Last modified by Helena on 2025/09/10 11:19

From version 6.7
edited by Helena
on 2025/05/16 12:35
Change comment: There is no comment for this version
To version 5.26
edited by Helena
on 2025/05/16 09:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -228,11 +228,18 @@
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 +
237 +Component;
238 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 +
244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 +
246 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
... ... @@ -255,7 +255,10 @@
255 255  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
256 256  
257 257  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 +
271 +Identifiers, (time) Identifier and Attributes.
272 +
259 259  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
260 260  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
261 261  
... ... @@ -348,7 +348,7 @@
348 348  The mapping table is the following:
349 349  
350 350  (% style="width:689.294px" %)
351 -|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
365 +|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
352 352  |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
353 353  |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
354 354  |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
... ... @@ -408,17 +408,24 @@
408 408  
409 409  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
410 410  
411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
425 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
412 412  
413 -In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
427 +basic, pivot …).
414 414  
429 +In the example above, for all the datasets of the kind
430 +
431 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 +
415 415  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
416 416  
417 417  ‘DF1(1.0.0)/POPULATION.USA’ :=
436 +
418 418  DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
419 419  
420 420  ‘DF1(1.0.0)/POPULATION.CANADA’ :=
440 +
421 421  DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
442 +
422 422  … … …
423 423  
424 424  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
... ... @@ -432,6 +432,7 @@
432 432  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
433 433  
434 434  ‘DF1(1.0.0)/POPULATION.’ :=
456 +
435 435  DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
436 436  
437 437  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
... ... @@ -462,8 +462,11 @@
462 462  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
463 463  
464 464  … … …
487 +
465 465  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
489 +
466 466  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
491 +
467 467  … … …
468 468  
469 469  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -471,23 +471,37 @@
471 471  VTL dataset INDICATOR value COUNTRY value
472 472  
473 473  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
499 +
474 474  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
501 +
475 475  ‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
503 +
476 476  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
505 +
477 477  … … …
478 478  
479 479  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
480 480  
481 481  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
511 +
482 482  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
513 +
483 483  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
515 +
484 484  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
517 +
485 485  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
519 +
486 486  DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
521 +
487 487  DF2bis_GDPPERCAPITA_CANADA’,
523 +
488 488  … ,
525 +
489 489  DF2bis_POPGROWTH_USA’,
527 +
490 490  DF2bis_POPGROWTH_CANADA’
529 +
491 491  …);
492 492  
493 493  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
... ... @@ -597,159 +597,189 @@
597 597  
598 598  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
599 599  
600 -(% style="width:823.294px" %)
601 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
602 -|(% style="width:509px" %)(((
639 +|(% style="width:501px" %)SDMX data type (BasicComponentDataType)|(% style="width:1437px" %)Default VTL basic scalar type
640 +|(% style="width:501px" %)(((
603 603  String
604 604  (string allowing any character)
605 -)))|(% style="width:312px" %)string
606 -|(% style="width:509px" %)(((
643 +)))|(% style="width:1437px" %)string
644 +|(% style="width:501px" %)(((
607 607  Alpha
608 608  (string which only allows A-z)
609 -)))|(% style="width:312px" %)string
610 -|(% style="width:509px" %)(((
647 +)))|(% style="width:1437px" %)string
648 +|(% style="width:501px" %)(((
611 611  AlphaNumeric
612 612  (string which only allows A-z and 0-9)
613 -)))|(% style="width:312px" %)string
614 -|(% style="width:509px" %)(((
651 +)))|(% style="width:1437px" %)string
652 +|(% style="width:501px" %)(((
615 615  Numeric
616 616  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
617 -)))|(% style="width:312px" %)string
618 -|(% style="width:509px" %)(((
655 +)))|(% style="width:1437px" %)string
656 +|(% style="width:501px" %)(((
619 619  BigInteger
620 620  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
621 -)))|(% style="width:312px" %)integer
622 -|(% style="width:509px" %)(((
659 +)))|(% style="width:1437px" %)integer
660 +|(% style="width:501px" %)(((
623 623  Integer
624 624  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
625 -)))|(% style="width:312px" %)integer
626 -|(% style="width:509px" %)(((
663 +)))|(% style="width:1437px" %)integer
664 +|(% style="width:501px" %)(((
627 627  Long
628 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
629 -)))|(% style="width:312px" %)integer
630 -|(% style="width:509px" %)(((
666 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
667 +
668 ++9223372036854775807 (inclusive))
669 +)))|(% style="width:1437px" %)integer
670 +|(% style="width:501px" %)(((
631 631  Short
632 632  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
633 -)))|(% style="width:312px" %)integer
634 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
635 -|(% style="width:509px" %)(((
673 +)))|(% style="width:1437px" %)integer
674 +|(% style="width:501px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:1437px" %)number
675 +|(% style="width:501px" %)(((
636 636  Float
637 637  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
638 -)))|(% style="width:312px" %)number
639 -|(% style="width:509px" %)(((
678 +)))|(% style="width:1437px" %)number
679 +|(% style="width:501px" %)(((
640 640  Double
641 641  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
642 -)))|(% style="width:312px" %)number
643 -|(% style="width:509px" %)(((
682 +)))|(% style="width:1437px" %)number
683 +|(% style="width:501px" %)(((
644 644  Boolean
645 645  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
646 -)))|(% style="width:312px" %)boolean
686 +)))|(% style="width:1437px" %)boolean
647 647  
648 -(% style="width:822.294px" %)
649 -|(% colspan="2" style="width:507px" %)(((
688 +| |(% colspan="2" %)(((
650 650  URI
690 +
651 651  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
652 -)))|(% colspan="1" style="width:311px" %)string
653 -|(% colspan="2" style="width:507px" %)(((
692 +)))|(% colspan="2" %)string
693 +| |(% colspan="2" %)(((
654 654  Count
695 +
655 655  (an integer following a sequential pattern, increasing by 1 for each occurrence)
656 -)))|(% colspan="1" style="width:311px" %)integer
657 -|(% colspan="2" style="width:507px" %)(((
697 +)))|(% colspan="2" %)integer
698 +| |(% colspan="2" %)(((
658 658  InclusiveValueRange
700 +
659 659  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
660 -)))|(% colspan="1" style="width:311px" %)number
661 -|(% colspan="2" style="width:507px" %)(((
702 +)))|(% colspan="2" %)number
703 +| |(% colspan="2" %)(((
662 662  ExclusiveValueRange
705 +
663 663  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
664 -)))|(% colspan="1" style="width:311px" %)number
665 -|(% colspan="2" style="width:507px" %)(((
707 +)))|(% colspan="2" %)number
708 +| |(% colspan="2" %)(((
666 666  Incremental
710 +
667 667  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
668 -)))|(% colspan="1" style="width:311px" %)number
669 -|(% colspan="2" style="width:507px" %)(((
712 +)))|(% colspan="2" %)number
713 +| |(% colspan="2" %)(((
670 670  ObservationalTimePeriod
715 +
671 671  (superset of StandardTimePeriod and TimeRange)
672 -)))|(% colspan="1" style="width:311px" %)time
673 -|(% colspan="2" style="width:507px" %)(((
717 +)))|(% colspan="2" %)time
718 +| |(% colspan="2" %)(((
674 674  StandardTimePeriod
675 -(superset of BasicTimePeriod and ReportingTimePeriod)
676 -)))|(% colspan="1" style="width:311px" %)time
677 -|(% colspan="2" style="width:507px" %)(((
720 +
721 +(superset of BasicTimePeriod and
722 +
723 +ReportingTimePeriod)
724 +)))|(% colspan="2" %)time
725 +| |(% colspan="2" %)(((
678 678  BasicTimePeriod
727 +
679 679  (superset of GregorianTimePeriod and DateTime)
680 -)))|(% colspan="1" style="width:311px" %)date
681 -|(% colspan="2" style="width:507px" %)(((
729 +)))|(% colspan="2" %)date
730 +| |(% colspan="2" %)(((
682 682  GregorianTimePeriod
732 +
683 683  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
684 -)))|(% colspan="1" style="width:311px" %)date
685 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
686 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
687 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
688 -|(% colspan="2" style="width:507px" %)(((
734 +)))|(% colspan="2" %)date
735 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
736 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
737 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
738 +| |(% colspan="2" %)(((
689 689  ReportingTimePeriod
690 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
691 -)))|(% colspan="1" style="width:311px" %)time_period
692 -|(% colspan="2" style="width:507px" %)(((
740 +
741 +(superset of RepostingYear, ReportingSemester,
742 +
743 +ReportingTrimester, ReportingQuarter,
744 +
745 +ReportingMonth, ReportingWeek, ReportingDay)
746 +)))|(% colspan="2" %)time_period
747 +| |(% colspan="2" %)(((
693 693  ReportingYear
749 +
694 694  (YYYY-A1 – 1 year period)
695 -)))|(% colspan="1" style="width:311px" %)time_period
696 -|(% colspan="2" style="width:507px" %)(((
751 +)))|(% colspan="2" %)time_period
752 +| |(% colspan="2" %)(((
697 697  ReportingSemester
754 +
698 698  (YYYY-Ss – 6 month period)
699 -)))|(% colspan="1" style="width:311px" %)time_period
700 -|(% colspan="2" style="width:507px" %)(((
756 +)))|(% colspan="2" %)time_period
757 +| |(% colspan="2" %)(((
701 701  ReportingTrimester
759 +
702 702  (YYYY-Tt – 4 month period)
703 -)))|(% colspan="1" style="width:311px" %)time_period
704 -|(% colspan="2" style="width:507px" %)(((
761 +)))|(% colspan="2" %)time_period
762 +| |(% colspan="2" %)(((
705 705  ReportingQuarter
764 +
706 706  (YYYY-Qq – 3 month period)
707 -)))|(% colspan="1" style="width:311px" %)time_period
708 -|(% colspan="2" style="width:507px" %)(((
766 +)))|(% colspan="2" %)time_period
767 +| |(% colspan="2" %)(((
709 709  ReportingMonth
769 +
710 710  (YYYY-Mmm – 1 month period)
711 -)))|(% colspan="1" style="width:311px" %)time_period
712 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
713 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
714 -|(% colspan="1" style="width:507px" %)(((
771 +)))|(% colspan="2" %)time_period
772 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
773 +| |(% colspan="2" %) |(% colspan="2" %)
774 +| |(% colspan="2" %) |(% colspan="2" %)
775 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
776 +|(% colspan="2" %)(((
715 715  ReportingDay
778 +
716 716  (YYYY-Dddd – 1 day period)
717 -)))|(% colspan="2" style="width:312px" %)time_period
718 -|(% colspan="1" style="width:507px" %)(((
780 +)))|(% colspan="2" %)time_period|
781 +|(% colspan="2" %)(((
719 719  DateTime
783 +
720 720  (YYYY-MM-DDThh:mm:ss)
721 -)))|(% colspan="2" style="width:312px" %)date
722 -|(% colspan="1" style="width:507px" %)(((
785 +)))|(% colspan="2" %)date|
786 +|(% colspan="2" %)(((
723 723  TimeRange
788 +
724 724  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
725 -)))|(% colspan="2" style="width:312px" %)time
726 -|(% colspan="1" style="width:507px" %)(((
790 +)))|(% colspan="2" %)time|
791 +|(% colspan="2" %)(((
727 727  Month
793 +
728 728  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
729 -)))|(% colspan="2" style="width:312px" %)string
730 -|(% colspan="1" style="width:507px" %)(((
795 +)))|(% colspan="2" %)string|
796 +|(% colspan="2" %)(((
731 731  MonthDay
798 +
732 732  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
733 -)))|(% colspan="2" style="width:312px" %)string
734 -|(% colspan="1" style="width:507px" %)(((
800 +)))|(% colspan="2" %)string|
801 +|(% colspan="2" %)(((
735 735  Day
803 +
736 736  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
737 -)))|(% colspan="2" style="width:312px" %)string
738 -|(% colspan="1" style="width:507px" %)(((
805 +)))|(% colspan="2" %)string|
806 +|(% colspan="2" %)(((
739 739  Time
808 +
740 740  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
741 -)))|(% colspan="2" style="width:312px" %)string
742 -|(% colspan="1" style="width:507px" %)(((
810 +)))|(% colspan="2" %)string|
811 +|(% colspan="2" %)(((
743 743  Duration
813 +
744 744  (corresponds to XML Schema xs:duration datatype)
745 -)))|(% colspan="2" style="width:312px" %)duration
746 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
747 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
748 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
749 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
815 +)))|(% colspan="2" %)duration|
816 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
817 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
818 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
819 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
750 750  
751 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
752 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
821 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
753 753  
754 754  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
755 755  
... ... @@ -757,32 +757,39 @@
757 757  
758 758  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
759 759  
760 -(% style="width:1073.29px" %)
761 -|(% style="width:207px" %)(((
762 -**VTL basic scalar type**
763 -)))|(% style="width:462px" %)(((
764 -**Default SDMX data type (BasicComponentDataType)**
765 -)))|(% style="width:402px" %)**Default output format**
766 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
767 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
768 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
769 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
770 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
771 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
829 +|(((
830 +VTL basic
831 +
832 +scalar type
833 +)))|(((
834 +Default SDMX data type
835 +
836 +(BasicComponentDataType
837 +
838 +)
839 +)))|Default output format
840 +|String|String|Like XML (xs:string)
841 +|Number|Float|Like XML (xs:float)
842 +|Integer|Integer|Like XML (xs:int)
843 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
844 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
845 +|time_period|(((
772 772  ReportingTimePeriod
847 +
773 773  (StandardReportingPeriod)
774 -)))|(% style="width:402px" %)(((
849 +)))|(((
775 775  YYYY-Pppp
851 +
776 776  (according to SDMX )
777 777  )))
778 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
854 +|Duration|Duration|(((
779 779  Like XML (xs:duration)
856 +
780 780  PnYnMnDTnHnMnS
781 781  )))
782 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
859 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
783 783  
784 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
785 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
861 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
786 786  
787 787  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
788 788  
... ... @@ -836,7 +836,7 @@
836 836  |N|fixed number of digits used in the preceding textual representation of the month or the day
837 837  | |
838 838  
839 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
915 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
840 840  
841 841  === 12.4.5 Null Values ===
842 842  
... ... @@ -854,8 +854,10 @@
854 854  
855 855  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
856 856  
857 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
933 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
858 858  
935 +TransformationScheme.
936 +
859 859  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
860 860  
861 861  {{putFootnotes/}}