Wiki source code of 13 Structure Mapping

Version 10.5 by Helena on 2025/05/16 09:14

Show last authors
1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
41 (% style="width:674.294px" %)
42 |(% style="width:284px" %)**Source Component: REF_AREA**|(% style="width:387px" %)**Target Component: REGION**
43 |(% style="width:284px" %)FR|(% style="width:387px" %)EUR
44 |(% style="width:284px" %)DE|(% style="width:387px" %)EUR
45 |(% style="width:284px" %)IT|(% style="width:387px" %)EUR
46 |(% style="width:284px" %)ES|(% style="width:387px" %)EUR
47 |(% style="width:284px" %)BE|(% style="width:387px" %)EUR
48
49 == 13.3 N-n structure maps ==
50
51 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
52
53 Example:
54
55 (% style="width:760.294px" %)
56 |(% style="width:58px" %)**Rule**|(% style="width:384px" %)**Source**|(% style="width:313px" %)**Target**
57 |(% style="width:58px" %)1|(% style="width:384px" %)(((
58 If
59 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
60 )))|(% style="width:313px" %)(((
61 Set
62 INDICATOR=A_N_L
63 )))
64 |(% style="width:58px" %)2|(% style="width:384px" %)(((
65 If
66 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
67 )))|(% style="width:313px" %)(((
68 Set
69 INDICATOR=MON_SAX_12
70 )))
71
72 N-n rules can also set values for multiple source Components.
73
74 (% style="width:757.294px" %)
75 |(% style="width:62px" %)**Rule**|(% style="width:378px" %)**Source**|(% style="width:312px" %)**Target**
76 |(% style="width:62px" %)1|(% style="width:378px" %)(((
77 If
78 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
79 )))|(% style="width:312px" %)(((
80 Set
81 INDICATOR=A_N_L, STATUS=QXR15, NOTE="Unadjusted".
82 )))
83 |(% style="width:62px" %)2|(% style="width:378px" %)(((
84 If
85 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
86 )))|(% style="width:312px" %)(((
87 Set
88 INDICATOR=MON_SAX_12, STATUS=MPM12, NOTE="Seasonally Adjusted"
89 )))
90
91 == 13.4 Ambiguous mapping rules ==
92
93 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
94
95 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
96
97 |Source|Target|Output Series Key
98 |SERIES_CODE=XMAN_Z_21|(((
99 Dimensions
100
101 INDICATOR=XM
102
103 FREQ=A
104
105 ADJUSTMENT=N
106
107 Attributes
108
109 UNIT_MEASURE=_Z
110
111 COMP_ORG=21
112 )))|XM:A:N
113 |SERIES_CODE=XMAN_Z_34|(((
114 Dimensions
115
116 INDICATOR=XM
117
118 FREQ=A
119
120 ADJUSTMENT=N
121
122 Attributes
123
124 UNIT_MEASURE=_Z
125
126 COMP_ORG=34
127 )))|XM:A:N
128
129 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
130
131 == 13.5 Representation maps ==
132
133 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
134
135 The source and target of a Representation Map can reference any of the following:
136
137 1. Codelist
138 1. Free Text (restricted by type, e.g String, Integer, Boolean)
139 1. Valuelist
140
141 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
142
143 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
144 |AF|AFG
145 |AL|ALB
146 |DZ|DZA
147 |AS|ASM
148 |AD|AND
149 |etc…|
150
151 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
152
153 |Text|CL_ISO_ALPHA2
154 |"Germany"|DE
155 |"France"|FR
156 |"United Kingdom"|GB
157 |"Great Britain"|GB
158 |"Ireland"|IE
159 |"Eire"|IE
160 |etc…|
161
162 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
163
164 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
165
166 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
167
168 |Value|Locale|Name
169 |$|en|United States Dollar
170 |%|En|Percentage
171 | |fr|Pourcentage
172
173 Other characteristics of Representation Maps:
174
175 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
176 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
177 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
178
179 == 13.6 Regular expression and substring rules ==
180
181 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
182
183 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
184
185 //If starts with 'XU' map to 'Y'//
186
187 These rules are described using either regular expressions, or substrings for simpler use cases.
188
189 === 13.6.1 Regular expressions ===
190
191 Regular expression mapping rules are defined in the Representation Map.
192
193 Below is an example set of regular expression rules for a particular component.
194
195 |Regex|Description|Output
196 |A|Rule match if input = 'A'|OUT_A
197 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
198 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
199
200 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
201
202 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
203
204 |Regex|Target output|Example Input|Example Output
205 |(((
206 ([0-9]{4})[0-
207
208 9]([0-9]{1})
209 )))|\1-Q\2|200933|2009-Q3
210
211 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
212
213 The following example shows this:
214
215 |Priority|Regex|Description|Output
216 |1|A|Rule match if input = 'A'|OUT_A
217 |2|B|Rule match if input = 'B'|OUT_B
218 |3|[A-Z]|Any character A-Z|OUT_C
219
220 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
221
222 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
223
224 === 13.6.2 Substrings ===
225
226 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
227
228 For instance:
229
230 |Input String|Start|Length|Output
231 |ABC_DEF_XYZ|5|3|DEF
232 |XULADS|1|2|XU
233
234 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
235
236 |Start|Length|Source|Target
237 |1|2|XU|Y
238
239 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
240
241 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
242
243 Two types of time input are defined:
244
245 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
246
247 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
248
249 |Frequency|Format|Example
250 |A|YYYY|2010
251 |D|YYYY-MM-DD|2010-01-01
252 |I|YYYY-MM-DDThh:mm:ss|2010-01T20:22:00
253 |M|YYYY-MM|2010-01
254 |Q|YYYY-Qn|2010-Q1
255 |S|YYYY-Sn|2010-S1
256 |T|YYYY-Tn|2010-T1
257 |W|YYYY-Wn|YYYY-W53
258
259 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
260
261 There are two important points to note:
262
263 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
264 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
265
266 === 13.7.1 Pattern based dates ===
267
268 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
269
270 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^44^^>>path:#sdfootnote44sym||name="sdfootnote44anc"]](%%)^^. An indicative list of examples is presented in the following table:
271
272 |English (en)|Australia (AU)|en-AU
273 |English (en)|Canada (CA)|en-CA
274 |English (en)|United Kingdom (GB)|en-GB
275 |English (en)|United States (US)|en-US
276 |Estonian (et)|Estonia (EE)|et-EE
277 |Finnish (fi)|Finland (FI)|fi-FI
278 |French (fr)|Belgium (BE)|fr-BE
279 |French (fr)|Canada (CA)|fr-CA
280 |French (fr)|France (FR)|fr-FR
281 |French (fr)|Luxembourg (LU)|fr-LU
282 |French (fr)|Switzerland (CH)|fr-CH
283 |German (de)|Austria (AT)|de-AT
284 |German (de)|Germany (DE)|de-DE
285
286 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape8" height="1" width="192"]]
287
288 |German (de)|Luxembourg (LU)|de-LU
289 |German (de)|Switzerland (CH)|de-CH
290 |Greek (el)|Cyprus (CY)|el-CY[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
291 |Greek (el)|Greece (GR)|el-GR
292 |Hebrew (iw)|Israel (IL)|iw-IL
293 |Hindi (hi)|India (IN)|hi-IN
294 |Hungarian (hu)|Hungary (HU)|hu-HU
295 |Icelandic (is)|Iceland (IS)|is-IS
296 |Indonesian (in)|Indonesia (ID)|in-ID[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
297 |Irish (ga)|Ireland (IE)|ga-IE[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
298 |Italian (it)|Italy (IT)|it-IT
299
300 Examples
301
302 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
303
304 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
305
306 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
307
308 22 Jul 1981 would be described as dd MMM YYYY
309
310 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
311
312 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
313
314 |Letter|Date or Time Component|Presentation|Examples
315 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
316 |yy|Year short (upper case is Year of Week^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^45^^>>path:#sdfootnote45sym||name="sdfootnote45anc"]](%%)^^)|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
317 |yyyy|Year Full (upper case is Year of Week)|Year|1996
318 |MM|Month number in year starting with 1|Month|07
319 |MMM|Month name short|Month|Jul
320 |MMMM|Month name full|Month|July
321 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
322 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
323 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
324 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
325 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
326 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
327
328 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape9" height="1" width="192"]]
329
330 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
331 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
332 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
333 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
334 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
335 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
336 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
337 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
338 |n|Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
339
340 The model is illustrated below:
341
342 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
343
344 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
345
346 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
347
348 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
349
350 === 13.7.2 Numerical based datetime ===
351
352 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
353
354 * day
355 * second
356 * millisecond
357 * microsecond
358 * nanosecond
359
360 |Numerical datetime systems|Base|Period
361 |(((
362 Epoch Time (UNIX)
363
364 Milliseconds since 01 Jan 1970
365 )))|1970|millisecond
366 |(((
367 Windows System Time
368
369 Milliseconds since 01 Jan 1601
370 )))|1601|millisecond
371
372 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
373
374 The model is illustrated below:
375
376 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
377
378 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
379
380 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
381
382 === 13.7.3 Mapping more complex time inputs ===
383
384 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
385
386 == 13.8 Using TIME_PERIOD in mapping rules ==
387
388 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
389
390 The main use case is setting the value of Observation Attributes in the target dataset.
391
392 |Rule|Source|Target
393 |1|(((
394 If
395
396 INDICATOR=XULADS; and TIME_PERIOD=2007.
397 )))|(((
398 Set
399
400 OBS_CONF=F
401 )))
402 |2|(((
403 If
404
405 INDICATOR=XULADS; and TIME_PERIOD=2008.
406 )))|(((
407 Set
408
409 OBS_CONF=F
410 )))
411 |3|(((
412 If
413
414 INDICATOR=XULADS; and TIME_PERIOD=2009.
415 )))|(((
416 Set
417
418 OBS_CONF=F
419 )))
420 |4|(((
421 If
422
423 INDICATOR=XULADS; and TIME_PERIOD=2010.
424 )))|(((
425 Set
426
427 OBS_CONF=**C**
428 )))
429
430 In the example above, OBS_CONF is an Observation Attribute.
431
432 == 13.9 Time span mapping rules using validity periods ==
433
434 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
435
436 Instead, an optional validity period can be set for each mapping.
437
438 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
439
440 |Rule|Source|Target
441 |1|(((
442 If
443
444 INDICATOR=XULADS.
445
446 Validity Period start period=2007 end period=2009
447 )))|(((
448 Set
449
450 OBS_CONF=F
451 )))
452 |2|(((
453 If
454
455 INDICATOR=XULADS.
456
457 Validity Period start period=2010
458 )))|(((
459 Set
460
461 OBS_CONF=F** **
462 )))
463
464 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
465
466 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
467
468 == 13.10 Mapping examples ==
469
470 === 13.10.1 Many to one mapping (N-1) ===
471
472 |Source|Map To
473 |(((
474 **FREQ**="A"
475
476 ADJUSTMENT="N"
477
478 **REF_AREA**="PL"
479
480 **COUNTERPART_AREA**="W0"
481
482 REF_SECTOR="S1"
483
484 COUNTERPART_SECTOR="S1" ACCOUNTING_ENTRY="B"
485
486 STO="B5G"
487 )))|(((
488 FREQ="A"
489
490 REF_AREA="PL"
491
492 COUNTERPART_AREA="W0"
493
494 INDICATOR="IND_ABC"
495 )))
496
497 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
498
499 FREQ => FREQ
500
501 REF_AREA=> REF_AREA
502
503 COUNTERPART_AREA=> COUNTERPART _AREA
504
505 No Representation Mapping is required. The source value simply copies across unmodified.
506
507 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
508
509 N:S1:S1:B:B5G => IND_ABC
510
511 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
512
513 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
514
515 === 13.10.2 Mapping other data types to Code Id ===
516
517 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
518
519 The following representation mapping can be used to explicitly map each age to an output code.
520
521 :
522
523 (((
524 |Source Input Free Text|Desired Output Code Id
525 |0|A
526 |1|A
527 |2|A
528 |3|B
529 |4|B
530 )))
531
532 If this mapping takes advantage of regular expressions it can be expressed in two 3464 rules:
533
534 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_8c1afe2b.gif||alt="Shape10" height="1" width="302"]]
535
536 __Regular Expression __Desired Output
537
538 :
539
540 (((
541 |[0-2]|A
542 |[3-4]|B
543 )))
544
545 === 13.10.3 Observation Attributes for Time Period ===
546
547 This use case is where a specific observation for a specific time period has an attribute 3468 value.
548
549 :
550
551 (((
552 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
553 |XULADS|2008|C
554 |XULADS|2009|C
555 |XULADS|2010|C
556 )))
557
558 __Or using a validity period on the Representation Mapping__:
559
560 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_6dbf7f.gif||alt="Shape11" height="36" width="555"]] Input INDICATOR Valid From/ Valid To Output OBS_CONF
561
562 XULADS 2008/2010 C
563
564 === 13.10.4 Time mapping ===
565
566 This use case is to create a time period from an input that does not respect SDMXTime Formats.
567
568 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
569
570 :
571
572 (((
573 |Source Value|Source Mapping|Target Frequency|Output
574 |18/07/1981|dd/MM/yyyy|A|1981
575 )))
576
577 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
578
579 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_dbe68698.gif||alt="Shape12" height="1" width="273"]]
580
581 :
582 ::
583
584 (((
585 |Source Value|Source Mapping|Target Frequency Output Dimension
586
587 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
588 |(% rowspan="2" %)(((
589 __When the source is a numerical form__at
590
591 Source Value Start Period Interv
592 )))| | |
593 |al|(((
594 Target
595
596 FREQ
597 )))|Output
598 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
599 )))
600
601 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
602
603 Source Value Source Mapping Target Frequency Output
604
605 Dimension
606
607 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_4ec4bb31.gif||alt="Shape13" height="173" width="555"]] 1981 yyyy D – End of Period 1981-12-31
608
609 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
610
611 Source Value Source Mapping Target Frequency Output
612
613 Dimension
614
615 1981 yyyy D – End of Period 1982-03-31
616
617 {{putFootnotes/}}