Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -26,8 +26,10 @@ 26 26 27 27 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 28 28 29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.31 +In any case, the aliases used in the VTL Transformations have to be mapped to the 30 30 33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 + 31 31 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 32 32 33 33 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -198,7 +198,7 @@ 198 198 199 199 === 12.3.3 Mapping from SDMX to VTL data structures === 200 200 201 - ====12.3.3.1 Basic Mapping====205 +**12.3.3.1 Basic Mapping** 202 202 203 203 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 204 204 ... ... @@ -228,11 +228,18 @@ 228 228 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 229 229 230 230 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 236 + 237 +Component; 238 + 232 232 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 233 233 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 234 234 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 243 + 244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 245 + 246 +* 236 236 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 237 237 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 238 ... ... @@ -255,7 +255,10 @@ 255 255 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 256 256 257 257 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 270 + 271 +Identifiers, (time) Identifier and Attributes. 272 + 259 259 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 260 260 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 261 261 ... ... @@ -348,7 +348,7 @@ 348 348 The mapping table is the following: 349 349 350 350 (% style="width:689.294px" %) 351 -|(% style="width:344px" %) **VTL**|(% style="width:341px" %)**SDMX**365 +|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX 352 352 |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 353 353 |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 354 354 |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure ... ... @@ -408,17 +408,24 @@ 408 408 409 409 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 410 410 411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).425 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 412 412 413 - In the example above, forall the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’,the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would havetheidentifier TIME_PERIOD only.427 +basic, pivot …). 414 414 429 +In the example above, for all the datasets of the kind 430 + 431 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 432 + 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 417 ‘DF1(1.0.0)/POPULATION.USA’ := 436 + 418 418 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 419 419 420 420 ‘DF1(1.0.0)/POPULATION.CANADA’ := 440 + 421 421 DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 442 + 422 422 … … … 423 423 424 424 In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}} ... ... @@ -431,8 +431,10 @@ 431 431 432 432 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 433 433 434 - [[image:1747388244829-693.png]]455 +‘DF1(1.0.0)/POPULATION.’ := 435 435 457 +DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 458 + 436 436 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 437 437 438 438 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different ... ... @@ -458,23 +458,59 @@ 458 458 459 459 Some examples follow, for some specific values of INDICATOR and COUNTRY: 460 460 461 - [[image:1747388222879-916.png]]484 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 462 462 463 - [[image:1747388206717-256.png]]486 +… … … 464 464 488 +‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 489 + 490 +‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 491 + 492 +… … … 493 + 465 465 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 466 466 467 - [[image:1747388148322-387.png]]496 +VTL dataset INDICATOR value COUNTRY value 468 468 498 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 499 + 500 +‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 501 + 502 +‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 503 + 504 +‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 505 + 506 +… … … 507 + 469 469 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 470 470 471 - [[image:1747388179021-814.png]]510 +DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 472 472 512 +DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 513 + 514 +DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 515 + 516 +[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 517 + 518 +DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 519 + 520 +DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 521 + 522 +DF2bis_GDPPERCAPITA_CANADA’, 523 + 524 +… , 525 + 526 +DF2bis_POPGROWTH_USA’, 527 + 528 +DF2bis_POPGROWTH_CANADA’ 529 + 530 +…); 531 + 473 473 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 474 474 475 475 DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 476 476 477 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}} 536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 478 478 479 479 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 480 480 ... ... @@ -484,7 +484,7 @@ 484 484 485 485 (% style="width:1170.29px" %) 486 486 |**VTL**|(% style="width:754px" %)**SDMX** 487 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow {{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}546 +|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow 488 488 |**Represented Variable**|(% style="width:754px" %)((( 489 489 **Concept** with a definite 490 490 ... ... @@ -517,16 +517,16 @@ 517 517 518 518 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 519 519 520 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear {{footnote}}By usingrepresented variables,VTL can assume thatdatastructureshavingthesamevariablesasidentifierscanbecomposedone anotherbecause thecorrespondentvaluescanmatch.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}AConceptbecomesaComponentin aDataStructureDefinition,andComponents canhavedifferentLocalRepresentationsindifferentDataStructureDefinitions,alsooverridingthe(possible)base representationoftheConcept.{{/footnote}}This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.579 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 521 521 522 522 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 523 523 524 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 583 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 525 525 526 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 527 - 528 528 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 529 529 587 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 588 + 530 530 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 531 531 532 532 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -541,8 +541,7 @@ 541 541 542 542 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 543 543 544 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 545 -**Figure 22 – VTL Data Types** 603 +==== Figure 22 – VTL Data Types ==== 546 546 547 547 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 548 548 ... ... @@ -549,12 +549,131 @@ 549 549 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 550 550 551 551 552 -**Figure 23 – VTL Basic Scalar Types** 553 553 554 554 ((( 555 - 612 +//n// 613 + 614 +//a// 615 + 616 +//e// 617 + 618 +//l// 619 + 620 +//o// 621 + 622 +//o// 623 + 624 +//B// 625 + 626 +//n// 627 + 628 +//o// 629 + 630 +//i// 631 + 632 +//t// 633 + 634 +//a// 635 + 636 +//r// 637 + 638 +//u// 639 + 640 +//D// 641 + 642 +//d// 643 + 644 +//o// 645 + 646 +//i// 647 + 648 +//r// 649 + 650 +//e// 651 + 652 +//p// 653 + 654 +//_// 655 + 656 +//e// 657 + 658 +//m// 659 + 660 +//i// 661 + 662 +//T// 663 + 664 +//e// 665 + 666 +//t// 667 + 668 +//a// 669 + 670 +//D// 671 + 672 +//e// 673 + 674 +//m// 675 + 676 +//i// 677 + 678 +//T// 679 + 680 +//r// 681 + 682 +//e// 683 + 684 +//g// 685 + 686 +//e// 687 + 688 +//t// 689 + 690 +//n// 691 + 692 +//I// 693 + 694 +//r// 695 + 696 +//e// 697 + 698 +//b// 699 + 700 +//m// 701 + 702 +//u// 703 + 704 +//N// 705 + 706 +//g// 707 + 708 +//n// 709 + 710 +//i// 711 + 712 +//r// 713 + 714 +//t// 715 + 716 +//S// 717 + 718 +//r// 719 + 720 +//a// 721 + 722 +//l// 723 + 724 +//a// 725 + 726 +//c// 727 + 728 +//S// 729 + 730 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 556 556 ))) 557 557 733 +==== Figure 23 – VTL Basic Scalar Types ==== 734 + 558 558 === 12.4.2 VTL basic scalar types and SDMX data types === 559 559 560 560 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -577,159 +577,204 @@ 577 577 578 578 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 579 579 580 -(% style="width:823.294px" %) 581 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 582 -|(% style="width:509px" %)((( 757 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 758 +|((( 583 583 String 760 + 584 584 (string allowing any character) 585 -)))| (%style="width:312px" %)string586 -|( % style="width:509px" %)(((762 +)))|string 763 +|((( 587 587 Alpha 765 + 588 588 (string which only allows A-z) 589 -)))| (%style="width:312px" %)string590 -|( % style="width:509px" %)(((767 +)))|string 768 +|((( 591 591 AlphaNumeric 770 + 592 592 (string which only allows A-z and 0-9) 593 -)))| (%style="width:312px" %)string594 -|( % style="width:509px" %)(((772 +)))|string 773 +|((( 595 595 Numeric 775 + 596 596 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 597 -)))| (%style="width:312px" %)string598 -|( % style="width:509px" %)(((777 +)))|string 778 +|((( 599 599 BigInteger 780 + 600 600 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 601 -)))| (% style="width:312px" %)integer602 -|( % style="width:509px" %)(((782 +)))|integer 783 +|((( 603 603 Integer 604 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 605 -)))|(% style="width:312px" %)integer 606 -|(% style="width:509px" %)((( 785 + 786 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 787 + 788 +(inclusive)) 789 +)))|integer 790 +|((( 607 607 Long 608 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 609 -)))|(% style="width:312px" %)integer 610 -|(% style="width:509px" %)((( 792 + 793 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 794 + 795 ++9223372036854775807 (inclusive)) 796 +)))|integer 797 +|((( 611 611 Short 799 + 612 612 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 613 -)))| (% style="width:312px" %)integer614 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number615 -|( % style="width:509px" %)(((801 +)))|integer 802 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 803 +|((( 616 616 Float 805 + 617 617 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 618 -)))| (% style="width:312px" %)number619 -|( % style="width:509px" %)(((807 +)))|number 808 +|((( 620 620 Double 810 + 621 621 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 622 -)))| (% style="width:312px" %)number623 -|( % style="width:509px" %)(((812 +)))|number 813 +|((( 624 624 Boolean 625 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 626 -)))|(% style="width:312px" %)boolean 627 627 628 -(% style="width:822.294px" %) 629 -|(% colspan="2" style="width:507px" %)((( 816 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 817 + 818 +binary-valued logic: {true, false}) 819 +)))|boolean 820 + 821 +| |(% colspan="2" %)((( 630 630 URI 823 + 631 631 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 632 -)))|(% colspan=" 1"style="width:311px"%)string633 -|(% colspan="2" style="width:507px"%)(((825 +)))|(% colspan="2" %)string 826 +| |(% colspan="2" %)((( 634 634 Count 828 + 635 635 (an integer following a sequential pattern, increasing by 1 for each occurrence) 636 -)))|(% colspan=" 1"style="width:311px"%)integer637 -|(% colspan="2" style="width:507px"%)(((830 +)))|(% colspan="2" %)integer 831 +| |(% colspan="2" %)((( 638 638 InclusiveValueRange 833 + 639 639 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 640 -)))|(% colspan=" 1"style="width:311px"%)number641 -|(% colspan="2" style="width:507px"%)(((835 +)))|(% colspan="2" %)number 836 +| |(% colspan="2" %)((( 642 642 ExclusiveValueRange 838 + 643 643 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 644 -)))|(% colspan=" 1"style="width:311px"%)number645 -|(% colspan="2" style="width:507px"%)(((840 +)))|(% colspan="2" %)number 841 +| |(% colspan="2" %)((( 646 646 Incremental 843 + 647 647 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 648 -)))|(% colspan=" 1"style="width:311px"%)number649 -|(% colspan="2" style="width:507px"%)(((845 +)))|(% colspan="2" %)number 846 +| |(% colspan="2" %)((( 650 650 ObservationalTimePeriod 848 + 651 651 (superset of StandardTimePeriod and TimeRange) 652 -)))|(% colspan=" 1"style="width:311px"%)time653 -|(% colspan="2" style="width:507px"%)(((850 +)))|(% colspan="2" %)time 851 +| |(% colspan="2" %)((( 654 654 StandardTimePeriod 655 -(superset of BasicTimePeriod and ReportingTimePeriod) 656 -)))|(% colspan="1" style="width:311px" %)time 657 -|(% colspan="2" style="width:507px" %)((( 853 + 854 +(superset of BasicTimePeriod and 855 + 856 +ReportingTimePeriod) 857 +)))|(% colspan="2" %)time 858 +| |(% colspan="2" %)((( 658 658 BasicTimePeriod 860 + 659 659 (superset of GregorianTimePeriod and DateTime) 660 -)))|(% colspan=" 1"style="width:311px"%)date661 -|(% colspan="2" style="width:507px"%)(((862 +)))|(% colspan="2" %)date 863 +| |(% colspan="2" %)((( 662 662 GregorianTimePeriod 865 + 663 663 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 664 -)))|(% colspan=" 1"style="width:311px"%)date665 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date666 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date667 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date668 -|(% colspan="2" style="width:507px"%)(((867 +)))|(% colspan="2" %)date 868 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 869 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 870 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 871 +| |(% colspan="2" %)((( 669 669 ReportingTimePeriod 670 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 671 -)))|(% colspan="1" style="width:311px" %)time_period 672 -|(% colspan="2" style="width:507px" %)((( 873 + 874 +(superset of RepostingYear, ReportingSemester, 875 + 876 +ReportingTrimester, ReportingQuarter, 877 + 878 +ReportingMonth, ReportingWeek, ReportingDay) 879 +)))|(% colspan="2" %)time_period 880 +| |(% colspan="2" %)((( 673 673 ReportingYear 882 + 674 674 (YYYY-A1 – 1 year period) 675 -)))|(% colspan=" 1"style="width:311px"%)time_period676 -|(% colspan="2" style="width:507px"%)(((884 +)))|(% colspan="2" %)time_period 885 +| |(% colspan="2" %)((( 677 677 ReportingSemester 887 + 678 678 (YYYY-Ss – 6 month period) 679 -)))|(% colspan=" 1"style="width:311px"%)time_period680 -|(% colspan="2" style="width:507px"%)(((889 +)))|(% colspan="2" %)time_period 890 +| |(% colspan="2" %)((( 681 681 ReportingTrimester 892 + 682 682 (YYYY-Tt – 4 month period) 683 -)))|(% colspan=" 1"style="width:311px"%)time_period684 -|(% colspan="2" style="width:507px"%)(((894 +)))|(% colspan="2" %)time_period 895 +| |(% colspan="2" %)((( 685 685 ReportingQuarter 897 + 686 686 (YYYY-Qq – 3 month period) 687 -)))|(% colspan=" 1"style="width:311px"%)time_period688 -|(% colspan="2" style="width:507px"%)(((899 +)))|(% colspan="2" %)time_period 900 +| |(% colspan="2" %)((( 689 689 ReportingMonth 902 + 690 690 (YYYY-Mmm – 1 month period) 691 -)))|(% colspan="1" style="width:311px" %)time_period 692 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 693 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 694 -|(% colspan="1" style="width:507px" %)((( 904 +)))|(% colspan="2" %)time_period 905 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 906 +| |(% colspan="2" %) |(% colspan="2" %) 907 +| |(% colspan="2" %) |(% colspan="2" %) 908 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 909 +|(% colspan="2" %)((( 695 695 ReportingDay 911 + 696 696 (YYYY-Dddd – 1 day period) 697 -)))|(% colspan="2" style="width:312px"%)time_period698 -|(% colspan=" 1"style="width:507px"%)(((913 +)))|(% colspan="2" %)time_period| 914 +|(% colspan="2" %)((( 699 699 DateTime 916 + 700 700 (YYYY-MM-DDThh:mm:ss) 701 -)))|(% colspan="2" style="width:312px"%)date702 -|(% colspan=" 1"style="width:507px"%)(((918 +)))|(% colspan="2" %)date| 919 +|(% colspan="2" %)((( 703 703 TimeRange 921 + 704 704 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 705 -)))|(% colspan="2" style="width:312px"%)time706 -|(% colspan=" 1"style="width:507px"%)(((923 +)))|(% colspan="2" %)time| 924 +|(% colspan="2" %)((( 707 707 Month 926 + 708 708 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 709 -)))|(% colspan="2" style="width:312px"%)string710 -|(% colspan=" 1"style="width:507px"%)(((928 +)))|(% colspan="2" %)string| 929 +|(% colspan="2" %)((( 711 711 MonthDay 931 + 712 712 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 713 -)))|(% colspan="2" style="width:312px"%)string714 -|(% colspan=" 1"style="width:507px"%)(((933 +)))|(% colspan="2" %)string| 934 +|(% colspan="2" %)((( 715 715 Day 936 + 716 716 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 717 -)))|(% colspan="2" style="width:312px"%)string718 -|(% colspan=" 1"style="width:507px"%)(((938 +)))|(% colspan="2" %)string| 939 +|(% colspan="2" %)((( 719 719 Time 941 + 720 720 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 721 -)))|(% colspan="2" style="width:312px"%)string722 -|(% colspan=" 1"style="width:507px"%)(((943 +)))|(% colspan="2" %)string| 944 +|(% colspan="2" %)((( 723 723 Duration 946 + 724 724 (corresponds to XML Schema xs:duration datatype) 725 -)))|(% colspan="2" style="width:312px"%)duration726 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable727 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable728 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable729 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable948 +)))|(% colspan="2" %)duration| 949 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 950 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 951 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 952 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 730 730 731 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 732 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 954 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 733 733 734 734 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 735 735 ... ... @@ -737,32 +737,39 @@ 737 737 738 738 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 739 739 740 -(% style="width:1073.29px" %) 741 -|(% style="width:207px" %)((( 742 -**VTL basic scalar type** 743 -)))|(% style="width:462px" %)((( 744 -**Default SDMX data type (BasicComponentDataType)** 745 -)))|(% style="width:402px" %)**Default output format** 746 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 747 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 748 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 749 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 750 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 751 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 962 +|((( 963 +VTL basic 964 + 965 +scalar type 966 +)))|((( 967 +Default SDMX data type 968 + 969 +(BasicComponentDataType 970 + 971 +) 972 +)))|Default output format 973 +|String|String|Like XML (xs:string) 974 +|Number|Float|Like XML (xs:float) 975 +|Integer|Integer|Like XML (xs:int) 976 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 977 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 978 +|time_period|((( 752 752 ReportingTimePeriod 980 + 753 753 (StandardReportingPeriod) 754 -)))|( % style="width:402px" %)(((982 +)))|((( 755 755 YYYY-Pppp 984 + 756 756 (according to SDMX ) 757 757 ))) 758 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((987 +|Duration|Duration|((( 759 759 Like XML (xs:duration) 989 + 760 760 PnYnMnDTnHnMnS 761 761 ))) 762 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"992 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 763 763 764 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 765 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 994 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 766 766 767 767 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 768 768 ... ... @@ -816,7 +816,7 @@ 816 816 |N|fixed number of digits used in the preceding textual representation of the month or the day 817 817 | | 818 818 819 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}The representationgiven in theDSDshouldobviouslybecompatible withtheVTLdata type.{{/footnote}}.1048 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 820 820 821 821 === 12.4.5 Null Values === 822 822 ... ... @@ -834,8 +834,10 @@ 834 834 835 835 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 836 836 837 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.1066 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 838 838 1068 +TransformationScheme. 1069 + 839 839 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 840 840 841 841 {{putFootnotes/}}
- 1747388148322-387.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.0 KB - Content
- 1747388179021-814.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.2 KB - Content
- 1747388206717-256.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.3 KB - Content
- 1747388222879-916.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.9 KB - Content
- 1747388244829-693.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.4 KB - Content