Last modified by Helena on 2025/09/10 11:19

From version 6.9
edited by Helena
on 2025/05/16 12:37
Change comment: There is no comment for this version
To version 5.16
edited by Helena
on 2025/05/16 08:53
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -228,11 +228,18 @@
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 +
237 +Component;
238 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 +
244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 +
246 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
... ... @@ -255,7 +255,10 @@
255 255  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
256 256  
257 257  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 +
271 +Identifiers, (time) Identifier and Attributes.
272 +
259 259  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
260 260  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
261 261  
... ... @@ -348,7 +348,7 @@
348 348  The mapping table is the following:
349 349  
350 350  (% style="width:689.294px" %)
351 -|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
365 +|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
352 352  |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
353 353  |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
354 354  |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
... ... @@ -408,16 +408,28 @@
408 408  
409 409  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
410 410  
411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
425 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
412 412  
413 -In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
427 +basic, pivot …).
414 414  
429 +In the example above, for all the datasets of the kind
430 +
431 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 +
415 415  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
416 416  
417 -[[image:1747388275998-621.png]]
435 +‘DF1(1.0.0)/POPULATION.USA’ :=
418 418  
419 -In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
437 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
420 420  
439 +‘DF1(1.0.0)/POPULATION.CANADA’ :=
440 +
441 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
442 +
443 +… … …
444 +
445 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^
446 +
421 421  In the direction from SDMX to VTL it is allowed to omit the value of one or more
422 422  
423 423  DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped.
... ... @@ -426,8 +426,10 @@
426 426  
427 427  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
428 428  
429 -[[image:1747388244829-693.png]]
455 +‘DF1(1.0.0)/POPULATION.’ :=
430 430  
457 +DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
458 +
431 431  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
432 432  
433 433  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different
... ... @@ -442,34 +442,70 @@
442 442  
443 443  Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY:
444 444  
445 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation;{{footnote}}If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one SDMX Dataflow to many VTL datasets) does not apply.{{/footnote}}
446 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.{{footnote}}This is possible as each VTL dataset corresponds to one particular combination of values of INDICATOR and COUNTRY.{{/footnote}}
473 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^
474 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^
447 447  
448 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions{{footnote}}The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the VtlDataflowMapping relevant to DF2(1.0).{{/footnote}}.
476 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^.
449 449  
450 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:{{footnote}}the symbol of the VTL persistent assignment is used (<-){{/footnote}}
478 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^
451 451  
452 452  ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression
453 453  
454 454  Some examples follow, for some specific values of INDICATOR and COUNTRY:
455 455  
456 -[[image:1747388222879-916.png]]
484 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
457 457  
458 -[[image:1747388206717-256.png]]
486 +… … …
459 459  
488 +‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
489 +
490 +‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
491 +
492 +… … …
493 +
460 460  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
461 461  
462 -[[image:1747388148322-387.png]]
496 +VTL dataset INDICATOR value COUNTRY value
463 463  
498 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
499 +
500 +‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
501 +
502 +‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
503 +
504 +‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
505 +
506 +… … …
507 +
464 464  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
465 465  
466 -[[image:1747388179021-814.png]]
510 +DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
467 467  
512 +DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
513 +
514 +DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
515 +
516 +[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
517 +
518 +DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
519 +
520 +DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
521 +
522 +DF2bis_GDPPERCAPITA_CANADA’,
523 +
524 +… ,
525 +
526 +DF2bis_POPGROWTH_USA’,
527 +
528 +DF2bis_POPGROWTH_CANADA’
529 +
530 +…);
531 +
468 468  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
469 469  
470 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
534 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
471 471  
472 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets.{{footnote}}In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations described above is implicitly performed; therefore, in order to test the overall compliance of the VTL program to the VTL consistency rules, these implicit Transformations have to be considered as part of the VTL program even if they are not explicitly coded.{{/footnote}}
536 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^
473 473  
474 474  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions).
475 475  
... ... @@ -477,51 +477,52 @@
477 477  
478 478  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
479 479  
480 -(% style="width:1170.29px" %)
481 -|**VTL**|(% style="width:754px" %)**SDMX**
482 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}}
483 -|**Represented Variable**|(% style="width:754px" %)(((
544 +|VTL|SDMX
545 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^
546 +|**Represented Variable**|(((
484 484  **Concept** with a definite
485 485  
486 486  Representation
487 487  )))
488 -|**Value Domain**|(% style="width:754px" %)(((
551 +|**Value Domain**|(((
489 489  **Representation** (see the Structure
490 490  
491 491  Pattern in the Base Package)
492 492  )))
493 -|**Enumerated Value Domain / Code List**|(% style="width:754px" %)**Codelist**
494 -|**Code**|(% style="width:754px" %)(((
556 +|**Enumerated Value Domain / Code List**|**Codelist**
557 +|**Code**|(((
495 495  **Code** (for enumerated
496 496  
497 497  DimensionComponent, Measure, DataAttribute)
498 498  )))
499 -|**Described Value Domain**|(% style="width:754px" %)(((
500 -non-enumerated** Representation**
562 +|**Described Value Domain**|(((
563 +non-enumerated** &nbsp;&nbsp;&nbsp;Representation**
501 501  
502 502  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
503 503  )))
504 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
505 -| |(% style="width:754px" %)(((
506 -to a valid **value **(for non-enumerated** **Representations)
567 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
568 +| |(((
569 +to a valid **value &nbsp;&nbsp;&nbsp;**(for non-enumerated** &nbsp;&nbsp;&nbsp;**
570 +
571 +Representations)
507 507  )))
508 -|**Value Domain Subset / Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
509 -|**Enumerated Value Domain Subset / Enumerated Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
510 -|**Described Value Domain Subset / Described Set**|(% style="width:754px" %)This abstraction does not exist in SDMX
511 -|**Set list**|(% style="width:754px" %)This abstraction does not exist in SDMX
573 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX
574 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX
575 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX
576 +|**Set list**|This abstraction does not exist in SDMX
512 512  
513 513  The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain).
514 514  
515 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear{{footnote}}By using represented variables, VTL can assume that data structures having the same variables as identifiers can be composed one another because the correspondent values can match.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}A Concept becomes a Component in a DataStructureDefinition, and Components can have different LocalRepresentations in different DataStructureDefinitions, also overriding the (possible) base representation of the Concept.{{/footnote}} This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
580 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.
516 516  
517 517  Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression
518 518  
519 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets)
584 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
520 520  
521 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong.
522 -
523 523  As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL
524 524  
588 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]]
589 +
525 525  Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts.
526 526  
527 527  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
... ... @@ -536,8 +536,7 @@
536 536  
537 537  [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]]
538 538  
539 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %)
540 -**Figure 22 – VTL Data Types**
604 +==== Figure 22 – VTL Data Types ====
541 541  
542 542  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
543 543  
... ... @@ -544,12 +544,131 @@
544 544  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
545 545  
546 546  
547 -**Figure 23 – VTL Basic Scalar Types**
548 548  
549 549  (((
550 -
613 +//n//
614 +
615 +//a//
616 +
617 +//e//
618 +
619 +//l//
620 +
621 +//o//
622 +
623 +//o//
624 +
625 +//B//
626 +
627 +//n//
628 +
629 +//o//
630 +
631 +//i//
632 +
633 +//t//
634 +
635 +//a//
636 +
637 +//r//
638 +
639 +//u//
640 +
641 +//D//
642 +
643 +//d//
644 +
645 +//o//
646 +
647 +//i//
648 +
649 +//r//
650 +
651 +//e//
652 +
653 +//p//
654 +
655 +//_//
656 +
657 +//e//
658 +
659 +//m//
660 +
661 +//i//
662 +
663 +//T//
664 +
665 +//e//
666 +
667 +//t//
668 +
669 +//a//
670 +
671 +//D//
672 +
673 +//e//
674 +
675 +//m//
676 +
677 +//i//
678 +
679 +//T//
680 +
681 +//r//
682 +
683 +//e//
684 +
685 +//g//
686 +
687 +//e//
688 +
689 +//t//
690 +
691 +//n//
692 +
693 +//I//
694 +
695 +//r//
696 +
697 +//e//
698 +
699 +//b//
700 +
701 +//m//
702 +
703 +//u//
704 +
705 +//N//
706 +
707 +//g//
708 +
709 +//n//
710 +
711 +//i//
712 +
713 +//r//
714 +
715 +//t//
716 +
717 +//S//
718 +
719 +//r//
720 +
721 +//a//
722 +
723 +//l//
724 +
725 +//a//
726 +
727 +//c//
728 +
729 +//S//
730 +
731 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]]
551 551  )))
552 552  
734 +==== Figure 23 – VTL Basic Scalar Types ====
735 +
553 553  === 12.4.2 VTL basic scalar types and SDMX data types ===
554 554  
555 555  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
... ... @@ -572,159 +572,204 @@
572 572  
573 573  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
574 574  
575 -(% style="width:823.294px" %)
576 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
577 -|(% style="width:509px" %)(((
758 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
759 +|(((
578 578  String
761 +
579 579  (string allowing any character)
580 -)))|(% style="width:312px" %)string
581 -|(% style="width:509px" %)(((
763 +)))|string
764 +|(((
582 582  Alpha
766 +
583 583  (string which only allows A-z)
584 -)))|(% style="width:312px" %)string
585 -|(% style="width:509px" %)(((
768 +)))|string
769 +|(((
586 586  AlphaNumeric
771 +
587 587  (string which only allows A-z and 0-9)
588 -)))|(% style="width:312px" %)string
589 -|(% style="width:509px" %)(((
773 +)))|string
774 +|(((
590 590  Numeric
776 +
591 591  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
592 -)))|(% style="width:312px" %)string
593 -|(% style="width:509px" %)(((
778 +)))|string
779 +|(((
594 594  BigInteger
781 +
595 595  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
596 -)))|(% style="width:312px" %)integer
597 -|(% style="width:509px" %)(((
783 +)))|integer
784 +|(((
598 598  Integer
599 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
600 -)))|(% style="width:312px" %)integer
601 -|(% style="width:509px" %)(((
786 +
787 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
788 +
789 +(inclusive))
790 +)))|integer
791 +|(((
602 602  Long
603 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
604 -)))|(% style="width:312px" %)integer
605 -|(% style="width:509px" %)(((
793 +
794 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
795 +
796 ++9223372036854775807 (inclusive))
797 +)))|integer
798 +|(((
606 606  Short
800 +
607 607  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
608 -)))|(% style="width:312px" %)integer
609 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
610 -|(% style="width:509px" %)(((
802 +)))|integer
803 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
804 +|(((
611 611  Float
806 +
612 612  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
613 -)))|(% style="width:312px" %)number
614 -|(% style="width:509px" %)(((
808 +)))|number
809 +|(((
615 615  Double
811 +
616 616  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
617 -)))|(% style="width:312px" %)number
618 -|(% style="width:509px" %)(((
813 +)))|number
814 +|(((
619 619  Boolean
620 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
621 -)))|(% style="width:312px" %)boolean
622 622  
623 -(% style="width:822.294px" %)
624 -|(% colspan="2" style="width:507px" %)(((
817 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
818 +
819 +binary-valued logic: {true, false})
820 +)))|boolean
821 +
822 +| |(% colspan="2" %)(((
625 625  URI
824 +
626 626  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
627 -)))|(% colspan="1" style="width:311px" %)string
628 -|(% colspan="2" style="width:507px" %)(((
826 +)))|(% colspan="2" %)string
827 +| |(% colspan="2" %)(((
629 629  Count
829 +
630 630  (an integer following a sequential pattern, increasing by 1 for each occurrence)
631 -)))|(% colspan="1" style="width:311px" %)integer
632 -|(% colspan="2" style="width:507px" %)(((
831 +)))|(% colspan="2" %)integer
832 +| |(% colspan="2" %)(((
633 633  InclusiveValueRange
834 +
634 634  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
635 -)))|(% colspan="1" style="width:311px" %)number
636 -|(% colspan="2" style="width:507px" %)(((
836 +)))|(% colspan="2" %)number
837 +| |(% colspan="2" %)(((
637 637  ExclusiveValueRange
839 +
638 638  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
639 -)))|(% colspan="1" style="width:311px" %)number
640 -|(% colspan="2" style="width:507px" %)(((
841 +)))|(% colspan="2" %)number
842 +| |(% colspan="2" %)(((
641 641  Incremental
844 +
642 642  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
643 -)))|(% colspan="1" style="width:311px" %)number
644 -|(% colspan="2" style="width:507px" %)(((
846 +)))|(% colspan="2" %)number
847 +| |(% colspan="2" %)(((
645 645  ObservationalTimePeriod
849 +
646 646  (superset of StandardTimePeriod and TimeRange)
647 -)))|(% colspan="1" style="width:311px" %)time
648 -|(% colspan="2" style="width:507px" %)(((
851 +)))|(% colspan="2" %)time
852 +| |(% colspan="2" %)(((
649 649  StandardTimePeriod
650 -(superset of BasicTimePeriod and ReportingTimePeriod)
651 -)))|(% colspan="1" style="width:311px" %)time
652 -|(% colspan="2" style="width:507px" %)(((
854 +
855 +(superset of BasicTimePeriod and
856 +
857 +ReportingTimePeriod)
858 +)))|(% colspan="2" %)time
859 +| |(% colspan="2" %)(((
653 653  BasicTimePeriod
861 +
654 654  (superset of GregorianTimePeriod and DateTime)
655 -)))|(% colspan="1" style="width:311px" %)date
656 -|(% colspan="2" style="width:507px" %)(((
863 +)))|(% colspan="2" %)date
864 +| |(% colspan="2" %)(((
657 657  GregorianTimePeriod
866 +
658 658  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
659 -)))|(% colspan="1" style="width:311px" %)date
660 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
661 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
662 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
663 -|(% colspan="2" style="width:507px" %)(((
868 +)))|(% colspan="2" %)date
869 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
870 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
871 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
872 +| |(% colspan="2" %)(((
664 664  ReportingTimePeriod
665 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
666 -)))|(% colspan="1" style="width:311px" %)time_period
667 -|(% colspan="2" style="width:507px" %)(((
874 +
875 +(superset of RepostingYear, ReportingSemester,
876 +
877 +ReportingTrimester, ReportingQuarter,
878 +
879 +ReportingMonth, ReportingWeek, ReportingDay)
880 +)))|(% colspan="2" %)time_period
881 +| |(% colspan="2" %)(((
668 668  ReportingYear
883 +
669 669  (YYYY-A1 – 1 year period)
670 -)))|(% colspan="1" style="width:311px" %)time_period
671 -|(% colspan="2" style="width:507px" %)(((
885 +)))|(% colspan="2" %)time_period
886 +| |(% colspan="2" %)(((
672 672  ReportingSemester
888 +
673 673  (YYYY-Ss – 6 month period)
674 -)))|(% colspan="1" style="width:311px" %)time_period
675 -|(% colspan="2" style="width:507px" %)(((
890 +)))|(% colspan="2" %)time_period
891 +| |(% colspan="2" %)(((
676 676  ReportingTrimester
893 +
677 677  (YYYY-Tt – 4 month period)
678 -)))|(% colspan="1" style="width:311px" %)time_period
679 -|(% colspan="2" style="width:507px" %)(((
895 +)))|(% colspan="2" %)time_period
896 +| |(% colspan="2" %)(((
680 680  ReportingQuarter
898 +
681 681  (YYYY-Qq – 3 month period)
682 -)))|(% colspan="1" style="width:311px" %)time_period
683 -|(% colspan="2" style="width:507px" %)(((
900 +)))|(% colspan="2" %)time_period
901 +| |(% colspan="2" %)(((
684 684  ReportingMonth
903 +
685 685  (YYYY-Mmm – 1 month period)
686 -)))|(% colspan="1" style="width:311px" %)time_period
687 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
688 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
689 -|(% colspan="1" style="width:507px" %)(((
905 +)))|(% colspan="2" %)time_period
906 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
907 +| |(% colspan="2" %) |(% colspan="2" %)
908 +| |(% colspan="2" %) |(% colspan="2" %)
909 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
910 +|(% colspan="2" %)(((
690 690  ReportingDay
912 +
691 691  (YYYY-Dddd – 1 day period)
692 -)))|(% colspan="2" style="width:312px" %)time_period
693 -|(% colspan="1" style="width:507px" %)(((
914 +)))|(% colspan="2" %)time_period|
915 +|(% colspan="2" %)(((
694 694  DateTime
917 +
695 695  (YYYY-MM-DDThh:mm:ss)
696 -)))|(% colspan="2" style="width:312px" %)date
697 -|(% colspan="1" style="width:507px" %)(((
919 +)))|(% colspan="2" %)date|
920 +|(% colspan="2" %)(((
698 698  TimeRange
922 +
699 699  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
700 -)))|(% colspan="2" style="width:312px" %)time
701 -|(% colspan="1" style="width:507px" %)(((
924 +)))|(% colspan="2" %)time|
925 +|(% colspan="2" %)(((
702 702  Month
927 +
703 703  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
704 -)))|(% colspan="2" style="width:312px" %)string
705 -|(% colspan="1" style="width:507px" %)(((
929 +)))|(% colspan="2" %)string|
930 +|(% colspan="2" %)(((
706 706  MonthDay
932 +
707 707  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
708 -)))|(% colspan="2" style="width:312px" %)string
709 -|(% colspan="1" style="width:507px" %)(((
934 +)))|(% colspan="2" %)string|
935 +|(% colspan="2" %)(((
710 710  Day
937 +
711 711  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
712 -)))|(% colspan="2" style="width:312px" %)string
713 -|(% colspan="1" style="width:507px" %)(((
939 +)))|(% colspan="2" %)string|
940 +|(% colspan="2" %)(((
714 714  Time
942 +
715 715  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
716 -)))|(% colspan="2" style="width:312px" %)string
717 -|(% colspan="1" style="width:507px" %)(((
944 +)))|(% colspan="2" %)string|
945 +|(% colspan="2" %)(((
718 718  Duration
947 +
719 719  (corresponds to XML Schema xs:duration datatype)
720 -)))|(% colspan="2" style="width:312px" %)duration
721 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
722 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
723 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
724 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
949 +)))|(% colspan="2" %)duration|
950 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
951 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
952 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
953 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
725 725  
726 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
727 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
955 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
728 728  
729 729  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
730 730  
... ... @@ -732,32 +732,39 @@
732 732  
733 733  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
734 734  
735 -(% style="width:1073.29px" %)
736 -|(% style="width:207px" %)(((
737 -**VTL basic scalar type**
738 -)))|(% style="width:462px" %)(((
739 -**Default SDMX data type (BasicComponentDataType)**
740 -)))|(% style="width:402px" %)**Default output format**
741 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
742 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
743 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
744 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
745 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
746 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
963 +|(((
964 +VTL basic
965 +
966 +scalar type
967 +)))|(((
968 +Default SDMX data type
969 +
970 +(BasicComponentDataType
971 +
972 +)
973 +)))|Default output format
974 +|String|String|Like XML (xs:string)
975 +|Number|Float|Like XML (xs:float)
976 +|Integer|Integer|Like XML (xs:int)
977 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
978 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
979 +|time_period|(((
747 747  ReportingTimePeriod
981 +
748 748  (StandardReportingPeriod)
749 -)))|(% style="width:402px" %)(((
983 +)))|(((
750 750  YYYY-Pppp
985 +
751 751  (according to SDMX )
752 752  )))
753 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
988 +|Duration|Duration|(((
754 754  Like XML (xs:duration)
990 +
755 755  PnYnMnDTnHnMnS
756 756  )))
757 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
993 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
758 758  
759 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
760 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
995 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
761 761  
762 762  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
763 763  
... ... @@ -811,7 +811,7 @@
811 811  |N|fixed number of digits used in the preceding textual representation of the month or the day
812 812  | |
813 813  
814 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
1049 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
815 815  
816 816  === 12.4.5 Null Values ===
817 817  
... ... @@ -829,8 +829,10 @@
829 829  
830 830  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
831 831  
832 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
1067 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
833 833  
1069 +TransformationScheme.
1070 +
834 834  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
835 835  
836 836  {{putFootnotes/}}
1747388148322-387.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
1747388179021-814.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -66.2 KB
Content
1747388206717-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -10.3 KB
Content
1747388222879-916.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -9.9 KB
Content
1747388244829-693.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -7.4 KB
Content
1747388275998-621.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -19.2 KB
Content