Wiki source code of 13 Structure Mapping

Version 10.4 by Helena on 2025/05/16 09:12

Show last authors
1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
41 (% style="width:674.294px" %)
42 |(% style="width:284px" %)**Source Component: REF_AREA**|(% style="width:387px" %)**Target Component: REGION**
43 |(% style="width:284px" %)FR|(% style="width:387px" %)EUR
44 |(% style="width:284px" %)DE|(% style="width:387px" %)EUR
45 |(% style="width:284px" %)IT|(% style="width:387px" %)EUR
46 |(% style="width:284px" %)ES|(% style="width:387px" %)EUR
47 |(% style="width:284px" %)BE|(% style="width:387px" %)EUR
48
49 == 13.3 N-n structure maps ==
50
51 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
52
53 Example:
54
55 |Rule|Source|Target
56 |1|(((
57 If
58
59 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
60 )))|(((
61 Set
62
63 INDICATOR=A_N_L
64 )))
65 |2|(((
66 If
67
68 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
69 )))|(((
70 Set
71
72 INDICATOR=MON_SAX_12
73 )))
74
75 N-n rules can also set values for multiple source Components.
76
77 |Rule|Source|Target
78 |1|(((
79 If
80
81 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
82 )))|(((
83 Set
84
85 INDICATOR=A_N_L, STATUS=QXR15,
86
87 NOTE="Unadjusted".
88 )))
89 |2|(((
90 If
91
92 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
93 )))|(((
94 Set
95
96 INDICATOR=MON_SAX_12,
97
98 STATUS=MPM12,
99
100 NOTE="Seasonally Adjusted"
101 )))
102
103 == 13.4 Ambiguous mapping rules ==
104
105 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
106
107 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
108
109 |Source|Target|Output Series Key
110 |SERIES_CODE=XMAN_Z_21|(((
111 Dimensions
112
113 INDICATOR=XM
114
115 FREQ=A
116
117 ADJUSTMENT=N
118
119 Attributes
120
121 UNIT_MEASURE=_Z
122
123 COMP_ORG=21
124 )))|XM:A:N
125 |SERIES_CODE=XMAN_Z_34|(((
126 Dimensions
127
128 INDICATOR=XM
129
130 FREQ=A
131
132 ADJUSTMENT=N
133
134 Attributes
135
136 UNIT_MEASURE=_Z
137
138 COMP_ORG=34
139 )))|XM:A:N
140
141 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
142
143 == 13.5 Representation maps ==
144
145 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
146
147 The source and target of a Representation Map can reference any of the following:
148
149 1. Codelist
150 1. Free Text (restricted by type, e.g String, Integer, Boolean)
151 1. Valuelist
152
153 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
154
155 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
156 |AF|AFG
157 |AL|ALB
158 |DZ|DZA
159 |AS|ASM
160 |AD|AND
161 |etc…|
162
163 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
164
165 |Text|CL_ISO_ALPHA2
166 |"Germany"|DE
167 |"France"|FR
168 |"United Kingdom"|GB
169 |"Great Britain"|GB
170 |"Ireland"|IE
171 |"Eire"|IE
172 |etc…|
173
174 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
175
176 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
177
178 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
179
180 |Value|Locale|Name
181 |$|en|United States Dollar
182 |%|En|Percentage
183 | |fr|Pourcentage
184
185 Other characteristics of Representation Maps:
186
187 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
188 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
189 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
190
191 == 13.6 Regular expression and substring rules ==
192
193 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
194
195 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
196
197 //If starts with 'XU' map to 'Y'//
198
199 These rules are described using either regular expressions, or substrings for simpler use cases.
200
201 === 13.6.1 Regular expressions ===
202
203 Regular expression mapping rules are defined in the Representation Map.
204
205 Below is an example set of regular expression rules for a particular component.
206
207 |Regex|Description|Output
208 |A|Rule match if input = 'A'|OUT_A
209 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
210 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
211
212 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
213
214 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
215
216 |Regex|Target output|Example Input|Example Output
217 |(((
218 ([0-9]{4})[0-
219
220 9]([0-9]{1})
221 )))|\1-Q\2|200933|2009-Q3
222
223 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
224
225 The following example shows this:
226
227 |Priority|Regex|Description|Output
228 |1|A|Rule match if input = 'A'|OUT_A
229 |2|B|Rule match if input = 'B'|OUT_B
230 |3|[A-Z]|Any character A-Z|OUT_C
231
232 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
233
234 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
235
236 === 13.6.2 Substrings ===
237
238 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
239
240 For instance:
241
242 |Input String|Start|Length|Output
243 |ABC_DEF_XYZ|5|3|DEF
244 |XULADS|1|2|XU
245
246 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
247
248 |Start|Length|Source|Target
249 |1|2|XU|Y
250
251 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
252
253 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
254
255 Two types of time input are defined:
256
257 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
258
259 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
260
261 |Frequency|Format|Example
262 |A|YYYY|2010
263 |D|YYYY-MM-DD|2010-01-01
264 |I|YYYY-MM-DDThh:mm:ss|2010-01T20:22:00
265 |M|YYYY-MM|2010-01
266 |Q|YYYY-Qn|2010-Q1
267 |S|YYYY-Sn|2010-S1
268 |T|YYYY-Tn|2010-T1
269 |W|YYYY-Wn|YYYY-W53
270
271 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
272
273 There are two important points to note:
274
275 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
276 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
277
278 === 13.7.1 Pattern based dates ===
279
280 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
281
282 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^44^^>>path:#sdfootnote44sym||name="sdfootnote44anc"]](%%)^^. An indicative list of examples is presented in the following table:
283
284 |English (en)|Australia (AU)|en-AU
285 |English (en)|Canada (CA)|en-CA
286 |English (en)|United Kingdom (GB)|en-GB
287 |English (en)|United States (US)|en-US
288 |Estonian (et)|Estonia (EE)|et-EE
289 |Finnish (fi)|Finland (FI)|fi-FI
290 |French (fr)|Belgium (BE)|fr-BE
291 |French (fr)|Canada (CA)|fr-CA
292 |French (fr)|France (FR)|fr-FR
293 |French (fr)|Luxembourg (LU)|fr-LU
294 |French (fr)|Switzerland (CH)|fr-CH
295 |German (de)|Austria (AT)|de-AT
296 |German (de)|Germany (DE)|de-DE
297
298 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape8" height="1" width="192"]]
299
300 |German (de)|Luxembourg (LU)|de-LU
301 |German (de)|Switzerland (CH)|de-CH
302 |Greek (el)|Cyprus (CY)|el-CY[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
303 |Greek (el)|Greece (GR)|el-GR
304 |Hebrew (iw)|Israel (IL)|iw-IL
305 |Hindi (hi)|India (IN)|hi-IN
306 |Hungarian (hu)|Hungary (HU)|hu-HU
307 |Icelandic (is)|Iceland (IS)|is-IS
308 |Indonesian (in)|Indonesia (ID)|in-ID[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
309 |Irish (ga)|Ireland (IE)|ga-IE[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
310 |Italian (it)|Italy (IT)|it-IT
311
312 Examples
313
314 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
315
316 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
317
318 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
319
320 22 Jul 1981 would be described as dd MMM YYYY
321
322 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
323
324 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
325
326 |Letter|Date or Time Component|Presentation|Examples
327 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
328 |yy|Year short (upper case is Year of Week^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^45^^>>path:#sdfootnote45sym||name="sdfootnote45anc"]](%%)^^)|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
329 |yyyy|Year Full (upper case is Year of Week)|Year|1996
330 |MM|Month number in year starting with 1|Month|07
331 |MMM|Month name short|Month|Jul
332 |MMMM|Month name full|Month|July
333 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
334 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
335 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
336 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
337 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
338 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
339
340 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape9" height="1" width="192"]]
341
342 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
343 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
344 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
345 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
346 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
347 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
348 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
349 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
350 |n|Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
351
352 The model is illustrated below:
353
354 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
355
356 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
357
358 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
359
360 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
361
362 === 13.7.2 Numerical based datetime ===
363
364 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
365
366 * day
367 * second
368 * millisecond
369 * microsecond
370 * nanosecond
371
372 |Numerical datetime systems|Base|Period
373 |(((
374 Epoch Time (UNIX)
375
376 Milliseconds since 01 Jan 1970
377 )))|1970|millisecond
378 |(((
379 Windows System Time
380
381 Milliseconds since 01 Jan 1601
382 )))|1601|millisecond
383
384 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
385
386 The model is illustrated below:
387
388 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
389
390 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
391
392 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
393
394 === 13.7.3 Mapping more complex time inputs ===
395
396 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
397
398 == 13.8 Using TIME_PERIOD in mapping rules ==
399
400 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
401
402 The main use case is setting the value of Observation Attributes in the target dataset.
403
404 |Rule|Source|Target
405 |1|(((
406 If
407
408 INDICATOR=XULADS; and TIME_PERIOD=2007.
409 )))|(((
410 Set
411
412 OBS_CONF=F
413 )))
414 |2|(((
415 If
416
417 INDICATOR=XULADS; and TIME_PERIOD=2008.
418 )))|(((
419 Set
420
421 OBS_CONF=F
422 )))
423 |3|(((
424 If
425
426 INDICATOR=XULADS; and TIME_PERIOD=2009.
427 )))|(((
428 Set
429
430 OBS_CONF=F
431 )))
432 |4|(((
433 If
434
435 INDICATOR=XULADS; and TIME_PERIOD=2010.
436 )))|(((
437 Set
438
439 OBS_CONF=**C**
440 )))
441
442 In the example above, OBS_CONF is an Observation Attribute.
443
444 == 13.9 Time span mapping rules using validity periods ==
445
446 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
447
448 Instead, an optional validity period can be set for each mapping.
449
450 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
451
452 |Rule|Source|Target
453 |1|(((
454 If
455
456 INDICATOR=XULADS.
457
458 Validity Period start period=2007 end period=2009
459 )))|(((
460 Set
461
462 OBS_CONF=F
463 )))
464 |2|(((
465 If
466
467 INDICATOR=XULADS.
468
469 Validity Period start period=2010
470 )))|(((
471 Set
472
473 OBS_CONF=F** **
474 )))
475
476 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
477
478 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
479
480 == 13.10 Mapping examples ==
481
482 === 13.10.1 Many to one mapping (N-1) ===
483
484 |Source|Map To
485 |(((
486 **FREQ**="A"
487
488 ADJUSTMENT="N"
489
490 **REF_AREA**="PL"
491
492 **COUNTERPART_AREA**="W0"
493
494 REF_SECTOR="S1"
495
496 COUNTERPART_SECTOR="S1" ACCOUNTING_ENTRY="B"
497
498 STO="B5G"
499 )))|(((
500 FREQ="A"
501
502 REF_AREA="PL"
503
504 COUNTERPART_AREA="W0"
505
506 INDICATOR="IND_ABC"
507 )))
508
509 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
510
511 FREQ => FREQ
512
513 REF_AREA=> REF_AREA
514
515 COUNTERPART_AREA=> COUNTERPART _AREA
516
517 No Representation Mapping is required. The source value simply copies across unmodified.
518
519 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
520
521 N:S1:S1:B:B5G => IND_ABC
522
523 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
524
525 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
526
527 === 13.10.2 Mapping other data types to Code Id ===
528
529 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
530
531 The following representation mapping can be used to explicitly map each age to an output code.
532
533 :
534
535 (((
536 |Source Input Free Text|Desired Output Code Id
537 |0|A
538 |1|A
539 |2|A
540 |3|B
541 |4|B
542 )))
543
544 If this mapping takes advantage of regular expressions it can be expressed in two 3464 rules:
545
546 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_8c1afe2b.gif||alt="Shape10" height="1" width="302"]]
547
548 __Regular Expression __Desired Output
549
550 :
551
552 (((
553 |[0-2]|A
554 |[3-4]|B
555 )))
556
557 === 13.10.3 Observation Attributes for Time Period ===
558
559 This use case is where a specific observation for a specific time period has an attribute 3468 value.
560
561 :
562
563 (((
564 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
565 |XULADS|2008|C
566 |XULADS|2009|C
567 |XULADS|2010|C
568 )))
569
570 __Or using a validity period on the Representation Mapping__:
571
572 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_6dbf7f.gif||alt="Shape11" height="36" width="555"]] Input INDICATOR Valid From/ Valid To Output OBS_CONF
573
574 XULADS 2008/2010 C
575
576 === 13.10.4 Time mapping ===
577
578 This use case is to create a time period from an input that does not respect SDMXTime Formats.
579
580 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
581
582 :
583
584 (((
585 |Source Value|Source Mapping|Target Frequency|Output
586 |18/07/1981|dd/MM/yyyy|A|1981
587 )))
588
589 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
590
591 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_dbe68698.gif||alt="Shape12" height="1" width="273"]]
592
593 :
594 ::
595
596 (((
597 |Source Value|Source Mapping|Target Frequency Output Dimension
598
599 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
600 |(% rowspan="2" %)(((
601 __When the source is a numerical form__at
602
603 Source Value Start Period Interv
604 )))| | |
605 |al|(((
606 Target
607
608 FREQ
609 )))|Output
610 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
611 )))
612
613 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
614
615 Source Value Source Mapping Target Frequency Output
616
617 Dimension
618
619 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_4ec4bb31.gif||alt="Shape13" height="173" width="555"]] 1981 yyyy D – End of Period 1981-12-31
620
621 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
622
623 Source Value Source Mapping Target Frequency Output
624
625 Dimension
626
627 1981 yyyy D – End of Period 1982-03-31
628
629 {{putFootnotes/}}