Last modified by Helena on 2025/09/10 11:19

From version 6.9
edited by Helena
on 2025/05/16 12:37
Change comment: There is no comment for this version
To version 5.26
edited by Helena
on 2025/05/16 09:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,8 +14,10 @@
14 14  
15 15  The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets).
16 16  
17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of
18 18  
19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.
20 +
19 19  This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts.
20 20  
21 21  == 12.2 References to SDMX artefacts from VTL statements ==
... ... @@ -26,8 +26,10 @@
26 26  
27 27  The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name.
28 28  
29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
31 +In any case, the aliases used in the VTL Transformations have to be mapped to the
30 30  
33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.
34 +
31 31  The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias.
32 32  
33 33  The references through the URN and the abbreviated URN are described in the following paragraphs.
... ... @@ -198,7 +198,7 @@
198 198  
199 199  === 12.3.3 Mapping from SDMX to VTL data structures ===
200 200  
201 -==== 12.3.3.1 Basic Mapping ====
205 +**12.3.3.1 Basic Mapping**
202 202  
203 203  The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table:
204 204  
... ... @@ -228,11 +228,18 @@
228 228  The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation):
229 229  
230 230  * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier;
231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component;
235 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a
236 +
237 +Component;
238 +
232 232  * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure);
233 233  * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure);
234 234  * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship:
235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
242 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the
243 +
244 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension;
245 +
246 +*
236 236  ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators).
237 237  ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship.
238 238  
... ... @@ -255,7 +255,10 @@
255 255  At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension:
256 256  
257 257  * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension;
258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes.
269 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple)
270 +
271 +Identifiers, (time) Identifier and Attributes.
272 +
259 259  * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
260 260  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
261 261  
... ... @@ -348,7 +348,7 @@
348 348  The mapping table is the following:
349 349  
350 350  (% style="width:689.294px" %)
351 -|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX**
365 +|(% style="width:344px" %)VTL|(% style="width:341px" %)SDMX
352 352  |(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension
353 353  |(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension
354 354  |(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure
... ... @@ -408,14 +408,26 @@
408 408  
409 409  SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA.
410 410  
411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. basic, pivot …).
425 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets{{footnote}}If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this kind of mapping would have non-matching values for the Identifiers corresponding to the mapping Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.
412 412  
413 -In the example above, for all the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
427 +basic, pivot …).
414 414  
429 +In the example above, for all the datasets of the kind
430 +
431 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only.
432 +
415 415  It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression:
416 416  
417 -[[image:1747388275998-621.png]]
435 +‘DF1(1.0.0)/POPULATION.USA’ :=
418 418  
437 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ];
438 +
439 +‘DF1(1.0.0)/POPULATION.CANADA’ :=
440 +
441 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ];
442 +
443 +… … …
444 +
419 419  In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}
420 420  
421 421  In the direction from SDMX to VTL it is allowed to omit the value of one or more
... ... @@ -426,8 +426,10 @@
426 426  
427 427  This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//:
428 428  
429 -[[image:1747388244829-693.png]]
455 +‘DF1(1.0.0)/POPULATION.’ :=
430 430  
457 +DF1(1.0.0) [ sub INDICATOR=“POPULATION” ];
458 +
431 431  Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD.
432 432  
433 433  Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different
... ... @@ -453,18 +453,54 @@
453 453  
454 454  Some examples follow, for some specific values of INDICATOR and COUNTRY:
455 455  
456 -[[image:1747388222879-916.png]]
484 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
457 457  
458 -[[image:1747388206717-256.png]]
486 +… … …
459 459  
488 +‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
489 +
490 +‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
491 +
492 +… … …
493 +
460 460  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
461 461  
462 -[[image:1747388148322-387.png]]
496 +VTL dataset INDICATOR value COUNTRY value
463 463  
498 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
499 +
500 +‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
501 +
502 +‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA
503 +
504 +‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
505 +
506 +… … …
507 +
464 464  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
465 465  
466 -[[image:1747388179021-814.png]]
510 +DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
467 467  
512 +DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
513 +
514 +DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
515 +
516 +[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
517 +
518 +DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
519 +
520 +DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’,
521 +
522 +DF2bis_GDPPERCAPITA_CANADA’,
523 +
524 +… ,
525 +
526 +DF2bis_POPGROWTH_USA’,
527 +
528 +DF2bis_POPGROWTH_CANADA’
529 +
530 +…);
531 +
468 468  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example
469 469  
470 470  DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -572,159 +572,189 @@
572 572  
573 573  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
574 574  
575 -(% style="width:823.294px" %)
576 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type**
577 -|(% style="width:509px" %)(((
639 +|(% style="width:501px" %)SDMX data type (BasicComponentDataType)|(% style="width:1437px" %)Default VTL basic scalar type
640 +|(% style="width:501px" %)(((
578 578  String
579 579  (string allowing any character)
580 -)))|(% style="width:312px" %)string
581 -|(% style="width:509px" %)(((
643 +)))|(% style="width:1437px" %)string
644 +|(% style="width:501px" %)(((
582 582  Alpha
583 583  (string which only allows A-z)
584 -)))|(% style="width:312px" %)string
585 -|(% style="width:509px" %)(((
647 +)))|(% style="width:1437px" %)string
648 +|(% style="width:501px" %)(((
586 586  AlphaNumeric
587 587  (string which only allows A-z and 0-9)
588 -)))|(% style="width:312px" %)string
589 -|(% style="width:509px" %)(((
651 +)))|(% style="width:1437px" %)string
652 +|(% style="width:501px" %)(((
590 590  Numeric
591 591  (string which only allows 0-9, but is not numeric so that is can having leading zeros)
592 -)))|(% style="width:312px" %)string
593 -|(% style="width:509px" %)(((
655 +)))|(% style="width:1437px" %)string
656 +|(% style="width:501px" %)(((
594 594  BigInteger
595 595  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
596 -)))|(% style="width:312px" %)integer
597 -|(% style="width:509px" %)(((
659 +)))|(% style="width:1437px" %)integer
660 +|(% style="width:501px" %)(((
598 598  Integer
599 599  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive))
600 -)))|(% style="width:312px" %)integer
601 -|(% style="width:509px" %)(((
663 +)))|(% style="width:1437px" %)integer
664 +|(% style="width:501px" %)(((
602 602  Long
603 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive))
604 -)))|(% style="width:312px" %)integer
605 -|(% style="width:509px" %)(((
666 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
667 +
668 ++9223372036854775807 (inclusive))
669 +)))|(% style="width:1437px" %)integer
670 +|(% style="width:501px" %)(((
606 606  Short
607 607  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
608 -)))|(% style="width:312px" %)integer
609 -|(% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number
610 -|(% style="width:509px" %)(((
673 +)))|(% style="width:1437px" %)integer
674 +|(% style="width:501px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:1437px" %)number
675 +|(% style="width:501px" %)(((
611 611  Float
612 612  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
613 -)))|(% style="width:312px" %)number
614 -|(% style="width:509px" %)(((
678 +)))|(% style="width:1437px" %)number
679 +|(% style="width:501px" %)(((
615 615  Double
616 616  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
617 -)))|(% style="width:312px" %)number
618 -|(% style="width:509px" %)(((
682 +)))|(% style="width:1437px" %)number
683 +|(% style="width:501px" %)(((
619 619  Boolean
620 620  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false})
621 -)))|(% style="width:312px" %)boolean
686 +)))|(% style="width:1437px" %)boolean
622 622  
623 -(% style="width:822.294px" %)
624 -|(% colspan="2" style="width:507px" %)(((
688 +| |(% colspan="2" %)(((
625 625  URI
690 +
626 626  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
627 -)))|(% colspan="1" style="width:311px" %)string
628 -|(% colspan="2" style="width:507px" %)(((
692 +)))|(% colspan="2" %)string
693 +| |(% colspan="2" %)(((
629 629  Count
695 +
630 630  (an integer following a sequential pattern, increasing by 1 for each occurrence)
631 -)))|(% colspan="1" style="width:311px" %)integer
632 -|(% colspan="2" style="width:507px" %)(((
697 +)))|(% colspan="2" %)integer
698 +| |(% colspan="2" %)(((
633 633  InclusiveValueRange
700 +
634 634  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
635 -)))|(% colspan="1" style="width:311px" %)number
636 -|(% colspan="2" style="width:507px" %)(((
702 +)))|(% colspan="2" %)number
703 +| |(% colspan="2" %)(((
637 637  ExclusiveValueRange
705 +
638 638  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
639 -)))|(% colspan="1" style="width:311px" %)number
640 -|(% colspan="2" style="width:507px" %)(((
707 +)))|(% colspan="2" %)number
708 +| |(% colspan="2" %)(((
641 641  Incremental
710 +
642 642  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
643 -)))|(% colspan="1" style="width:311px" %)number
644 -|(% colspan="2" style="width:507px" %)(((
712 +)))|(% colspan="2" %)number
713 +| |(% colspan="2" %)(((
645 645  ObservationalTimePeriod
715 +
646 646  (superset of StandardTimePeriod and TimeRange)
647 -)))|(% colspan="1" style="width:311px" %)time
648 -|(% colspan="2" style="width:507px" %)(((
717 +)))|(% colspan="2" %)time
718 +| |(% colspan="2" %)(((
649 649  StandardTimePeriod
650 -(superset of BasicTimePeriod and ReportingTimePeriod)
651 -)))|(% colspan="1" style="width:311px" %)time
652 -|(% colspan="2" style="width:507px" %)(((
720 +
721 +(superset of BasicTimePeriod and
722 +
723 +ReportingTimePeriod)
724 +)))|(% colspan="2" %)time
725 +| |(% colspan="2" %)(((
653 653  BasicTimePeriod
727 +
654 654  (superset of GregorianTimePeriod and DateTime)
655 -)))|(% colspan="1" style="width:311px" %)date
656 -|(% colspan="2" style="width:507px" %)(((
729 +)))|(% colspan="2" %)date
730 +| |(% colspan="2" %)(((
657 657  GregorianTimePeriod
732 +
658 658  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
659 -)))|(% colspan="1" style="width:311px" %)date
660 -|(% colspan="2" style="width:507px" %)GregorianYear (YYYY)|(% colspan="1" style="width:311px" %)date
661 -|(% colspan="2" style="width:507px" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1" style="width:311px" %)date
662 -|(% colspan="2" style="width:507px" %)GregorianDay (YYYY-MM-DD)|(% colspan="1" style="width:311px" %)date
663 -|(% colspan="2" style="width:507px" %)(((
734 +)))|(% colspan="2" %)date
735 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date
736 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date
737 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date
738 +| |(% colspan="2" %)(((
664 664  ReportingTimePeriod
665 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
666 -)))|(% colspan="1" style="width:311px" %)time_period
667 -|(% colspan="2" style="width:507px" %)(((
740 +
741 +(superset of RepostingYear, ReportingSemester,
742 +
743 +ReportingTrimester, ReportingQuarter,
744 +
745 +ReportingMonth, ReportingWeek, ReportingDay)
746 +)))|(% colspan="2" %)time_period
747 +| |(% colspan="2" %)(((
668 668  ReportingYear
749 +
669 669  (YYYY-A1 – 1 year period)
670 -)))|(% colspan="1" style="width:311px" %)time_period
671 -|(% colspan="2" style="width:507px" %)(((
751 +)))|(% colspan="2" %)time_period
752 +| |(% colspan="2" %)(((
672 672  ReportingSemester
754 +
673 673  (YYYY-Ss – 6 month period)
674 -)))|(% colspan="1" style="width:311px" %)time_period
675 -|(% colspan="2" style="width:507px" %)(((
756 +)))|(% colspan="2" %)time_period
757 +| |(% colspan="2" %)(((
676 676  ReportingTrimester
759 +
677 677  (YYYY-Tt – 4 month period)
678 -)))|(% colspan="1" style="width:311px" %)time_period
679 -|(% colspan="2" style="width:507px" %)(((
761 +)))|(% colspan="2" %)time_period
762 +| |(% colspan="2" %)(((
680 680  ReportingQuarter
764 +
681 681  (YYYY-Qq – 3 month period)
682 -)))|(% colspan="1" style="width:311px" %)time_period
683 -|(% colspan="2" style="width:507px" %)(((
766 +)))|(% colspan="2" %)time_period
767 +| |(% colspan="2" %)(((
684 684  ReportingMonth
769 +
685 685  (YYYY-Mmm – 1 month period)
686 -)))|(% colspan="1" style="width:311px" %)time_period
687 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period
688 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %)
689 -|(% colspan="1" style="width:507px" %)(((
771 +)))|(% colspan="2" %)time_period
772 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period
773 +| |(% colspan="2" %) |(% colspan="2" %)
774 +| |(% colspan="2" %) |(% colspan="2" %)
775 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) |
776 +|(% colspan="2" %)(((
690 690  ReportingDay
778 +
691 691  (YYYY-Dddd – 1 day period)
692 -)))|(% colspan="2" style="width:312px" %)time_period
693 -|(% colspan="1" style="width:507px" %)(((
780 +)))|(% colspan="2" %)time_period|
781 +|(% colspan="2" %)(((
694 694  DateTime
783 +
695 695  (YYYY-MM-DDThh:mm:ss)
696 -)))|(% colspan="2" style="width:312px" %)date
697 -|(% colspan="1" style="width:507px" %)(((
785 +)))|(% colspan="2" %)date|
786 +|(% colspan="2" %)(((
698 698  TimeRange
788 +
699 699  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
700 -)))|(% colspan="2" style="width:312px" %)time
701 -|(% colspan="1" style="width:507px" %)(((
790 +)))|(% colspan="2" %)time|
791 +|(% colspan="2" %)(((
702 702  Month
793 +
703 703  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
704 -)))|(% colspan="2" style="width:312px" %)string
705 -|(% colspan="1" style="width:507px" %)(((
795 +)))|(% colspan="2" %)string|
796 +|(% colspan="2" %)(((
706 706  MonthDay
798 +
707 707  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
708 -)))|(% colspan="2" style="width:312px" %)string
709 -|(% colspan="1" style="width:507px" %)(((
800 +)))|(% colspan="2" %)string|
801 +|(% colspan="2" %)(((
710 710  Day
803 +
711 711  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
712 -)))|(% colspan="2" style="width:312px" %)string
713 -|(% colspan="1" style="width:507px" %)(((
805 +)))|(% colspan="2" %)string|
806 +|(% colspan="2" %)(((
714 714  Time
808 +
715 715  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
716 -)))|(% colspan="2" style="width:312px" %)string
717 -|(% colspan="1" style="width:507px" %)(((
810 +)))|(% colspan="2" %)string|
811 +|(% colspan="2" %)(((
718 718  Duration
813 +
719 719  (corresponds to XML Schema xs:duration datatype)
720 -)))|(% colspan="2" style="width:312px" %)duration
721 -|(% colspan="1" style="width:507px" %)XHTML|(% colspan="2" style="width:312px" %)Metadata type – not applicable
722 -|(% colspan="1" style="width:507px" %)KeyValues|(% colspan="2" style="width:312px" %)Metadata type – not applicable
723 -|(% colspan="1" style="width:507px" %)IdentifiableReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
724 -|(% colspan="1" style="width:507px" %)DataSetReference|(% colspan="2" style="width:312px" %)Metadata type – not applicable
815 +)))|(% colspan="2" %)duration|
816 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable|
817 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable|
818 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable|
819 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable|
725 725  
726 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %)
727 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
821 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
728 728  
729 729  When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual).
730 730  
... ... @@ -732,32 +732,39 @@
732 732  
733 733  The following table describes the default conversion from the VTL basic scalar types to the SDMX data types .
734 734  
735 -(% style="width:1073.29px" %)
736 -|(% style="width:207px" %)(((
737 -**VTL basic scalar type**
738 -)))|(% style="width:462px" %)(((
739 -**Default SDMX data type (BasicComponentDataType)**
740 -)))|(% style="width:402px" %)**Default output format**
741 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string)
742 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float)
743 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int)
744 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z
745 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above)
746 -|(% style="width:207px" %)time_period|(% style="width:462px" %)(((
829 +|(((
830 +VTL basic
831 +
832 +scalar type
833 +)))|(((
834 +Default SDMX data type
835 +
836 +(BasicComponentDataType
837 +
838 +)
839 +)))|Default output format
840 +|String|String|Like XML (xs:string)
841 +|Number|Float|Like XML (xs:float)
842 +|Integer|Integer|Like XML (xs:int)
843 +|Date|DateTime|YYYY-MM-DDT00:00:00Z
844 +|Time|StandardTimePeriod|<date>/<date> (as defined above)
845 +|time_period|(((
747 747  ReportingTimePeriod
847 +
748 748  (StandardReportingPeriod)
749 -)))|(% style="width:402px" %)(((
849 +)))|(((
750 750  YYYY-Pppp
851 +
751 751  (according to SDMX )
752 752  )))
753 -|(% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((
854 +|Duration|Duration|(((
754 754  Like XML (xs:duration)
856 +
755 755  PnYnMnDTnHnMnS
756 756  )))
757 -|(% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"
859 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false"
758 758  
759 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %)
760 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types**
861 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ====
761 761  
762 762  In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model).
763 763  
... ... @@ -811,7 +811,7 @@
811 811  |N|fixed number of digits used in the preceding textual representation of the month or the day
812 812  | |
813 813  
814 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion{{footnote}}The representation given in the DSD should obviously be compatible with the VTL data type.{{/footnote}}.
915 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^.
815 815  
816 816  === 12.4.5 Null Values ===
817 817  
... ... @@ -829,8 +829,10 @@
829 829  
830 830  A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model).
831 831  
832 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.
933 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL
833 833  
935 +TransformationScheme.
936 +
834 834  In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats.
835 835  
836 836  {{putFootnotes/}}
1747388148322-387.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
1747388179021-814.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -66.2 KB
Content
1747388206717-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -10.3 KB
Content
1747388222879-916.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -9.9 KB
Content
1747388244829-693.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -7.4 KB
Content
1747388275998-621.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.helena
Size
... ... @@ -1,1 +1,0 @@
1 -19.2 KB
Content