Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -414,14 +414,8 @@ 414 414 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 -‘DF1(1.0.0)/POPULATION.USA’ := 418 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 417 +[[image:1747388275998-621.png]] 419 419 420 -‘DF1(1.0.0)/POPULATION.CANADA’ := 421 -DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 422 - 423 -… … … 424 - 425 425 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} 426 426 427 427 In the direction from SDMX to VTL it is allowed to omit the value of one or more ... ... @@ -432,8 +432,7 @@ 432 432 433 433 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 434 434 435 -‘DF1(1.0.0)/POPULATION.’ := 436 -DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 429 +[[image:1747388244829-693.png]] 437 437 438 438 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 439 439 ... ... @@ -460,51 +460,18 @@ 460 460 461 461 Some examples follow, for some specific values of INDICATOR and COUNTRY: 462 462 463 - ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;456 +[[image:1747388222879-916.png]] 464 464 465 -… … … 466 -‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 467 -‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 468 -… … … 458 +[[image:1747388206717-256.png]] 469 469 470 470 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 471 471 472 - VTL dataset INDICATOR value COUNTRY value462 +[[image:1747388148322-387.png]] 473 473 474 -‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 475 - 476 -‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 477 - 478 -‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 479 - 480 -‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 481 - 482 -… … … 483 - 484 484 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 485 485 486 - DF2bis_GDPPERCAPITA_USA:= ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];466 +[[image:1747388179021-814.png]] 487 487 488 -DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 489 - 490 -DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 491 - 492 -[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 493 - 494 -DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 495 - 496 -DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 497 - 498 -DF2bis_GDPPERCAPITA_CANADA’, 499 - 500 -… , 501 - 502 -DF2bis_POPGROWTH_USA’, 503 - 504 -DF2bis_POPGROWTH_CANADA’ 505 - 506 -…); 507 - 508 508 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 509 509 510 510 DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
- 1747388148322-387.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.0 KB - Content
- 1747388179021-814.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.2 KB - Content
- 1747388206717-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.3 KB - Content
- 1747388222879-916.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +9.9 KB - Content
- 1747388244829-693.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.4 KB - Content
- 1747388275998-621.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.helena - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.2 KB - Content