Changes for page 12 Validation and Transformation Language (VTL)
Last modified by Helena on 2025/09/10 11:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Content
-
... ... @@ -14,8 +14,10 @@ 14 14 15 15 The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model artefacts to the model artefacts that VTL can manipulate{{footnote}}In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones are written in the Arial font while the SDMX ones in Courier New{{/footnote}}. Thus, the SDMX artefacts can be used in VTL as inputs and/or outputs of Transformations. It is important to be aware that the artefacts do not always have the same names in the SDMX and VTL IMs, nor do they always have the same meaning. The more evident example is given by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are executed (i.e., the Transformations are defined on Dataflows and are applied to Dataflow instances that can be Datasets). 16 16 17 -The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result.17 +The VTL programs (Transformation Schemes) are represented in SDMX through the TransformationScheme maintainable class which is composed of 18 18 19 +Transformation (nameable artefact). Each Transformation assigns the outcome of the evaluation of a VTL expression to a result. 20 + 19 19 This section does not explain the VTL language or any of the content published in the VTL guides. Rather, this is a description of how the VTL can be used in the SDMX context and applied to SDMX artefacts. 20 20 21 21 == 12.2 References to SDMX artefacts from VTL statements == ... ... @@ -26,8 +26,10 @@ 26 26 27 27 The alias of an SDMX artefact can be its URN (Universal Resource Name), an abbreviation of its URN or another user-defined name. 28 28 29 -In any case, the aliases used in the VTL Transformations have to be mapped to the SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping.31 +In any case, the aliases used in the VTL Transformations have to be mapped to the 30 30 33 +SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the aliases to be used in the VTL Transformations, Rulesets{{footnote}}See also the section "VTL-DL Rulesets" in the VTL Reference Manual.{{/footnote}} or User Defined Operators{{footnote}}The VTLMappings are used also for User Defined Operators (UDO). Although UDOs are envisaged to be defined on generic operands, so that the specific artefacts to be manipulated are passed as parameters at their invocation, it is also possible that an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have to be mapped to the corresponding aliases used in the definition of the UDO through the VtlMappingScheme and VtlMapping classes as well.{{/footnote}} to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more VtlMapping. 34 + 31 31 The correspondence between an alias and a SDMX artefact must be one-to-one, meaning that a generic alias identifies one and just one SDMX artefact while a SDMX artefact is identified by one and just one alias. In other words, within a VtlMappingScheme an artefact can have just one alias and different artefacts cannot have the same alias. 32 32 33 33 The references through the URN and the abbreviated URN are described in the following paragraphs. ... ... @@ -110,11 +110,11 @@ 110 110 111 111 DFR := DF1 + DF2 112 112 113 -The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is {{footnote}}Singlequotes areneededbecausethisreference isnot aVTLregular name.{{/footnote}}:117 +The references to the Codelists can be simplified similarly. For example, given the non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^16^^>>path:#sdfootnote16sym||name="sdfootnote16anc"]](%%)^^: 114 114 115 115 'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)' 116 116 117 -if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply {{footnote}}Single quotes are not needed in this case because CL_FREQ is a VTL regular name.{{/footnote}}:121 +if the Codelist is referenced from a RulesetScheme belonging to the agency AG, omitting all the optional parts, the abbreviated reference would become simply^^19^^: 118 118 119 119 CL_FREQ 120 120 ... ... @@ -128,7 +128,7 @@ 128 128 129 129 SECTOR 130 130 131 -For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as {{footnote}}TheresultDFR(1.0.0)isbe equal toDF1(1.0.0) save that thecomponentSECTORiscalledSEC{{/footnote}}:135 +For example, the Transformation for renaming the component SECTOR of the Dataflow DF1 into SEC can be written as^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^17^^>>path:#sdfootnote17sym||name="sdfootnote17anc"]](%%)^^: 132 132 133 133 'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC] 134 134 ... ... @@ -160,9 +160,9 @@ 160 160 161 161 The VTL Rulesets have a signature, in which the Value Domains or the Variables on which the Ruleset is defined are declared, and a body, which contains the Rules. 162 162 163 -In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation {{footnote}}Rulesetsofthiskind cannotbereusedwhen thereferencedConcepthasadifferentrepresentation.{{/footnote}}.167 +In the signature, given the mapping between VTL and SDMX better described in the following paragraphs, a reference to a VTL Value Domain becomes a reference to a SDMX Codelist, while a reference to a VTL Represented Variable becomes a reference to a SDMX Concept, assuming for it a definite representation^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^18^^>>path:#sdfootnote18sym||name="sdfootnote18anc"]](%%)^^. 164 164 165 -In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX. {{footnote}}Seealsothesection"VTL-DL Rulesets"in theVTL ReferenceManual.{{/footnote}}169 +In general, for referencing SDMX Codelists and Concepts, the conventions described in the previous paragraphs apply. In the Ruleset syntax, the elements that reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define aliases of the elements above, these aliases are valid only within the specific Ruleset definition statement and cannot be mapped to SDMX.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^19^^>>path:#sdfootnote19sym||name="sdfootnote19anc"]](%%)^^ 166 166 167 167 In the body of the Rulesets, the Codes and in general all the Values can be written without any other specification, because the artefact, which the Values are referred (Codelist, Concept) to can be deduced from the Ruleset signature. 168 168 ... ... @@ -174,15 +174,15 @@ 174 174 175 175 Every time a SDMX object is referenced in a VTL Transformation as an input operand, there is the need to generate a VTL definition of the object, so that the VTL operations can take place. This can be made starting from the SDMX definition and applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping methods from SDMX to VTL are described in the following paragraphs and are conceived to allow the automatic deduction of the VTL definition of the object from the knowledge of the SDMX definition. 176 176 177 -In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged {{footnote}}Ifacalculated artefactispersistent,itneedsa persistentdefinition,i.e. a SDMX definition ina SDMXenvironment. Inaddition,possiblecalculatedartefact that arenotpersistentmay requireaSDMX definition, forexamplewhentheresult ofanon-persistent calculation is disseminated through SDMX tools (likeaninquirytool).{{/footnote}}.181 +In the opposite direction, every time an object calculated by means of VTL must be treated as a SDMX object (for example for exchanging it through SDMX), there is the need of a SDMX definition of the object, so that the SDMX operations can take place. The SDMX definition is needed for the VTL objects for which a SDMX use is envisaged^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^20^^>>path:#sdfootnote20sym||name="sdfootnote20anc"]](%%)^^. 178 178 179 179 The mapping methods from VTL to SDMX are described in the following paragraphs as well, however they do not allow the complete SDMX definition to be automatically deduced from the VTL definition, more than all because the former typically contains additional information in respect to the latter. For example, the definition of a SDMX DSD includes also some mandatory information not available in VTL (like the concept scheme to which the SDMX components refer, the ‘usage’ and ‘attributeRelationship’ for the DataAttributes and so on). Therefore the mapping methods from VTL to SDMX provide only a general guidance for generating SDMX definitions properly starting from the information available in VTL, independently of how the SDMX definition it is actually generated (manually, automatically or part and part). 180 180 181 181 === 12.3.2 General mapping of VTL and SDMX data structures === 182 182 183 -This section makes reference to the VTL "Model for data and their structure" {{footnote}}See theVTL2.0UserManual{{/footnote}}and the correspondent SDMX "Data Structure Definition"{{footnote}}See theSDMXStandardsSection2– InformationModel{{/footnote}}.187 +This section makes reference to the VTL "Model for data and their structure"^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^21^^>>path:#sdfootnote21sym||name="sdfootnote21anc"]](%%)^^ and the correspondent SDMX "Data Structure Definition"^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^22^^>>path:#sdfootnote22sym||name="sdfootnote22anc"]](%%)^^. 184 184 185 -The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived). {{footnote}}BesidesthemappingbetweenoneSDMX Dataflow andone VTL Data Set,itisalsopossible to mapdistinctparts ofaSDMX Dataflowto different VTL DataSet,asexplainedinafollowingparagraph.{{/footnote}}189 +The main type of artefact that the VTL can manipulate is the VTL Data Set, which in general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in the SDMX context, expresses the algorithm for calculating a derived Dataflow starting from some already existing Dataflows (either collected or derived).^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^23^^>>path:#sdfootnote23sym||name="sdfootnote23anc"]](%%)^^ 186 186 187 187 While the VTL Transformations are defined in term of Dataflow definitions, they are assumed to be executed on instances of such Dataflows, provided at runtime to the VTL engine (the mechanism for identifying the instances to be processed are not part of the VTL specifications and depend on the implementation of the VTL-based systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, therefore a VTL Transformation defined on some SDMX Dataflows can be applied on some corresponding SDMX Datasets. 188 188 ... ... @@ -198,56 +198,70 @@ 198 198 199 199 === 12.3.3 Mapping from SDMX to VTL data structures === 200 200 201 - ====12.3.3.1 Basic Mapping====205 +**12.3.3.1 Basic Mapping** 202 202 203 203 The main mapping method from SDMX to VTL is called **Basic **mapping. This is considered as the default mapping method and is applied unless a different method is specified through the VtlMappingScheme and VtlDataflowMapping classes. When transforming **from SDMX to VTL**, this method consists in leaving the components unchanged and maintaining their names and roles, according to the following table: 204 204 205 -(% style="width:529.294px" %) 206 -|(% style="width:151px" %)**SDMX**|(% style="width:375px" %)**VTL** 207 -|(% style="width:151px" %)Dimension|(% style="width:375px" %)(Simple) Identifier 208 -|(% style="width:151px" %)TimeDimension|(% style="width:375px" %)(Time) Identifier 209 -|(% style="width:151px" %)Measure|(% style="width:375px" %)Measure 210 -|(% style="width:151px" %)DataAttribute|(% style="width:375px" %)Attribute 209 +|**SDMX**|**VTL** 210 +|Dimension|(Simple) Identifier 211 +|TimeDimension|(Time) Identifier 211 211 213 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape4" height="1" width="192"]] 214 + 215 +|Measure|Measure 216 +|DataAttribute|Attribute 217 + 212 212 The SDMX DataAttributes, in VTL they are all considered "at data point / observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not have the SDMX AttributeRelationships, which defines the construct to which the DataAttribute is related (e.g. observation, dimension or set or group of dimensions, whole data set). 213 213 214 -With the Basic mapping, one SDMX observation {{footnote}}Herean SDMX observation is meant to correspond to one combination of values of the DimensionComponents.{{/footnote}}generates one VTL data point.220 +With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point. 215 215 216 - ====12.3.3.2 Pivot Mapping====222 +**12.3.3.2 Pivot Mapping** 217 217 218 218 An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD. 219 219 220 -In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the MeasureDimensions considered as a joint variable{{footnote}}E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E); therefore when the description says “each possible value Cj of the MeasureDimension …” it means “each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.{{/footnote}}.226 +In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like Dimension and TimeDimension. In the current SDMX version, this subclass does not exist anymore, however a Dimension can have the role of measure dimension (i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 a DataStructure could have zero or one MeasureDimensions, in the current version of the standard, from zero to many Dimension may have the role of measure dimension. Hereinafter a Dimension that plays the role of measure dimension is referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters and the courier font even if the MeasureDimension is not anymore a class in the SDMX Information Model of the current SDMX version. For the sake of simplicity, the description below considers just one Dimension having the role of MeasureDimension (i.e., the more simple and common case). Nevertheless, it maintains its validity also if in the DataStructure there are more dimension with the role of MeasureDimensions: in this case what is said about the MeasureDimension must be applied to the combination of all the 221 221 228 +MeasureDimensions considered as a joint variable^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^24^^>>path:#sdfootnote24sym||name="sdfootnote24anc"]](%%)^^. 229 + 222 222 Among other things, the Pivot method provides also backward compatibility with the SDMX 2.1 data structures that contained a MeasureDimension. 223 223 224 224 If applied to SDMX structures that do not contain any MeasureDimension, this method behaves like the Basic mapping (see the previous paragraph). 225 225 226 -Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents. 234 +^^27^^ Here an SDMX observation is meant to correspond to one combination of values of the DimensionComponents. 227 227 228 228 The SDMX structures that contain a MeasureDimension are mapped as described below (this mapping is equivalent to a pivoting operation): 229 229 230 230 * A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX TimeDimension becomes a VTL (time) identifier; 231 -* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a Component; 239 +* Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure Cj is a new VTL component even if the SDMX data structure has not such a 240 + 241 +Component; 242 + 232 232 * The SDMX MeasureDimension is not mapped to VTL (it disappears in the VTL Data Structure); 233 233 * The SDMX Measure is not mapped to VTL as well (it disappears in the VTL Data Structure); 234 234 * An SDMX DataAttribute is mapped in different ways according to its AttributeRelationship: 235 -** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 246 +** If, according to the SDMX AttributeRelationship, the values of the DataAttribute do not depend on the values of the MeasureDimension, the SDMX DataAttribute becomes a VTL Attribute having the same name. This happens if the 247 + 248 +AttributeRelationship is not specified (i.e. the DataAttribute does not depend on any DimensionComponent and therefore is at data set level), or if it refers to a set (or a group) of dimensions which does not include the MeasureDimension; 249 + 250 +* 236 236 ** Otherwise, if, according to the SDMX AttributeRelationship, the values of the DataAttribute depend on the MeasureDimension, the SDMX DataAttribute is mapped to one VTL Attribute for each possible Code of the SDMX MeasureDimension. By default, the names of the VTL Attributes are obtained by concatenating the name of the SDMX DataAttribute and the names of the correspondent Code of the MeasureDimension separated by underscore. For example, if the SDMX DataAttribute is named DA and the possible Codes of the SDMX MeasureDimension are named C1, C2, …, Cn, then the corresponding VTL Attributes will be named DA_C1, DA_C2, …, DA_Cn (if different names are desired, they can be achieved afterwards by renaming the Attributes through VTL operators). 237 237 ** Like in the Basic mapping, the resulting VTL Attributes are considered as dependent on all the VTL identifiers (i.e. "at data point / observation level"), because VTL does not have the SDMX notion of Attribute Relationship. 238 238 239 239 The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX data structures that contain a MeasureDimension is the following: 240 240 241 -(% style="width:769.294px" %) 242 -|(% style="width:401px" %)**SDMX**|(% style="width:366px" %)**VTL** 243 -|(% style="width:401px" %)Dimension|(% style="width:366px" %)(Simple) Identifier 244 -|(% style="width:401px" %)TimeDimension|(% style="width:366px" %)(Time) Identifier 245 -|(% style="width:401px" %)MeasureDimension & one Measure|(% style="width:366px" %)((( 246 -One Measure for each Code of the SDMX MeasureDimension 256 +|**SDMX**|**VTL** 257 +|Dimension|(Simple) Identifier 258 +|TimeDimension|(Time) Identifier 259 +|MeasureDimension & one Measure|((( 260 +One Measure for each Code of the 261 + 262 +SDMX MeasureDimension 247 247 ))) 248 -|(% style="width:401px" %)DataAttribute not depending on the MeasureDimension|(% style="width:366px" %)Attribute 249 -|(% style="width:401px" %)DataAttribute depending on the MeasureDimension|(% style="width:366px" %)((( 250 -One Attribute for each Code of the SDMX MeasureDimension 264 +|DataAttribute not depending on the MeasureDimension|Attribute 265 +|DataAttribute depending on the MeasureDimension|((( 266 +One Attribute for each Code of the 267 + 268 +SDMX MeasureDimension 251 251 ))) 252 252 253 253 Using this mapping method, the components of the data structure can change in the conversion from SDMX to VTL and it must be taken into account that the VTL statements can reference only the components of the resulting VTL data structure. ... ... @@ -255,11 +255,14 @@ 255 255 At observation / data point level, calling Cj (j=1, … n) the j^^th^^ Code of the MeasureDimension: 256 256 257 257 * The set of SDMX observations having the same values for all the Dimensions except than the MeasureDimension become one multi-measure VTL Data Point, having one Measure for each Code Cj of the SDMX MeasureDimension; 258 -* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) Identifiers, (time) Identifier and Attributes. 276 +* The values of the SDMX simple Dimensions, TimeDimension and DataAttributes not depending on the MeasureDimension (these components by definition have always the same values for all the observations of the set above) become the values of the corresponding VTL (simple) 277 + 278 +Identifiers, (time) Identifier and Attributes. 279 + 259 259 * The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj 260 260 * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj 261 261 262 - ====12.3.3.3 From SDMX DataAttributes to VTL Measures====283 +**12.3.3.3 From SDMX DataAttributes to VTL Measures** 263 263 264 264 * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain 265 265 ... ... @@ -271,7 +271,7 @@ 271 271 272 272 === 12.3.4 Mapping from VTL to SDMX data structures === 273 273 274 - ====12.3.4.1 Basic Mapping====295 +**12.3.4.1 Basic Mapping** 275 275 276 276 The main mapping method **from VTL to SDMX** is called **Basic **mapping as well. 277 277 ... ... @@ -281,12 +281,11 @@ 281 281 282 282 Mapping table: 283 283 284 -(% style="width:667.294px" %) 285 -|(% style="width:272px" %)**VTL**|(% style="width:392px" %)**SDMX** 286 -|(% style="width:272px" %)(Simple) Identifier|(% style="width:392px" %)Dimension 287 -|(% style="width:272px" %)(Time) Identifier|(% style="width:392px" %)TimeDimension 288 -|(% style="width:272px" %)Measure|(% style="width:392px" %)Measure 289 -|(% style="width:272px" %)Attribute|(% style="width:392px" %)DataAttribute 305 +|**VTL**|**SDMX** 306 +|(Simple) Identifier|Dimension 307 +|(Time) Identifier|TimeDimension 308 +|Measure|Measure 309 +|Attribute|DataAttribute 290 290 291 291 If the distinction between simple identifier and time identifier is not maintained in the VTL environment, the classification between Dimension and TimeDimension exists only in SDMX, as declared in the relevant DataStructureDefinition. 292 292 ... ... @@ -296,7 +296,7 @@ 296 296 297 297 As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 298 298 299 - ====12.3.4.2 Unpivot Mapping====319 +**12.3.4.2 Unpivot Mapping** 300 300 301 301 An alternative mapping method from VTL to SDMX is the **Unpivot **mapping. 302 302 ... ... @@ -320,12 +320,11 @@ 320 320 321 321 The summary mapping table of the **unpivot** mapping method is the following: 322 322 323 -(% style="width:994.294px" %) 324 -|(% style="width:306px" %)**VTL**|(% style="width:684px" %)**SDMX** 325 -|(% style="width:306px" %)(Simple) Identifier|(% style="width:684px" %)Dimension 326 -|(% style="width:306px" %)(Time) Identifier|(% style="width:684px" %)TimeDimension 327 -|(% style="width:306px" %)All Measure Components|(% style="width:684px" %)MeasureDimension (having one Code for each VTL measure component) & one Measure 328 -|(% style="width:306px" %)Attribute|(% style="width:684px" %)DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 343 +|**VTL**|**SDMX** 344 +|(Simple) Identifier|Dimension 345 +|(Time) Identifier|TimeDimension 346 +|All Measure Components|MeasureDimension (having one Code for each VTL measure component) & one Measure 347 +|Attribute|DataAttribute depending on all SDMX Dimensions including the TimeDimension and except the MeasureDimension 329 329 330 330 At observation / data point level: 331 331 ... ... @@ -339,7 +339,7 @@ 339 339 340 340 In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL. 341 341 342 - ====12.3.4.3 From VTL Measures to SDMX Data Attributes====361 +**12.3.4.3 From VTL Measures to SDMX Data Attributes** 343 343 344 344 More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”). 345 345 ... ... @@ -347,13 +347,12 @@ 347 347 348 348 The mapping table is the following: 349 349 350 -(% style="width:689.294px" %) 351 -|(% style="width:344px" %)**VTL**|(% style="width:341px" %)**SDMX** 352 -|(% style="width:344px" %)(Simple) Identifier|(% style="width:341px" %)Dimension 353 -|(% style="width:344px" %)(Time) Identifier|(% style="width:341px" %)TimeDimension 354 -|(% style="width:344px" %)Some Measures|(% style="width:341px" %)Measure 355 -|(% style="width:344px" %)Other Measures|(% style="width:341px" %)DataAttribute 356 -|(% style="width:344px" %)Attribute|(% style="width:341px" %)DataAttribute 369 +|VTL|SDMX 370 +|(Simple) Identifier|Dimension 371 +|(Time) Identifier|TimeDimension 372 +|Some Measures|Measure 373 +|Other Measures|DataAttribute 374 +|Attribute|DataAttribute 357 357 358 358 Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL. 359 359 ... ... @@ -371,20 +371,20 @@ 371 371 372 372 Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set). 373 373 374 -As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole. {{footnote}}Atypicalexample of thiskindisthevalidation,and moreingeneral themanipulation,ofindividualtimeseries belongingto thesame Dataflow,identifiablethrough theDimensionComponents of theDataflowexcept the TimeDimension.The coding ofthesekind of operationsmight be simplified by mappingdistincttimeseries(i.e. differentpartsofa SDMX Dataflow) todistinctVTL Data Sets.{{/footnote}}392 +As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^25^^>>path:#sdfootnote25sym||name="sdfootnote25anc"]](%%)^^ 375 375 376 -Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below. {{footnote}}Pleasenotethat thiskind of mappingis onlyanoptionatdisposalof the definerof VTL Transformations;infactit remainsalways possibleto manipulatetheneeded parts of SDMX Dataflowsby meansof VTL operators(e.g. “sub”, “filter”, “calc”, “union”…), maintainingamappingone-to-onebetweenSDMX Dataflowsand VTL Data Sets.{{/footnote}}394 +Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^26^^>>path:#sdfootnote26sym||name="sdfootnote26anc"]](%%)^^ 377 377 378 378 Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, it is allowed to map the subsets of observations that have the same combination of values for such Dimensions to correspondent VTL datasets. 379 379 380 380 For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping dimensions): the observations that have the same values for INDICATOR and COUNTRY would be mapped to the same VTL dataset (and vice-versa). In practice, this kind mapping is obtained like follows: 381 381 382 -* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order. {{footnote}}Thisdefinitionis madethrough theToVtlSubspace and ToVtlSpaceKey classes and/ortheFromVtlSuperspace and FromVtlSpaceKey classes, dependingonthedirectionofthemapping (“key”means “dimension”). Themappingof Dataflowsubsets canbeappliedindependentlyinthe two directions,also accordingto differentDimensions.When no Dimension is declared foragivendirection,itis assumed that the optionof mappingdifferentpartsofa SDMX Dataflow todifferentVTL Data Sets isnotused.{{/footnote}}Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY.400 +* For a given SDMX Dataflow, the user (VTL definer) declares the DimensionComponents on which the mapping will be based, in a given order.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^27^^>>path:#sdfootnote27sym||name="sdfootnote27anc"]](%%)^^ Following the example above, imagine that the user declares the Dimensions INDICATOR and COUNTRY. 383 383 * The VTL Data Set is given a name using a special notation also called “ordered concatenation” and composed of the following parts: 384 384 ** The reference to the SDMX Dataflow (expressed according to the rules described in the previous paragraphs, i.e. URN, abbreviated URN or another alias); for example DF(1.0.0); 385 -** a slash (“/”) as a separator; {{footnote}}Asaconsequence ofthis formalism,aslashin thenameoftheVTL DataSetassumesthespecific meaningof separatorbetween thenameoftheDataflowandthevaluesofsomeof itsDimensions.{{/footnote}}403 +** a slash (“/”) as a separator; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^28^^>>path:#sdfootnote28sym||name="sdfootnote28anc"]](%%)^^ 386 386 387 -The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined {{footnote}}Thisistheorderin whichthedimensionsaredefinedin theToVtlSpaceKey classorin theFromVtlSpaceKey class,dependingonthedirectionofthemapping.{{/footnote}}. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA.405 +The reference to a specific part of the SDMX Dataflow above, expressed as the concatenation of the values that the SDMX DimensionComponents declared above must have, separated by dots (“.”) and written in the order in which these DimensionComponents are defined^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^29^^>>path:#sdfootnote29sym||name="sdfootnote29anc"]](%%)^^. For example POPULATION.USA would mean that such a VTL Data Set is mapped to the SDMX observations for which the dimension //INDICATOR// is equal to POPULATION and the dimension //COUNTRY// is equal to USA. 388 388 389 389 In the VTL Transformations, this kind of dataset name must be referenced between single quotes because the slash (“/”) is not a regular character according to the VTL rules. 390 390 ... ... @@ -400,7 +400,7 @@ 400 400 401 401 Let us now analyse the different meaning of this kind of mapping in the two mapping directions, i.e. from SDMX to VTL and from VTL to SDMX. 402 402 403 -As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations {{footnote}}It shouldberememberedthat,accordingto theVTL consistencyrules,a givenVTL dataset cannotbe theresultof morethanoneVTL Transformation.{{/footnote}}need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively.421 +As already said, the mapping from SDMX to VTL happens when the SDMX dataflows are operand of VTL Transformations, instead the mapping from VTL to SDMX happens when the VTL Data Sets that is result of Transformations^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^30^^>>path:#sdfootnote30sym||name="sdfootnote30anc"]](%%)^^ need to be treated as SDMX objects. This kind of mapping can be applied independently in the two directions and the Dimensions on which the mapping is based can be different in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in the FromVtlSpaceKey classes respectively. 404 404 405 405 First, let us see what happens in the __mapping direction from SDMX to VTL__, i.e. when parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data Sets that are operand of some VTL Transformations. 406 406 ... ... @@ -408,16 +408,28 @@ 408 408 409 409 SDMX Dataflow having INDICATOR=//INDICATORvalue //and COUNTRY=// COUNTRYvalue//. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION and COUNTRY = USA. 410 410 411 -In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets {{footnote}}Ifthese DimensionComponents wouldnotbedropped, the variousVTL Data Setsresultingfrom thiskind of mapping would havenon-matchingvalues for the Identifiers correspondingto themappingDimensions (e.g. POPULATION and COUNTRY). Asaconsequence,takinginto account that the typicalbinaryVTL operations atdatasetlevel(+, -, *, / andso on) are executed on the observationshaving matching values for theidentifiers,itwouldnotbepossible to compose theresultingVTL datasets oneanother(e.g. itwouldnotbepossible to calculatethepopulation ratiobetweenUSAandCANADA).{{/footnote}}. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e.basic, pivot …).429 +In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is assumed that the SDMX DimensionComponents on which the mapping is based are dropped, i.e. not maintained in the VTL data structure; this is possible because their values are fixed for each one of the invoked VTL Data Sets^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^31^^>>path:#sdfootnote31sym||name="sdfootnote31anc"]](%%)^^. After that, the mapping method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 412 412 413 - In the example above, forall the datasets of the kind ‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’,the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would havetheidentifier TIME_PERIOD only.431 +basic, pivot …). 414 414 433 +In the example above, for all the datasets of the kind 434 + 435 +‘DF1(1.0.0)///INDICATORvalue//.//COUNTRYvalue//’, the dimensions INDICATOR and COUNTRY would be dropped so that the data structure of all the resulting VTL Data Sets would have the identifier TIME_PERIOD only. 436 + 415 415 It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/// INDICATORvalue//.//COUNTRYvalue//’) can be obtained also by applying the VTL operator “**sub**” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL expression: 416 416 417 - [[image:1747388275998-621.png]]439 +‘DF1(1.0.0)/POPULATION.USA’ := 418 418 419 - In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow.{{footnote}}In case the ordered concatenation notation is used, the VTL Transformation described above, e.g. ‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA”],is implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency rules, it has to be considered as part of the VTL program even if it is not explicitly coded.{{/footnote}}441 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“USA” ]; 420 420 443 +‘DF1(1.0.0)/POPULATION.CANADA’ := 444 + 445 +DF1(1.0.0) [ sub INDICATOR=“POPULATION”, COUNTRY=“CANADA” ]; 446 + 447 +… … … 448 + 449 +In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping different parts of a SDMX Dataflow to different VTL Data Sets in the direction from SDMX to VTL through the ordered concatenation notation is equivalent to a proper use of the operator “**sub**” on such a Dataflow. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^32^^>>path:#sdfootnote32sym||name="sdfootnote32anc"]](%%)^^ 450 + 421 421 In the direction from SDMX to VTL it is allowed to omit the value of one or more 422 422 423 423 DimensionComponents on which the mapping is based, but maintaining all the separating dots (therefore it may happen to find two or more consecutive dots and dots in the beginning or in the end). The absence of value means that for the corresponding Dimension all the values are kept and the Dimension is not dropped. ... ... @@ -426,8 +426,10 @@ 426 426 427 427 This is equivalent to the application of the VTL “sub” operator only to the identifier //INDICATOR//: 428 428 429 - [[image:1747388244829-693.png]]459 +‘DF1(1.0.0)/POPULATION.’ := 430 430 461 +DF1(1.0.0) [ sub INDICATOR=“POPULATION” ]; 462 + 431 431 Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers COUNTRY and TIME_PERIOD. 432 432 433 433 Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different ... ... @@ -442,34 +442,70 @@ 442 442 443 443 Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and COUNTRY and that such a programmer finds it convenient to calculate separately the parts of DF2(1.0.0) that have different combinations of values for INDICATOR and COUNTRY: 444 444 445 -* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; {{footnote}}Ifthe whole DF2(1.0)iscalculated by meansof just oneVTL Transformation,then themappingbetween theSDMX DataflowandthecorrespondingVTL datasetisone-to-oneandthiskind of mapping(oneSDMX Dataflowto manyVTL datasets)doesnotapply.{{/footnote}}446 -* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers. {{footnote}}Thisis possibleaseachVTL dataset correspondstooneparticularcombinationof valuesof INDICATORandCOUNTRY.{{/footnote}}477 +* each part is calculated as a VTL derived Data Set, result of a dedicated VTL Transformation; ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^33^^>>path:#sdfootnote33sym||name="sdfootnote33anc"]](%%)^^ 478 +* the data structure of all these VTL Data Sets has the TIME_PERIOD identifier and does not have the INDICATOR and COUNTRY identifiers.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^34^^>>path:#sdfootnote34sym||name="sdfootnote34anc"]](%%)^^ 447 447 448 -Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions {{footnote}}The mappingdimensionsaredefinedasFromVtlSpaceKeysoftheFromVtlSuperSpaceoftheVtlDataflowMappingrelevanttoDF2(1.0).{{/footnote}}.480 +Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by declaring the DimensionComponents INDICATOR and COUNTRY as mapping dimensions^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^35^^>>path:#sdfootnote35sym||name="sdfootnote35anc"]](%%)^^. 449 449 450 -The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind: {{footnote}}thesymboloftheVTLpersistent assignment isused(<-){{/footnote}}482 +The corresponding VTL Transformations, assuming that the result needs to be persistent, would be of this kind:^^ [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^36^^>>path:#sdfootnote36sym||name="sdfootnote36anc"]](%%)^^ 451 451 452 452 ‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 453 453 454 454 Some examples follow, for some specific values of INDICATOR and COUNTRY: 455 455 456 - [[image:1747388222879-916.png]]488 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 457 457 458 - [[image:1747388206717-256.png]]490 +… … … 459 459 492 +‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 493 + 494 +‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 495 + 496 +… … … 497 + 460 460 As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively: 461 461 462 - [[image:1747388148322-387.png]]500 +VTL dataset INDICATOR value COUNTRY value 463 463 502 +‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 503 + 504 +‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … … 505 + 506 +‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 507 + 508 +‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 509 + 510 +… … … 511 + 464 464 It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be: 465 465 466 - [[image:1747388179021-814.png]]514 +DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”]; 467 467 516 +DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … … 517 + 518 +DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 519 + 520 +[calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”]; 521 + 522 +DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … … 523 + 524 +DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 525 + 526 +DF2bis_GDPPERCAPITA_CANADA’, 527 + 528 +… , 529 + 530 +DF2bis_POPGROWTH_USA’, 531 + 532 +DF2bis_POPGROWTH_CANADA’ 533 + 534 +…); 535 + 468 468 In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example 469 469 470 -DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0) {{footnote}}Theresultispersistentin thisexamplebut itcanbe alsononpersistent ifneeded.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.538 +DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0)^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^37^^>>path:#sdfootnote37sym||name="sdfootnote37anc"]](%%)^^, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY. 471 471 472 -Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. {{footnote}}Incasetheordered concatenation notationfrom VTL to SDMXis used,thesetof Transformationsdescribedaboveisimplicitlyperformed;therefore,inorder to testtheoverallcomplianceoftheVTL programtotheVTLconsistencyrules,theseimplicitTransformationshave to beconsideredaspartoftheVTL programevenifthey arenotexplicitlycoded.{{/footnote}}540 +Therefore, mapping different VTL datasets having the same data structure to different parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the ordered concatenation notation is equivalent to a proper use of the operators “calc” and “union” on such datasets. ^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^38^^>>path:#sdfootnote38sym||name="sdfootnote38anc"]](%%)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^39^^>>path:#sdfootnote39sym||name="sdfootnote39anc"]](%%)^^ 473 473 474 474 It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is __not__ possible to omit the value of some of the Dimensions). 475 475 ... ... @@ -477,51 +477,52 @@ 477 477 478 478 With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered: 479 479 480 -(% style="width:1170.29px" %) 481 -|**VTL**|(% style="width:754px" %)**SDMX** 482 -|**Data Set Component**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow{{footnote}}Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can assume.{{/footnote}} 483 -|**Represented Variable**|(% style="width:754px" %)((( 548 +|VTL|SDMX 549 +|**Data Set Component**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a Component (either a DimensionComponent or a Measure or a DataAttribute) belonging to one specific Dataflow^^43^^ 550 +|**Represented Variable**|((( 484 484 **Concept** with a definite 485 485 486 486 Representation 487 487 ))) 488 -|**Value Domain**|( % style="width:754px" %)(((555 +|**Value Domain**|((( 489 489 **Representation** (see the Structure 490 490 491 491 Pattern in the Base Package) 492 492 ))) 493 -|**Enumerated Value Domain / Code List**| (% style="width:754px" %)**Codelist**494 -|**Code**|( % style="width:754px" %)(((560 +|**Enumerated Value Domain / Code List**|**Codelist** 561 +|**Code**|((( 495 495 **Code** (for enumerated 496 496 497 497 DimensionComponent, Measure, DataAttribute) 498 498 ))) 499 -|**Described Value Domain**|( % style="width:754px" %)(((500 -non-enumerated** Representation** 566 +|**Described Value Domain**|((( 567 +non-enumerated** Representation** 501 501 502 502 (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package) 503 503 ))) 504 -|**Value**|(% style="width:754px" %)Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 505 -| |(% style="width:754px" %)((( 506 -to a valid **value **(for non-enumerated** **Representations) 571 +|**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or 572 +| |((( 573 +to a valid **value **(for non-enumerated** ** 574 + 575 +Representations) 507 507 ))) 508 -|**Value Domain Subset / Set**| (% style="width:754px" %)This abstraction does not exist in SDMX509 -|**Enumerated Value Domain Subset / Enumerated Set**| (% style="width:754px" %)This abstraction does not exist in SDMX510 -|**Described Value Domain Subset / Described Set**| (% style="width:754px" %)This abstraction does not exist in SDMX511 -|**Set list**| (% style="width:754px" %)This abstraction does not exist in SDMX577 +|**Value Domain Subset / Set**|This abstraction does not exist in SDMX 578 +|**Enumerated Value Domain Subset / Enumerated Set**|This abstraction does not exist in SDMX 579 +|**Described Value Domain Subset / Described Set**|This abstraction does not exist in SDMX 580 +|**Set list**|This abstraction does not exist in SDMX 512 512 513 513 The main difference between VTL and SDMX relies on the fact that the VTL artefacts for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features for referring to predefined subsets are not available in SDMX. These artefacts are the Value Domain Subset (or Set), either enumerated or described, the Set List (list of values belonging to enumerated subsets) and the Data Set Component (aimed at defining the set of values that the Component of a Data Set can take, possibly a subset of the codes of Value Domain). 514 514 515 -Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear {{footnote}}By usingrepresented variables,VTL canassumethatdatastructures havingthesamevariablesasidentifiers canbe composed oneanotherbecausethe correspondentvaluescanmatch.{{/footnote}}, while the SDMX Concepts can have different Representations in different DataStructures.{{footnote}}AConceptbecomesaComponentina DataStructureDefinition,andComponents canhave different LocalRepresentationsin different DataStructureDefinitions,alsooverridingthe(possible) baserepresentationofthe Concept.{{/footnote}}This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has.584 +Another difference consists in the fact that all Value Domains are considered as identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX non-enumerated Representation (corresponding to a VTL non-enumerated Value Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, which in VTL can refer either to enumerated or non-enumerated value domains, in SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). As for the mapping between VTL variables and SDMX Concepts, it should be noted that these artefacts do not coincide perfectly. In fact, the VTL variables are represented variables, defined always on the same Value Domain (“Representation” in SDMX) independently of the data set / data structure in which they appear^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^40^^>>path:#sdfootnote40sym||name="sdfootnote40anc"]](%%)^^, while the SDMX Concepts can have different Representations in different DataStructures.^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^41^^>>path:#sdfootnote41sym||name="sdfootnote41anc"]](%%)^^ This means that one SDMX Concept can correspond to many VTL Variables, one for each representation the Concept has. 516 516 517 517 Therefore, it is important to be aware that some VTL operations (for example the binary operations at data set level) are consistent only if the components having the same names in the operated VTL Data Sets have also the same representation (i.e. the same Value Domain as for VTL). For example, it is possible to obtain correct results from the VTL expression 518 518 519 -DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 588 +DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 520 520 521 -if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) refer to the same general representation. In simpler words, DS_a and DS_b must use the same values/codes (for ref_date, geo_area, sector … ), otherwise the relevant values would not match and the result of the operation would be wrong. 522 - 523 523 As mentioned, the property above is not enforced by construction in SDMX, and different representations of the same Concept can be not compatible one another (for example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 524 524 592 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape5" height="1" width="192"]] 593 + 525 525 Transformations to ensure that the VTL expressions are consistent with the actual representations of the correspondent SDMX Concepts. 526 526 527 527 It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly. ... ... @@ -536,8 +536,7 @@ 536 536 537 537 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_e3df33ae.png||height="543" width="483"]] 538 538 539 -(% class="wikigeneratedid" id="HFigure222013VTLDataTypes" %) 540 -**Figure 22 – VTL Data Types** 608 +==== Figure 22 – VTL Data Types ==== 541 541 542 542 The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types. 543 543 ... ... @@ -544,12 +544,131 @@ 544 544 The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 545 545 546 546 547 -**Figure 23 – VTL Basic Scalar Types** 548 548 549 549 ((( 550 - 617 +//n// 618 + 619 +//a// 620 + 621 +//e// 622 + 623 +//l// 624 + 625 +//o// 626 + 627 +//o// 628 + 629 +//B// 630 + 631 +//n// 632 + 633 +//o// 634 + 635 +//i// 636 + 637 +//t// 638 + 639 +//a// 640 + 641 +//r// 642 + 643 +//u// 644 + 645 +//D// 646 + 647 +//d// 648 + 649 +//o// 650 + 651 +//i// 652 + 653 +//r// 654 + 655 +//e// 656 + 657 +//p// 658 + 659 +//_// 660 + 661 +//e// 662 + 663 +//m// 664 + 665 +//i// 666 + 667 +//T// 668 + 669 +//e// 670 + 671 +//t// 672 + 673 +//a// 674 + 675 +//D// 676 + 677 +//e// 678 + 679 +//m// 680 + 681 +//i// 682 + 683 +//T// 684 + 685 +//r// 686 + 687 +//e// 688 + 689 +//g// 690 + 691 +//e// 692 + 693 +//t// 694 + 695 +//n// 696 + 697 +//I// 698 + 699 +//r// 700 + 701 +//e// 702 + 703 +//b// 704 + 705 +//m// 706 + 707 +//u// 708 + 709 +//N// 710 + 711 +//g// 712 + 713 +//n// 714 + 715 +//i// 716 + 717 +//r// 718 + 719 +//t// 720 + 721 +//S// 722 + 723 +//r// 724 + 725 +//a// 726 + 727 +//l// 728 + 729 +//a// 730 + 731 +//c// 732 + 733 +//S// 734 + 735 +[[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_82d45833.gif||alt="Shape6" height="231" width="184"]] 551 551 ))) 552 552 738 +==== Figure 23 – VTL Basic Scalar Types ==== 739 + 553 553 === 12.4.2 VTL basic scalar types and SDMX data types === 554 554 555 555 The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations. ... ... @@ -572,159 +572,204 @@ 572 572 573 573 The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types. 574 574 575 -(% style="width:823.294px" %) 576 -|(% style="width:509px" %)**SDMX data type (BasicComponentDataType)**|(% style="width:312px" %)**Default VTL basic scalar type** 577 -|(% style="width:509px" %)((( 762 +|SDMX data type (BasicComponentDataType)|Default VTL basic scalar type 763 +|((( 578 578 String 765 + 579 579 (string allowing any character) 580 -)))| (%style="width:312px" %)string581 -|( % style="width:509px" %)(((767 +)))|string 768 +|((( 582 582 Alpha 770 + 583 583 (string which only allows A-z) 584 -)))| (%style="width:312px" %)string585 -|( % style="width:509px" %)(((772 +)))|string 773 +|((( 586 586 AlphaNumeric 775 + 587 587 (string which only allows A-z and 0-9) 588 -)))| (%style="width:312px" %)string589 -|( % style="width:509px" %)(((777 +)))|string 778 +|((( 590 590 Numeric 780 + 591 591 (string which only allows 0-9, but is not numeric so that is can having leading zeros) 592 -)))| (%style="width:312px" %)string593 -|( % style="width:509px" %)(((782 +)))|string 783 +|((( 594 594 BigInteger 785 + 595 595 (corresponds to XML Schema xs:integer datatype; infinite set of integer values) 596 -)))| (% style="width:312px" %)integer597 -|( % style="width:509px" %)(((787 +)))|integer 788 +|((( 598 598 Integer 599 -(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 (inclusive)) 600 -)))|(% style="width:312px" %)integer 601 -|(% style="width:509px" %)((( 790 + 791 +(corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647 792 + 793 +(inclusive)) 794 +)))|integer 795 +|((( 602 602 Long 603 -(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and +9223372036854775807 (inclusive)) 604 -)))|(% style="width:312px" %)integer 605 -|(% style="width:509px" %)((( 797 + 798 +(corresponds to XML Schema xs:long datatype; between -9223372036854775808 and 799 + 800 ++9223372036854775807 (inclusive)) 801 +)))|integer 802 +|((( 606 606 Short 804 + 607 607 (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive)) 608 -)))| (% style="width:312px" %)integer609 -| (% style="width:509px" %)Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|(% style="width:312px" %)number610 -|( % style="width:509px" %)(((806 +)))|integer 807 +|Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number 808 +|((( 611 611 Float 810 + 612 612 (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type) 613 -)))| (% style="width:312px" %)number614 -|( % style="width:509px" %)(((812 +)))|number 813 +|((( 615 615 Double 815 + 616 616 (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type) 617 -)))| (% style="width:312px" %)number618 -|( % style="width:509px" %)(((817 +)))|number 818 +|((( 619 619 Boolean 620 -(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of binary-valued logic: {true, false}) 621 -)))|(% style="width:312px" %)boolean 622 622 623 -(% style="width:822.294px" %) 624 -|(% colspan="2" style="width:507px" %)((( 821 +(corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of 822 + 823 +binary-valued logic: {true, false}) 824 +)))|boolean 825 + 826 +| |(% colspan="2" %)((( 625 625 URI 828 + 626 626 (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference) 627 -)))|(% colspan=" 1"style="width:311px"%)string628 -|(% colspan="2" style="width:507px"%)(((830 +)))|(% colspan="2" %)string 831 +| |(% colspan="2" %)((( 629 629 Count 833 + 630 630 (an integer following a sequential pattern, increasing by 1 for each occurrence) 631 -)))|(% colspan=" 1"style="width:311px"%)integer632 -|(% colspan="2" style="width:507px"%)(((835 +)))|(% colspan="2" %)integer 836 +| |(% colspan="2" %)((( 633 633 InclusiveValueRange 838 + 634 634 (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 635 -)))|(% colspan=" 1"style="width:311px"%)number636 -|(% colspan="2" style="width:507px"%)(((840 +)))|(% colspan="2" %)number 841 +| |(% colspan="2" %)((( 637 637 ExclusiveValueRange 843 + 638 638 (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue) 639 -)))|(% colspan=" 1"style="width:311px"%)number640 -|(% colspan="2" style="width:507px"%)(((845 +)))|(% colspan="2" %)number 846 +| |(% colspan="2" %)((( 641 641 Incremental 848 + 642 642 (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation) 643 -)))|(% colspan=" 1"style="width:311px"%)number644 -|(% colspan="2" style="width:507px"%)(((850 +)))|(% colspan="2" %)number 851 +| |(% colspan="2" %)((( 645 645 ObservationalTimePeriod 853 + 646 646 (superset of StandardTimePeriod and TimeRange) 647 -)))|(% colspan=" 1"style="width:311px"%)time648 -|(% colspan="2" style="width:507px"%)(((855 +)))|(% colspan="2" %)time 856 +| |(% colspan="2" %)((( 649 649 StandardTimePeriod 650 -(superset of BasicTimePeriod and ReportingTimePeriod) 651 -)))|(% colspan="1" style="width:311px" %)time 652 -|(% colspan="2" style="width:507px" %)((( 858 + 859 +(superset of BasicTimePeriod and 860 + 861 +ReportingTimePeriod) 862 +)))|(% colspan="2" %)time 863 +| |(% colspan="2" %)((( 653 653 BasicTimePeriod 865 + 654 654 (superset of GregorianTimePeriod and DateTime) 655 -)))|(% colspan=" 1"style="width:311px"%)date656 -|(% colspan="2" style="width:507px"%)(((867 +)))|(% colspan="2" %)date 868 +| |(% colspan="2" %)((( 657 657 GregorianTimePeriod 870 + 658 658 (superset of GregorianYear, GregorianYearMonth, and GregorianDay) 659 -)))|(% colspan=" 1"style="width:311px"%)date660 -|(% colspan="2" style="width:507px"%)GregorianYear (YYYY)|(% colspan="1"style="width:311px"%)date661 -|(% colspan="2" style="width:507px"%)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="1"style="width:311px"%)date662 -|(% colspan="2" style="width:507px"%)GregorianDay (YYYY-MM-DD)|(% colspan="1"style="width:311px"%)date663 -|(% colspan="2" style="width:507px"%)(((872 +)))|(% colspan="2" %)date 873 +| |(% colspan="2" %)GregorianYear (YYYY)|(% colspan="2" %)date 874 +| |(% colspan="2" %)GregorianYearMonth / GregorianMonth (YYYY-MM)|(% colspan="2" %)date 875 +| |(% colspan="2" %)GregorianDay (YYYY-MM-DD)|(% colspan="2" %)date 876 +| |(% colspan="2" %)((( 664 664 ReportingTimePeriod 665 -(superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay) 666 -)))|(% colspan="1" style="width:311px" %)time_period 667 -|(% colspan="2" style="width:507px" %)((( 878 + 879 +(superset of RepostingYear, ReportingSemester, 880 + 881 +ReportingTrimester, ReportingQuarter, 882 + 883 +ReportingMonth, ReportingWeek, ReportingDay) 884 +)))|(% colspan="2" %)time_period 885 +| |(% colspan="2" %)((( 668 668 ReportingYear 887 + 669 669 (YYYY-A1 – 1 year period) 670 -)))|(% colspan=" 1"style="width:311px"%)time_period671 -|(% colspan="2" style="width:507px"%)(((889 +)))|(% colspan="2" %)time_period 890 +| |(% colspan="2" %)((( 672 672 ReportingSemester 892 + 673 673 (YYYY-Ss – 6 month period) 674 -)))|(% colspan=" 1"style="width:311px"%)time_period675 -|(% colspan="2" style="width:507px"%)(((894 +)))|(% colspan="2" %)time_period 895 +| |(% colspan="2" %)((( 676 676 ReportingTrimester 897 + 677 677 (YYYY-Tt – 4 month period) 678 -)))|(% colspan=" 1"style="width:311px"%)time_period679 -|(% colspan="2" style="width:507px"%)(((899 +)))|(% colspan="2" %)time_period 900 +| |(% colspan="2" %)((( 680 680 ReportingQuarter 902 + 681 681 (YYYY-Qq – 3 month period) 682 -)))|(% colspan=" 1"style="width:311px"%)time_period683 -|(% colspan="2" style="width:507px"%)(((904 +)))|(% colspan="2" %)time_period 905 +| |(% colspan="2" %)((( 684 684 ReportingMonth 907 + 685 685 (YYYY-Mmm – 1 month period) 686 -)))|(% colspan="1" style="width:311px" %)time_period 687 -|(% colspan="2" style="width:507px" %)ReportingWeek|(% colspan="1" style="width:311px" %)time_period 688 -|(% colspan="1" style="width:507px" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" style="width:312px" %) 689 -|(% colspan="1" style="width:507px" %)((( 909 +)))|(% colspan="2" %)time_period 910 +| |(% colspan="2" %)ReportingWeek|(% colspan="2" %)time_period 911 +| |(% colspan="2" %) |(% colspan="2" %) 912 +| |(% colspan="2" %) |(% colspan="2" %) 913 +|(% colspan="2" %)(YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|(% colspan="2" %) | 914 +|(% colspan="2" %)((( 690 690 ReportingDay 916 + 691 691 (YYYY-Dddd – 1 day period) 692 -)))|(% colspan="2" style="width:312px"%)time_period693 -|(% colspan=" 1"style="width:507px"%)(((918 +)))|(% colspan="2" %)time_period| 919 +|(% colspan="2" %)((( 694 694 DateTime 921 + 695 695 (YYYY-MM-DDThh:mm:ss) 696 -)))|(% colspan="2" style="width:312px"%)date697 -|(% colspan=" 1"style="width:507px"%)(((923 +)))|(% colspan="2" %)date| 924 +|(% colspan="2" %)((( 698 698 TimeRange 926 + 699 699 (YYYY-MM-DD(Thh:mm:ss)?/<duration>) 700 -)))|(% colspan="2" style="width:312px"%)time701 -|(% colspan=" 1"style="width:507px"%)(((928 +)))|(% colspan="2" %)time| 929 +|(% colspan="2" %)((( 702 702 Month 931 + 703 703 (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States) 704 -)))|(% colspan="2" style="width:312px"%)string705 -|(% colspan=" 1"style="width:507px"%)(((933 +)))|(% colspan="2" %)string| 934 +|(% colspan="2" %)((( 706 706 MonthDay 936 + 707 707 (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day) 708 -)))|(% colspan="2" style="width:312px"%)string709 -|(% colspan=" 1"style="width:507px"%)(((938 +)))|(% colspan="2" %)string| 939 +|(% colspan="2" %)((( 710 710 Day 941 + 711 711 (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday) 712 -)))|(% colspan="2" style="width:312px"%)string713 -|(% colspan=" 1"style="width:507px"%)(((943 +)))|(% colspan="2" %)string| 944 +|(% colspan="2" %)((( 714 714 Time 946 + 715 715 (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM) 716 -)))|(% colspan="2" style="width:312px"%)string717 -|(% colspan=" 1"style="width:507px"%)(((948 +)))|(% colspan="2" %)string| 949 +|(% colspan="2" %)((( 718 718 Duration 951 + 719 719 (corresponds to XML Schema xs:duration datatype) 720 -)))|(% colspan="2" style="width:312px"%)duration721 -|(% colspan=" 1"style="width:507px"%)XHTML|(% colspan="2"style="width:312px"%)Metadata type – not applicable722 -|(% colspan=" 1"style="width:507px"%)KeyValues|(% colspan="2"style="width:312px"%)Metadata type – not applicable723 -|(% colspan=" 1"style="width:507px"%)IdentifiableReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable724 -|(% colspan=" 1"style="width:507px"%)DataSetReference|(% colspan="2"style="width:312px"%)Metadata type – not applicable953 +)))|(% colspan="2" %)duration| 954 +|(% colspan="2" %)XHTML|(% colspan="2" %)Metadata type – not applicable| 955 +|(% colspan="2" %)KeyValues|(% colspan="2" %)Metadata type – not applicable| 956 +|(% colspan="2" %)IdentifiableReference|(% colspan="2" %)Metadata type – not applicable| 957 +|(% colspan="2" %)DataSetReference|(% colspan="2" %)Metadata type – not applicable| 725 725 726 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes" %) 727 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 959 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 728 728 729 729 When VTL takes in input SDMX artefacts, it is assumed that a type conversion according to the table above always happens. In case a different VTL basic scalar type is desired, it can be achieved in the VTL program taking in input the default VTL basic scalar type above and applying to it the VTL type conversion features (see the implicit and explicit type conversion and the "cast" operator in the VTL Reference Manual). 730 730 ... ... @@ -732,32 +732,39 @@ 732 732 733 733 The following table describes the default conversion from the VTL basic scalar types to the SDMX data types . 734 734 735 -(% style="width:1073.29px" %) 736 -|(% style="width:207px" %)((( 737 -**VTL basic scalar type** 738 -)))|(% style="width:462px" %)((( 739 -**Default SDMX data type (BasicComponentDataType)** 740 -)))|(% style="width:402px" %)**Default output format** 741 -|(% style="width:207px" %)String|(% style="width:462px" %)String|(% style="width:402px" %)Like XML (xs:string) 742 -|(% style="width:207px" %)Number|(% style="width:462px" %)Float|(% style="width:402px" %)Like XML (xs:float) 743 -|(% style="width:207px" %)Integer|(% style="width:462px" %)Integer|(% style="width:402px" %)Like XML (xs:int) 744 -|(% style="width:207px" %)Date|(% style="width:462px" %)DateTime|(% style="width:402px" %)YYYY-MM-DDT00:00:00Z 745 -|(% style="width:207px" %)Time|(% style="width:462px" %)StandardTimePeriod|(% style="width:402px" %)<date>/<date> (as defined above) 746 -|(% style="width:207px" %)time_period|(% style="width:462px" %)((( 967 +|((( 968 +VTL basic 969 + 970 +scalar type 971 +)))|((( 972 +Default SDMX data type 973 + 974 +(BasicComponentDataType 975 + 976 +) 977 +)))|Default output format 978 +|String|String|Like XML (xs:string) 979 +|Number|Float|Like XML (xs:float) 980 +|Integer|Integer|Like XML (xs:int) 981 +|Date|DateTime|YYYY-MM-DDT00:00:00Z 982 +|Time|StandardTimePeriod|<date>/<date> (as defined above) 983 +|time_period|((( 747 747 ReportingTimePeriod 985 + 748 748 (StandardReportingPeriod) 749 -)))|( % style="width:402px" %)(((987 +)))|((( 750 750 YYYY-Pppp 989 + 751 751 (according to SDMX ) 752 752 ))) 753 -| (% style="width:207px" %)Duration|(% style="width:462px" %)Duration|(% style="width:402px" %)(((992 +|Duration|Duration|((( 754 754 Like XML (xs:duration) 994 + 755 755 PnYnMnDTnHnMnS 756 756 ))) 757 -| (% style="width:207px" %)Boolean|(% style="width:462px" %)Boolean|(% style="width:402px" %)Like XML (xs:boolean) with the values "true" or "false"997 +|Boolean|Boolean|Like XML (xs:boolean) with the values "true" or "false" 758 758 759 -(% class="wikigeneratedid" id="HFigure142013MappingsfromSDMXdatatypestoVTLBasicScalarTypes-1" %) 760 -**Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types** 999 +==== Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types ==== 761 761 762 762 In case a different default conversion is desired, it can be achieved through the CustomTypeScheme and CustomType artefacts (see also the section Transformations and Expressions of the SDMX information model). 763 763 ... ... @@ -811,7 +811,7 @@ 811 811 |N|fixed number of digits used in the preceding textual representation of the month or the day 812 812 | | 813 813 814 -The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion {{footnote}}Therepresentationgivenin theDSD shouldobviouslybecompatible withtheVTL data type.{{/footnote}}.1053 +The default conversion, either standard or customized, can be used to deduce automatically the representation of the components of the result of a VTL Transformation. In alternative, the representation of the resulting SDMX Dataflow can be given explicitly by providing its DataStructureDefinition. In other words, the representation specified in the DSD, if available, overrides any default conversion^^[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)^^42^^>>path:#sdfootnote42sym||name="sdfootnote42anc"]](%%)^^. 815 815 816 816 === 12.4.5 Null Values === 817 817 ... ... @@ -829,8 +829,10 @@ 829 829 830 830 A different format can be specified in the attribute "vtlLiteralFormat" of the CustomType artefact (see also the section Transformations and Expressions of the SDMX information model). 831 831 832 -Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL TransformationScheme.1071 +Like in the case of the conversion of NULLs described in the previous paragraph, the overriding assumption is applied, for a certain VTL basic scalar type, if a value is found for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar type. The overriding assumption is applied for all the literals of a related VTL 833 833 1073 +TransformationScheme. 1074 + 834 834 In case a literal is operand of a VTL Cast operation, the format specified in the Cast overrides all the possible otherwise specified formats. 835 835 836 836 {{putFootnotes/}}
- 1747388148322-387.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.0 KB - Content
- 1747388179021-814.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.2 KB - Content
- 1747388206717-256.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.3 KB - Content
- 1747388222879-916.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.9 KB - Content
- 1747388244829-693.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.4 KB - Content
- 1747388275998-621.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.helena - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.2 KB - Content