Wiki source code of 13 Structure Mapping

Version 10.6 by Helena on 2025/05/16 09:14

Show last authors
1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
41 (% style="width:674.294px" %)
42 |(% style="width:284px" %)**Source Component: REF_AREA**|(% style="width:387px" %)**Target Component: REGION**
43 |(% style="width:284px" %)FR|(% style="width:387px" %)EUR
44 |(% style="width:284px" %)DE|(% style="width:387px" %)EUR
45 |(% style="width:284px" %)IT|(% style="width:387px" %)EUR
46 |(% style="width:284px" %)ES|(% style="width:387px" %)EUR
47 |(% style="width:284px" %)BE|(% style="width:387px" %)EUR
48
49 == 13.3 N-n structure maps ==
50
51 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
52
53 Example:
54
55 (% style="width:760.294px" %)
56 |(% style="width:58px" %)**Rule**|(% style="width:384px" %)**Source**|(% style="width:313px" %)**Target**
57 |(% style="width:58px" %)1|(% style="width:384px" %)(((
58 If
59 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
60 )))|(% style="width:313px" %)(((
61 Set
62 INDICATOR=A_N_L
63 )))
64 |(% style="width:58px" %)2|(% style="width:384px" %)(((
65 If
66 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
67 )))|(% style="width:313px" %)(((
68 Set
69 INDICATOR=MON_SAX_12
70 )))
71
72 N-n rules can also set values for multiple source Components.
73
74 (% style="width:757.294px" %)
75 |(% style="width:62px" %)**Rule**|(% style="width:378px" %)**Source**|(% style="width:312px" %)**Target**
76 |(% style="width:62px" %)1|(% style="width:378px" %)(((
77 If
78 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
79 )))|(% style="width:312px" %)(((
80 Set
81 INDICATOR=A_N_L,
82 STATUS=QXR15,
83 NOTE="Unadjusted".
84 )))
85 |(% style="width:62px" %)2|(% style="width:378px" %)(((
86 If
87 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
88 )))|(% style="width:312px" %)(((
89 Set
90 INDICATOR=MON_SAX_12, STATUS=MPM12,
91 NOTE="Seasonally Adjusted"
92 )))
93
94 == 13.4 Ambiguous mapping rules ==
95
96 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
97
98 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
99
100 |Source|Target|Output Series Key
101 |SERIES_CODE=XMAN_Z_21|(((
102 Dimensions
103
104 INDICATOR=XM
105
106 FREQ=A
107
108 ADJUSTMENT=N
109
110 Attributes
111
112 UNIT_MEASURE=_Z
113
114 COMP_ORG=21
115 )))|XM:A:N
116 |SERIES_CODE=XMAN_Z_34|(((
117 Dimensions
118
119 INDICATOR=XM
120
121 FREQ=A
122
123 ADJUSTMENT=N
124
125 Attributes
126
127 UNIT_MEASURE=_Z
128
129 COMP_ORG=34
130 )))|XM:A:N
131
132 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
133
134 == 13.5 Representation maps ==
135
136 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
137
138 The source and target of a Representation Map can reference any of the following:
139
140 1. Codelist
141 1. Free Text (restricted by type, e.g String, Integer, Boolean)
142 1. Valuelist
143
144 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
145
146 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
147 |AF|AFG
148 |AL|ALB
149 |DZ|DZA
150 |AS|ASM
151 |AD|AND
152 |etc…|
153
154 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
155
156 |Text|CL_ISO_ALPHA2
157 |"Germany"|DE
158 |"France"|FR
159 |"United Kingdom"|GB
160 |"Great Britain"|GB
161 |"Ireland"|IE
162 |"Eire"|IE
163 |etc…|
164
165 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
166
167 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
168
169 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
170
171 |Value|Locale|Name
172 |$|en|United States Dollar
173 |%|En|Percentage
174 | |fr|Pourcentage
175
176 Other characteristics of Representation Maps:
177
178 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
179 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
180 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
181
182 == 13.6 Regular expression and substring rules ==
183
184 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
185
186 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
187
188 //If starts with 'XU' map to 'Y'//
189
190 These rules are described using either regular expressions, or substrings for simpler use cases.
191
192 === 13.6.1 Regular expressions ===
193
194 Regular expression mapping rules are defined in the Representation Map.
195
196 Below is an example set of regular expression rules for a particular component.
197
198 |Regex|Description|Output
199 |A|Rule match if input = 'A'|OUT_A
200 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
201 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
202
203 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
204
205 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
206
207 |Regex|Target output|Example Input|Example Output
208 |(((
209 ([0-9]{4})[0-
210
211 9]([0-9]{1})
212 )))|\1-Q\2|200933|2009-Q3
213
214 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
215
216 The following example shows this:
217
218 |Priority|Regex|Description|Output
219 |1|A|Rule match if input = 'A'|OUT_A
220 |2|B|Rule match if input = 'B'|OUT_B
221 |3|[A-Z]|Any character A-Z|OUT_C
222
223 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
224
225 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
226
227 === 13.6.2 Substrings ===
228
229 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
230
231 For instance:
232
233 |Input String|Start|Length|Output
234 |ABC_DEF_XYZ|5|3|DEF
235 |XULADS|1|2|XU
236
237 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
238
239 |Start|Length|Source|Target
240 |1|2|XU|Y
241
242 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
243
244 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
245
246 Two types of time input are defined:
247
248 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
249
250 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
251
252 |Frequency|Format|Example
253 |A|YYYY|2010
254 |D|YYYY-MM-DD|2010-01-01
255 |I|YYYY-MM-DDThh:mm:ss|2010-01T20:22:00
256 |M|YYYY-MM|2010-01
257 |Q|YYYY-Qn|2010-Q1
258 |S|YYYY-Sn|2010-S1
259 |T|YYYY-Tn|2010-T1
260 |W|YYYY-Wn|YYYY-W53
261
262 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
263
264 There are two important points to note:
265
266 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
267 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
268
269 === 13.7.1 Pattern based dates ===
270
271 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
272
273 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^44^^>>path:#sdfootnote44sym||name="sdfootnote44anc"]](%%)^^. An indicative list of examples is presented in the following table:
274
275 |English (en)|Australia (AU)|en-AU
276 |English (en)|Canada (CA)|en-CA
277 |English (en)|United Kingdom (GB)|en-GB
278 |English (en)|United States (US)|en-US
279 |Estonian (et)|Estonia (EE)|et-EE
280 |Finnish (fi)|Finland (FI)|fi-FI
281 |French (fr)|Belgium (BE)|fr-BE
282 |French (fr)|Canada (CA)|fr-CA
283 |French (fr)|France (FR)|fr-FR
284 |French (fr)|Luxembourg (LU)|fr-LU
285 |French (fr)|Switzerland (CH)|fr-CH
286 |German (de)|Austria (AT)|de-AT
287 |German (de)|Germany (DE)|de-DE
288
289 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape8" height="1" width="192"]]
290
291 |German (de)|Luxembourg (LU)|de-LU
292 |German (de)|Switzerland (CH)|de-CH
293 |Greek (el)|Cyprus (CY)|el-CY[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
294 |Greek (el)|Greece (GR)|el-GR
295 |Hebrew (iw)|Israel (IL)|iw-IL
296 |Hindi (hi)|India (IN)|hi-IN
297 |Hungarian (hu)|Hungary (HU)|hu-HU
298 |Icelandic (is)|Iceland (IS)|is-IS
299 |Indonesian (in)|Indonesia (ID)|in-ID[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
300 |Irish (ga)|Ireland (IE)|ga-IE[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
301 |Italian (it)|Italy (IT)|it-IT
302
303 Examples
304
305 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
306
307 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
308
309 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
310
311 22 Jul 1981 would be described as dd MMM YYYY
312
313 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
314
315 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
316
317 |Letter|Date or Time Component|Presentation|Examples
318 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
319 |yy|Year short (upper case is Year of Week^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^45^^>>path:#sdfootnote45sym||name="sdfootnote45anc"]](%%)^^)|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
320 |yyyy|Year Full (upper case is Year of Week)|Year|1996
321 |MM|Month number in year starting with 1|Month|07
322 |MMM|Month name short|Month|Jul
323 |MMMM|Month name full|Month|July
324 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
325 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
326 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
327 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
328 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
329 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
330
331 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape9" height="1" width="192"]]
332
333 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
334 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
335 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
336 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
337 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
338 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
339 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
340 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
341 |n|Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
342
343 The model is illustrated below:
344
345 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
346
347 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
348
349 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
350
351 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
352
353 === 13.7.2 Numerical based datetime ===
354
355 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
356
357 * day
358 * second
359 * millisecond
360 * microsecond
361 * nanosecond
362
363 |Numerical datetime systems|Base|Period
364 |(((
365 Epoch Time (UNIX)
366
367 Milliseconds since 01 Jan 1970
368 )))|1970|millisecond
369 |(((
370 Windows System Time
371
372 Milliseconds since 01 Jan 1601
373 )))|1601|millisecond
374
375 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
376
377 The model is illustrated below:
378
379 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
380
381 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
382
383 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
384
385 === 13.7.3 Mapping more complex time inputs ===
386
387 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
388
389 == 13.8 Using TIME_PERIOD in mapping rules ==
390
391 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
392
393 The main use case is setting the value of Observation Attributes in the target dataset.
394
395 |Rule|Source|Target
396 |1|(((
397 If
398
399 INDICATOR=XULADS; and TIME_PERIOD=2007.
400 )))|(((
401 Set
402
403 OBS_CONF=F
404 )))
405 |2|(((
406 If
407
408 INDICATOR=XULADS; and TIME_PERIOD=2008.
409 )))|(((
410 Set
411
412 OBS_CONF=F
413 )))
414 |3|(((
415 If
416
417 INDICATOR=XULADS; and TIME_PERIOD=2009.
418 )))|(((
419 Set
420
421 OBS_CONF=F
422 )))
423 |4|(((
424 If
425
426 INDICATOR=XULADS; and TIME_PERIOD=2010.
427 )))|(((
428 Set
429
430 OBS_CONF=**C**
431 )))
432
433 In the example above, OBS_CONF is an Observation Attribute.
434
435 == 13.9 Time span mapping rules using validity periods ==
436
437 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
438
439 Instead, an optional validity period can be set for each mapping.
440
441 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
442
443 |Rule|Source|Target
444 |1|(((
445 If
446
447 INDICATOR=XULADS.
448
449 Validity Period start period=2007 end period=2009
450 )))|(((
451 Set
452
453 OBS_CONF=F
454 )))
455 |2|(((
456 If
457
458 INDICATOR=XULADS.
459
460 Validity Period start period=2010
461 )))|(((
462 Set
463
464 OBS_CONF=F** **
465 )))
466
467 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
468
469 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
470
471 == 13.10 Mapping examples ==
472
473 === 13.10.1 Many to one mapping (N-1) ===
474
475 |Source|Map To
476 |(((
477 **FREQ**="A"
478
479 ADJUSTMENT="N"
480
481 **REF_AREA**="PL"
482
483 **COUNTERPART_AREA**="W0"
484
485 REF_SECTOR="S1"
486
487 COUNTERPART_SECTOR="S1" ACCOUNTING_ENTRY="B"
488
489 STO="B5G"
490 )))|(((
491 FREQ="A"
492
493 REF_AREA="PL"
494
495 COUNTERPART_AREA="W0"
496
497 INDICATOR="IND_ABC"
498 )))
499
500 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
501
502 FREQ => FREQ
503
504 REF_AREA=> REF_AREA
505
506 COUNTERPART_AREA=> COUNTERPART _AREA
507
508 No Representation Mapping is required. The source value simply copies across unmodified.
509
510 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
511
512 N:S1:S1:B:B5G => IND_ABC
513
514 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
515
516 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
517
518 === 13.10.2 Mapping other data types to Code Id ===
519
520 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
521
522 The following representation mapping can be used to explicitly map each age to an output code.
523
524 :
525
526 (((
527 |Source Input Free Text|Desired Output Code Id
528 |0|A
529 |1|A
530 |2|A
531 |3|B
532 |4|B
533 )))
534
535 If this mapping takes advantage of regular expressions it can be expressed in two 3464 rules:
536
537 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_8c1afe2b.gif||alt="Shape10" height="1" width="302"]]
538
539 __Regular Expression __Desired Output
540
541 :
542
543 (((
544 |[0-2]|A
545 |[3-4]|B
546 )))
547
548 === 13.10.3 Observation Attributes for Time Period ===
549
550 This use case is where a specific observation for a specific time period has an attribute 3468 value.
551
552 :
553
554 (((
555 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
556 |XULADS|2008|C
557 |XULADS|2009|C
558 |XULADS|2010|C
559 )))
560
561 __Or using a validity period on the Representation Mapping__:
562
563 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_6dbf7f.gif||alt="Shape11" height="36" width="555"]] Input INDICATOR Valid From/ Valid To Output OBS_CONF
564
565 XULADS 2008/2010 C
566
567 === 13.10.4 Time mapping ===
568
569 This use case is to create a time period from an input that does not respect SDMXTime Formats.
570
571 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
572
573 :
574
575 (((
576 |Source Value|Source Mapping|Target Frequency|Output
577 |18/07/1981|dd/MM/yyyy|A|1981
578 )))
579
580 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
581
582 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_dbe68698.gif||alt="Shape12" height="1" width="273"]]
583
584 :
585 ::
586
587 (((
588 |Source Value|Source Mapping|Target Frequency Output Dimension
589
590 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
591 |(% rowspan="2" %)(((
592 __When the source is a numerical form__at
593
594 Source Value Start Period Interv
595 )))| | |
596 |al|(((
597 Target
598
599 FREQ
600 )))|Output
601 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
602 )))
603
604 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
605
606 Source Value Source Mapping Target Frequency Output
607
608 Dimension
609
610 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_4ec4bb31.gif||alt="Shape13" height="173" width="555"]] 1981 yyyy D – End of Period 1981-12-31
611
612 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
613
614 Source Value Source Mapping Target Frequency Output
615
616 Dimension
617
618 1981 yyyy D – End of Period 1982-03-31
619
620 {{putFootnotes/}}