ -851,7 +851,7 @@ 851 851 |N|fixed number of digits used in the preceding textual representation of the month or the day 852 852 | | 853 853 854 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}The representationgiven in theDSDshouldobviouslybecompatible withtheVTLdata type.{{/footnote}}.930 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 855 855 856 856 === 12.4.5 Null Values === 857 857 ... ... @@ -869,8 +869,10 @@ 869 869 870 870 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 871 871 872 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.948 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 873 873 950 +TransformationScheme. 951 + 874 874 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 875 875 876 876 {{putFootnotes/}}