Wiki source code of 13 Structure Mapping

Version 10.3 by Helena on 2025/05/16 09:12

Hide last authors
Helena 10.2 1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
Helena 2.1 4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
Helena 10.3 21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
Helena 2.1 22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
Helena 10.3 30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
Helena 2.1 38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
41 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape7" height="1" width="192"]]
42
43 |Source Component: REF_AREA|Target Component: REGION
44 |FR|EUR
45 |DE|EUR
46 |IT|EUR
47 |ES|EUR
48 |BE|EUR
49
50 == 13.3 N-n structure maps ==
51
52 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
53
54 Example:
55
56 |Rule|Source|Target
57 |1|(((
58 If
59
60 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
61 )))|(((
62 Set
63
64 INDICATOR=A_N_L
65 )))
66 |2|(((
67 If
68
69 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
70 )))|(((
71 Set
72
73 INDICATOR=MON_SAX_12
74 )))
75
76 N-n rules can also set values for multiple source Components.
77
78 |Rule|Source|Target
79 |1|(((
80 If
81
82 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
83 )))|(((
84 Set
85
86 INDICATOR=A_N_L, STATUS=QXR15,
87
88 NOTE="Unadjusted".
89 )))
90 |2|(((
91 If
92
93 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
94 )))|(((
95 Set
96
97 INDICATOR=MON_SAX_12,
98
99 STATUS=MPM12,
100
101 NOTE="Seasonally Adjusted"
102 )))
103
104 == 13.4 Ambiguous mapping rules ==
105
106 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
107
108 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
109
110 |Source|Target|Output Series Key
111 |SERIES_CODE=XMAN_Z_21|(((
112 Dimensions
113
114 INDICATOR=XM
115
116 FREQ=A
117
118 ADJUSTMENT=N
119
120 Attributes
121
122 UNIT_MEASURE=_Z
123
124 COMP_ORG=21
125 )))|XM:A:N
126 |SERIES_CODE=XMAN_Z_34|(((
127 Dimensions
128
129 INDICATOR=XM
130
131 FREQ=A
132
133 ADJUSTMENT=N
134
135 Attributes
136
137 UNIT_MEASURE=_Z
138
139 COMP_ORG=34
140 )))|XM:A:N
141
142 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
143
144 == 13.5 Representation maps ==
145
146 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
147
148 The source and target of a Representation Map can reference any of the following:
149
150 1. Codelist
151 1. Free Text (restricted by type, e.g String, Integer, Boolean)
152 1. Valuelist
153
154 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
155
156 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
157 |AF|AFG
158 |AL|ALB
159 |DZ|DZA
160 |AS|ASM
161 |AD|AND
Helena 10.2 162 |etc…|
Helena 2.1 163
164 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
165
166 |Text|CL_ISO_ALPHA2
167 |"Germany"|DE
168 |"France"|FR
169 |"United Kingdom"|GB
170 |"Great Britain"|GB
171 |"Ireland"|IE
172 |"Eire"|IE
Helena 10.2 173 |etc…|
Helena 2.1 174
175 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
176
177 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
178
179 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
180
181 |Value|Locale|Name
182 |$|en|United States Dollar
183 |%|En|Percentage
Helena 10.2 184 | |fr|Pourcentage
Helena 2.1 185
186 Other characteristics of Representation Maps:
187
188 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
189 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
190 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
191
192 == 13.6 Regular expression and substring rules ==
193
194 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
195
196 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
197
198 //If starts with 'XU' map to 'Y'//
199
200 These rules are described using either regular expressions, or substrings for simpler use cases.
201
202 === 13.6.1 Regular expressions ===
203
204 Regular expression mapping rules are defined in the Representation Map.
205
206 Below is an example set of regular expression rules for a particular component.
207
208 |Regex|Description|Output
209 |A|Rule match if input = 'A'|OUT_A
210 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
211 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
212
213 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
214
215 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
216
217 |Regex|Target output|Example Input|Example Output
218 |(((
219 ([0-9]{4})[0-
220
221 9]([0-9]{1})
222 )))|\1-Q\2|200933|2009-Q3
223
224 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
225
226 The following example shows this:
227
228 |Priority|Regex|Description|Output
229 |1|A|Rule match if input = 'A'|OUT_A
230 |2|B|Rule match if input = 'B'|OUT_B
231 |3|[A-Z]|Any character A-Z|OUT_C
232
233 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
234
235 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
236
237 === 13.6.2 Substrings ===
238
239 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
240
241 For instance:
242
243 |Input String|Start|Length|Output
244 |ABC_DEF_XYZ|5|3|DEF
245 |XULADS|1|2|XU
246
247 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
248
249 |Start|Length|Source|Target
250 |1|2|XU|Y
251
252 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
253
254 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
255
256 Two types of time input are defined:
257
258 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
259
260 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
261
262 |Frequency|Format|Example
263 |A|YYYY|2010
264 |D|YYYY-MM-DD|2010-01-01
265 |I|YYYY-MM-DDThh:mm:ss|2010-01T20:22:00
266 |M|YYYY-MM|2010-01
267 |Q|YYYY-Qn|2010-Q1
268 |S|YYYY-Sn|2010-S1
269 |T|YYYY-Tn|2010-T1
270 |W|YYYY-Wn|YYYY-W53
271
272 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
273
274 There are two important points to note:
275
276 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
277 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
278
279 === 13.7.1 Pattern based dates ===
280
281 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
282
Helena 10.3 283 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^44^^>>path:#sdfootnote44sym||name="sdfootnote44anc"]](%%)^^. An indicative list of examples is presented in the following table:
Helena 2.1 284
285 |English (en)|Australia (AU)|en-AU
286 |English (en)|Canada (CA)|en-CA
287 |English (en)|United Kingdom (GB)|en-GB
288 |English (en)|United States (US)|en-US
289 |Estonian (et)|Estonia (EE)|et-EE
290 |Finnish (fi)|Finland (FI)|fi-FI
291 |French (fr)|Belgium (BE)|fr-BE
292 |French (fr)|Canada (CA)|fr-CA
293 |French (fr)|France (FR)|fr-FR
294 |French (fr)|Luxembourg (LU)|fr-LU
295 |French (fr)|Switzerland (CH)|fr-CH
296 |German (de)|Austria (AT)|de-AT
297 |German (de)|Germany (DE)|de-DE
298
299 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape8" height="1" width="192"]]
300
301 |German (de)|Luxembourg (LU)|de-LU
302 |German (de)|Switzerland (CH)|de-CH
303 |Greek (el)|Cyprus (CY)|el-CY[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
304 |Greek (el)|Greece (GR)|el-GR
305 |Hebrew (iw)|Israel (IL)|iw-IL
306 |Hindi (hi)|India (IN)|hi-IN
307 |Hungarian (hu)|Hungary (HU)|hu-HU
308 |Icelandic (is)|Iceland (IS)|is-IS
309 |Indonesian (in)|Indonesia (ID)|in-ID[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
310 |Irish (ga)|Ireland (IE)|ga-IE[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
311 |Italian (it)|Italy (IT)|it-IT
312
313 Examples
314
315 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
316
317 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
318
319 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
320
321 22 Jul 1981 would be described as dd MMM YYYY
322
323 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
324
325 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
326
327 |Letter|Date or Time Component|Presentation|Examples
328 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
Helena 10.3 329 |yy|Year short (upper case is Year of Week^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^45^^>>path:#sdfootnote45sym||name="sdfootnote45anc"]](%%)^^)|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
Helena 2.1 330 |yyyy|Year Full (upper case is Year of Week)|Year|1996
331 |MM|Month number in year starting with 1|Month|07
332 |MMM|Month name short|Month|Jul
333 |MMMM|Month name full|Month|July
334 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
335 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
336 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
337 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
338 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
339 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
340
341 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape9" height="1" width="192"]]
342
343 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
344 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
345 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
346 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
347 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
348 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
349 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
350 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
351 |n|Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
352
353 The model is illustrated below:
354
355 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
356
357 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
358
359 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
360
361 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
362
363 === 13.7.2 Numerical based datetime ===
364
365 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
366
367 * day
368 * second
369 * millisecond
370 * microsecond
371 * nanosecond
372
373 |Numerical datetime systems|Base|Period
374 |(((
375 Epoch Time (UNIX)
376
377 Milliseconds since 01 Jan 1970
378 )))|1970|millisecond
379 |(((
380 Windows System Time
381
382 Milliseconds since 01 Jan 1601
383 )))|1601|millisecond
384
385 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
386
387 The model is illustrated below:
388
389 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
390
391 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
392
393 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
394
395 === 13.7.3 Mapping more complex time inputs ===
396
397 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
398
399 == 13.8 Using TIME_PERIOD in mapping rules ==
400
401 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
402
403 The main use case is setting the value of Observation Attributes in the target dataset.
404
405 |Rule|Source|Target
406 |1|(((
407 If
408
409 INDICATOR=XULADS; and TIME_PERIOD=2007.
410 )))|(((
411 Set
412
413 OBS_CONF=F
414 )))
415 |2|(((
416 If
417
418 INDICATOR=XULADS; and TIME_PERIOD=2008.
419 )))|(((
420 Set
421
422 OBS_CONF=F
423 )))
424 |3|(((
425 If
426
427 INDICATOR=XULADS; and TIME_PERIOD=2009.
428 )))|(((
429 Set
430
431 OBS_CONF=F
432 )))
433 |4|(((
434 If
435
436 INDICATOR=XULADS; and TIME_PERIOD=2010.
437 )))|(((
438 Set
439
440 OBS_CONF=**C**
441 )))
442
443 In the example above, OBS_CONF is an Observation Attribute.
444
445 == 13.9 Time span mapping rules using validity periods ==
446
447 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
448
449 Instead, an optional validity period can be set for each mapping.
450
451 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
452
453 |Rule|Source|Target
454 |1|(((
455 If
456
457 INDICATOR=XULADS.
458
459 Validity Period start period=2007 end period=2009
460 )))|(((
461 Set
462
463 OBS_CONF=F
464 )))
465 |2|(((
466 If
467
468 INDICATOR=XULADS.
469
470 Validity Period start period=2010
471 )))|(((
472 Set
473
474 OBS_CONF=F** **
475 )))
476
477 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
478
479 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
480
481 == 13.10 Mapping examples ==
482
483 === 13.10.1 Many to one mapping (N-1) ===
484
485 |Source|Map To
486 |(((
487 **FREQ**="A"
488
489 ADJUSTMENT="N"
490
491 **REF_AREA**="PL"
492
493 **COUNTERPART_AREA**="W0"
494
495 REF_SECTOR="S1"
496
497 COUNTERPART_SECTOR="S1" ACCOUNTING_ENTRY="B"
498
499 STO="B5G"
500 )))|(((
501 FREQ="A"
502
503 REF_AREA="PL"
504
505 COUNTERPART_AREA="W0"
506
507 INDICATOR="IND_ABC"
508 )))
509
510 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
511
512 FREQ => FREQ
513
514 REF_AREA=> REF_AREA
515
516 COUNTERPART_AREA=> COUNTERPART _AREA
517
518 No Representation Mapping is required. The source value simply copies across unmodified.
519
520 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
521
522 N:S1:S1:B:B5G => IND_ABC
523
524 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
525
526 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
527
528 === 13.10.2 Mapping other data types to Code Id ===
529
530 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
531
532 The following representation mapping can be used to explicitly map each age to an output code.
533
Helena 10.2 534 :
Helena 2.1 535
536 (((
537 |Source Input Free Text|Desired Output Code Id
538 |0|A
539 |1|A
540 |2|A
541 |3|B
542 |4|B
543 )))
544
545 If this mapping takes advantage of regular expressions it can be expressed in two 3464 rules:
546
547 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_8c1afe2b.gif||alt="Shape10" height="1" width="302"]]
548
549 __Regular Expression __Desired Output
550
Helena 10.2 551 :
Helena 2.1 552
553 (((
554 |[0-2]|A
555 |[3-4]|B
556 )))
557
558 === 13.10.3 Observation Attributes for Time Period ===
559
560 This use case is where a specific observation for a specific time period has an attribute 3468 value.
561
Helena 10.2 562 :
Helena 2.1 563
564 (((
565 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
566 |XULADS|2008|C
567 |XULADS|2009|C
568 |XULADS|2010|C
569 )))
570
571 __Or using a validity period on the Representation Mapping__:
572
573 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_6dbf7f.gif||alt="Shape11" height="36" width="555"]] Input INDICATOR Valid From/ Valid To Output OBS_CONF
574
575 XULADS 2008/2010 C
576
577 === 13.10.4 Time mapping ===
578
579 This use case is to create a time period from an input that does not respect SDMXTime Formats.
580
581 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
582
Helena 10.2 583 :
Helena 2.1 584
585 (((
586 |Source Value|Source Mapping|Target Frequency|Output
587 |18/07/1981|dd/MM/yyyy|A|1981
588 )))
589
590 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
591
592 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_dbe68698.gif||alt="Shape12" height="1" width="273"]]
593
Helena 10.2 594 :
595 ::
Helena 2.1 596
597 (((
598 |Source Value|Source Mapping|Target Frequency Output Dimension
599
Helena 10.2 600 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
Helena 2.1 601 |(% rowspan="2" %)(((
602 __When the source is a numerical form__at
603
604 Source Value Start Period Interv
Helena 10.2 605 )))| | |
Helena 2.1 606 |al|(((
607 Target
608
609 FREQ
610 )))|Output
611 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
612 )))
613
614 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
615
616 Source Value Source Mapping Target Frequency Output
617
618 Dimension
619
620 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_4ec4bb31.gif||alt="Shape13" height="173" width="555"]] 1981 yyyy D – End of Period 1981-12-31
621
622 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
623
624 Source Value Source Mapping Target Frequency Output
625
626 Dimension
627
628 1981 yyyy D – End of Period 1982-03-31
Helena 10.3 629
630 {{putFootnotes/}}