Wiki source code of 13 Structure Mapping

Version 10.7 by Helena on 2025/05/16 09:15

Show last authors
1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
41 (% style="width:674.294px" %)
42 |(% style="width:284px" %)**Source Component: REF_AREA**|(% style="width:387px" %)**Target Component: REGION**
43 |(% style="width:284px" %)FR|(% style="width:387px" %)EUR
44 |(% style="width:284px" %)DE|(% style="width:387px" %)EUR
45 |(% style="width:284px" %)IT|(% style="width:387px" %)EUR
46 |(% style="width:284px" %)ES|(% style="width:387px" %)EUR
47 |(% style="width:284px" %)BE|(% style="width:387px" %)EUR
48
49 == 13.3 N-n structure maps ==
50
51 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
52
53 Example:
54
55 (% style="width:760.294px" %)
56 |(% style="width:58px" %)**Rule**|(% style="width:384px" %)**Source**|(% style="width:313px" %)**Target**
57 |(% style="width:58px" %)1|(% style="width:384px" %)(((
58 If
59 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
60 )))|(% style="width:313px" %)(((
61 Set
62 INDICATOR=A_N_L
63 )))
64 |(% style="width:58px" %)2|(% style="width:384px" %)(((
65 If
66 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
67 )))|(% style="width:313px" %)(((
68 Set
69 INDICATOR=MON_SAX_12
70 )))
71
72 N-n rules can also set values for multiple source Components.
73
74 (% style="width:757.294px" %)
75 |(% style="width:62px" %)**Rule**|(% style="width:378px" %)**Source**|(% style="width:312px" %)**Target**
76 |(% style="width:62px" %)1|(% style="width:378px" %)(((
77 If
78 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
79 )))|(% style="width:312px" %)(((
80 Set
81 INDICATOR=A_N_L,
82 STATUS=QXR15,
83 NOTE="Unadjusted".
84 )))
85 |(% style="width:62px" %)2|(% style="width:378px" %)(((
86 If
87 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
88 )))|(% style="width:312px" %)(((
89 Set
90 INDICATOR=MON_SAX_12, STATUS=MPM12,
91 NOTE="Seasonally Adjusted"
92 )))
93
94 == 13.4 Ambiguous mapping rules ==
95
96 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
97
98 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
99
100 (% style="width:819.294px" %)
101 |(% style="width:240px" %)**Source**|(% style="width:246px" %)**Target**|(% style="width:329px" %)**Output Series Key**
102 |(% style="width:240px" %)SERIES_CODE=XMAN_Z_21|(% style="width:246px" %)(((
103 Dimensions
104
105 INDICATOR=XM
106
107 FREQ=A
108
109 ADJUSTMENT=N
110
111 Attributes
112
113 UNIT_MEASURE=_Z
114
115 COMP_ORG=21
116 )))|(% style="width:329px" %)XM:A:N
117 |(% style="width:240px" %)SERIES_CODE=XMAN_Z_34|(% style="width:246px" %)(((
118 Dimensions
119
120 INDICATOR=XM
121
122 FREQ=A
123
124 ADJUSTMENT=N
125
126 Attributes
127
128 UNIT_MEASURE=_Z
129
130 COMP_ORG=34
131 )))|(% style="width:329px" %)XM:A:N
132
133 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
134
135 == 13.5 Representation maps ==
136
137 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
138
139 The source and target of a Representation Map can reference any of the following:
140
141 1. Codelist
142 1. Free Text (restricted by type, e.g String, Integer, Boolean)
143 1. Valuelist
144
145 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
146
147 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
148 |AF|AFG
149 |AL|ALB
150 |DZ|DZA
151 |AS|ASM
152 |AD|AND
153 |etc…|
154
155 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
156
157 |Text|CL_ISO_ALPHA2
158 |"Germany"|DE
159 |"France"|FR
160 |"United Kingdom"|GB
161 |"Great Britain"|GB
162 |"Ireland"|IE
163 |"Eire"|IE
164 |etc…|
165
166 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
167
168 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
169
170 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
171
172 |Value|Locale|Name
173 |$|en|United States Dollar
174 |%|En|Percentage
175 | |fr|Pourcentage
176
177 Other characteristics of Representation Maps:
178
179 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
180 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
181 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
182
183 == 13.6 Regular expression and substring rules ==
184
185 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
186
187 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
188
189 //If starts with 'XU' map to 'Y'//
190
191 These rules are described using either regular expressions, or substrings for simpler use cases.
192
193 === 13.6.1 Regular expressions ===
194
195 Regular expression mapping rules are defined in the Representation Map.
196
197 Below is an example set of regular expression rules for a particular component.
198
199 |Regex|Description|Output
200 |A|Rule match if input = 'A'|OUT_A
201 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
202 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
203
204 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
205
206 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
207
208 |Regex|Target output|Example Input|Example Output
209 |(((
210 ([0-9]{4})[0-
211
212 9]([0-9]{1})
213 )))|\1-Q\2|200933|2009-Q3
214
215 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
216
217 The following example shows this:
218
219 |Priority|Regex|Description|Output
220 |1|A|Rule match if input = 'A'|OUT_A
221 |2|B|Rule match if input = 'B'|OUT_B
222 |3|[A-Z]|Any character A-Z|OUT_C
223
224 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
225
226 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
227
228 === 13.6.2 Substrings ===
229
230 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
231
232 For instance:
233
234 |Input String|Start|Length|Output
235 |ABC_DEF_XYZ|5|3|DEF
236 |XULADS|1|2|XU
237
238 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
239
240 |Start|Length|Source|Target
241 |1|2|XU|Y
242
243 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
244
245 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
246
247 Two types of time input are defined:
248
249 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
250
251 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
252
253 |Frequency|Format|Example
254 |A|YYYY|2010
255 |D|YYYY-MM-DD|2010-01-01
256 |I|YYYY-MM-DDThh:mm:ss|2010-01T20:22:00
257 |M|YYYY-MM|2010-01
258 |Q|YYYY-Qn|2010-Q1
259 |S|YYYY-Sn|2010-S1
260 |T|YYYY-Tn|2010-T1
261 |W|YYYY-Wn|YYYY-W53
262
263 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
264
265 There are two important points to note:
266
267 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
268 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
269
270 === 13.7.1 Pattern based dates ===
271
272 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
273
274 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^44^^>>path:#sdfootnote44sym||name="sdfootnote44anc"]](%%)^^. An indicative list of examples is presented in the following table:
275
276 |English (en)|Australia (AU)|en-AU
277 |English (en)|Canada (CA)|en-CA
278 |English (en)|United Kingdom (GB)|en-GB
279 |English (en)|United States (US)|en-US
280 |Estonian (et)|Estonia (EE)|et-EE
281 |Finnish (fi)|Finland (FI)|fi-FI
282 |French (fr)|Belgium (BE)|fr-BE
283 |French (fr)|Canada (CA)|fr-CA
284 |French (fr)|France (FR)|fr-FR
285 |French (fr)|Luxembourg (LU)|fr-LU
286 |French (fr)|Switzerland (CH)|fr-CH
287 |German (de)|Austria (AT)|de-AT
288 |German (de)|Germany (DE)|de-DE
289
290 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape8" height="1" width="192"]]
291
292 |German (de)|Luxembourg (LU)|de-LU
293 |German (de)|Switzerland (CH)|de-CH
294 |Greek (el)|Cyprus (CY)|el-CY[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
295 |Greek (el)|Greece (GR)|el-GR
296 |Hebrew (iw)|Israel (IL)|iw-IL
297 |Hindi (hi)|India (IN)|hi-IN
298 |Hungarian (hu)|Hungary (HU)|hu-HU
299 |Icelandic (is)|Iceland (IS)|is-IS
300 |Indonesian (in)|Indonesia (ID)|in-ID[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
301 |Irish (ga)|Ireland (IE)|ga-IE[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
302 |Italian (it)|Italy (IT)|it-IT
303
304 Examples
305
306 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
307
308 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
309
310 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
311
312 22 Jul 1981 would be described as dd MMM YYYY
313
314 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
315
316 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
317
318 |Letter|Date or Time Component|Presentation|Examples
319 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
320 |yy|Year short (upper case is Year of Week^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^45^^>>path:#sdfootnote45sym||name="sdfootnote45anc"]](%%)^^)|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
321 |yyyy|Year Full (upper case is Year of Week)|Year|1996
322 |MM|Month number in year starting with 1|Month|07
323 |MMM|Month name short|Month|Jul
324 |MMMM|Month name full|Month|July
325 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
326 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
327 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
328 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
329 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
330 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
331
332 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape9" height="1" width="192"]]
333
334 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
335 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
336 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
337 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
338 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
339 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
340 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
341 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
342 |n|Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
343
344 The model is illustrated below:
345
346 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
347
348 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
349
350 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
351
352 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
353
354 === 13.7.2 Numerical based datetime ===
355
356 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
357
358 * day
359 * second
360 * millisecond
361 * microsecond
362 * nanosecond
363
364 |Numerical datetime systems|Base|Period
365 |(((
366 Epoch Time (UNIX)
367
368 Milliseconds since 01 Jan 1970
369 )))|1970|millisecond
370 |(((
371 Windows System Time
372
373 Milliseconds since 01 Jan 1601
374 )))|1601|millisecond
375
376 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
377
378 The model is illustrated below:
379
380 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
381
382 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
383
384 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
385
386 === 13.7.3 Mapping more complex time inputs ===
387
388 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
389
390 == 13.8 Using TIME_PERIOD in mapping rules ==
391
392 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
393
394 The main use case is setting the value of Observation Attributes in the target dataset.
395
396 |Rule|Source|Target
397 |1|(((
398 If
399
400 INDICATOR=XULADS; and TIME_PERIOD=2007.
401 )))|(((
402 Set
403
404 OBS_CONF=F
405 )))
406 |2|(((
407 If
408
409 INDICATOR=XULADS; and TIME_PERIOD=2008.
410 )))|(((
411 Set
412
413 OBS_CONF=F
414 )))
415 |3|(((
416 If
417
418 INDICATOR=XULADS; and TIME_PERIOD=2009.
419 )))|(((
420 Set
421
422 OBS_CONF=F
423 )))
424 |4|(((
425 If
426
427 INDICATOR=XULADS; and TIME_PERIOD=2010.
428 )))|(((
429 Set
430
431 OBS_CONF=**C**
432 )))
433
434 In the example above, OBS_CONF is an Observation Attribute.
435
436 == 13.9 Time span mapping rules using validity periods ==
437
438 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
439
440 Instead, an optional validity period can be set for each mapping.
441
442 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
443
444 |Rule|Source|Target
445 |1|(((
446 If
447
448 INDICATOR=XULADS.
449
450 Validity Period start period=2007 end period=2009
451 )))|(((
452 Set
453
454 OBS_CONF=F
455 )))
456 |2|(((
457 If
458
459 INDICATOR=XULADS.
460
461 Validity Period start period=2010
462 )))|(((
463 Set
464
465 OBS_CONF=F** **
466 )))
467
468 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
469
470 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
471
472 == 13.10 Mapping examples ==
473
474 === 13.10.1 Many to one mapping (N-1) ===
475
476 |Source|Map To
477 |(((
478 **FREQ**="A"
479
480 ADJUSTMENT="N"
481
482 **REF_AREA**="PL"
483
484 **COUNTERPART_AREA**="W0"
485
486 REF_SECTOR="S1"
487
488 COUNTERPART_SECTOR="S1" ACCOUNTING_ENTRY="B"
489
490 STO="B5G"
491 )))|(((
492 FREQ="A"
493
494 REF_AREA="PL"
495
496 COUNTERPART_AREA="W0"
497
498 INDICATOR="IND_ABC"
499 )))
500
501 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
502
503 FREQ => FREQ
504
505 REF_AREA=> REF_AREA
506
507 COUNTERPART_AREA=> COUNTERPART _AREA
508
509 No Representation Mapping is required. The source value simply copies across unmodified.
510
511 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
512
513 N:S1:S1:B:B5G => IND_ABC
514
515 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
516
517 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
518
519 === 13.10.2 Mapping other data types to Code Id ===
520
521 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
522
523 The following representation mapping can be used to explicitly map each age to an output code.
524
525 :
526
527 (((
528 |Source Input Free Text|Desired Output Code Id
529 |0|A
530 |1|A
531 |2|A
532 |3|B
533 |4|B
534 )))
535
536 If this mapping takes advantage of regular expressions it can be expressed in two 3464 rules:
537
538 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_8c1afe2b.gif||alt="Shape10" height="1" width="302"]]
539
540 __Regular Expression __Desired Output
541
542 :
543
544 (((
545 |[0-2]|A
546 |[3-4]|B
547 )))
548
549 === 13.10.3 Observation Attributes for Time Period ===
550
551 This use case is where a specific observation for a specific time period has an attribute 3468 value.
552
553 :
554
555 (((
556 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
557 |XULADS|2008|C
558 |XULADS|2009|C
559 |XULADS|2010|C
560 )))
561
562 __Or using a validity period on the Representation Mapping__:
563
564 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_6dbf7f.gif||alt="Shape11" height="36" width="555"]] Input INDICATOR Valid From/ Valid To Output OBS_CONF
565
566 XULADS 2008/2010 C
567
568 === 13.10.4 Time mapping ===
569
570 This use case is to create a time period from an input that does not respect SDMXTime Formats.
571
572 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
573
574 :
575
576 (((
577 |Source Value|Source Mapping|Target Frequency|Output
578 |18/07/1981|dd/MM/yyyy|A|1981
579 )))
580
581 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
582
583 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_dbe68698.gif||alt="Shape12" height="1" width="273"]]
584
585 :
586 ::
587
588 (((
589 |Source Value|Source Mapping|Target Frequency Output Dimension
590
591 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
592 |(% rowspan="2" %)(((
593 __When the source is a numerical form__at
594
595 Source Value Start Period Interv
596 )))| | |
597 |al|(((
598 Target
599
600 FREQ
601 )))|Output
602 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
603 )))
604
605 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
606
607 Source Value Source Mapping Target Frequency Output
608
609 Dimension
610
611 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_4ec4bb31.gif||alt="Shape13" height="173" width="555"]] 1981 yyyy D – End of Period 1981-12-31
612
613 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
614
615 Source Value Source Mapping Target Frequency Output
616
617 Dimension
618
619 1981 yyyy D – End of Period 1982-03-31
620
621 {{putFootnotes/}}