Wiki source code of 13 Structure Mapping

Version 10.8 by Helena on 2025/05/16 09:15

Hide last authors
Helena 10.2 1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
Helena 2.1 4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
Helena 10.3 21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
Helena 2.1 22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
Helena 10.3 30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
Helena 2.1 38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
Helena 10.4 41 (% style="width:674.294px" %)
42 |(% style="width:284px" %)**Source Component: REF_AREA**|(% style="width:387px" %)**Target Component: REGION**
43 |(% style="width:284px" %)FR|(% style="width:387px" %)EUR
44 |(% style="width:284px" %)DE|(% style="width:387px" %)EUR
45 |(% style="width:284px" %)IT|(% style="width:387px" %)EUR
46 |(% style="width:284px" %)ES|(% style="width:387px" %)EUR
47 |(% style="width:284px" %)BE|(% style="width:387px" %)EUR
Helena 2.1 48
49 == 13.3 N-n structure maps ==
50
51 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
52
53 Example:
54
Helena 10.5 55 (% style="width:760.294px" %)
56 |(% style="width:58px" %)**Rule**|(% style="width:384px" %)**Source**|(% style="width:313px" %)**Target**
57 |(% style="width:58px" %)1|(% style="width:384px" %)(((
Helena 2.1 58 If
59 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
Helena 10.5 60 )))|(% style="width:313px" %)(((
Helena 2.1 61 Set
62 INDICATOR=A_N_L
63 )))
Helena 10.5 64 |(% style="width:58px" %)2|(% style="width:384px" %)(((
Helena 2.1 65 If
66 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
Helena 10.5 67 )))|(% style="width:313px" %)(((
Helena 2.1 68 Set
69 INDICATOR=MON_SAX_12
70 )))
71
72 N-n rules can also set values for multiple source Components.
73
Helena 10.5 74 (% style="width:757.294px" %)
75 |(% style="width:62px" %)**Rule**|(% style="width:378px" %)**Source**|(% style="width:312px" %)**Target**
76 |(% style="width:62px" %)1|(% style="width:378px" %)(((
Helena 2.1 77 If
78 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
Helena 10.5 79 )))|(% style="width:312px" %)(((
Helena 2.1 80 Set
Helena 10.6 81 INDICATOR=A_N_L,
82 STATUS=QXR15,
83 NOTE="Unadjusted".
Helena 2.1 84 )))
Helena 10.5 85 |(% style="width:62px" %)2|(% style="width:378px" %)(((
Helena 2.1 86 If
87 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
Helena 10.5 88 )))|(% style="width:312px" %)(((
Helena 2.1 89 Set
Helena 10.6 90 INDICATOR=MON_SAX_12, STATUS=MPM12,
91 NOTE="Seasonally Adjusted"
Helena 2.1 92 )))
93
94 == 13.4 Ambiguous mapping rules ==
95
96 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
97
98 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
99
Helena 10.7 100 (% style="width:819.294px" %)
101 |(% style="width:240px" %)**Source**|(% style="width:246px" %)**Target**|(% style="width:329px" %)**Output Series Key**
102 |(% style="width:240px" %)SERIES_CODE=XMAN_Z_21|(% style="width:246px" %)(((
Helena 2.1 103 Dimensions
104 INDICATOR=XM
105 FREQ=A
106 ADJUSTMENT=N
107 Attributes
108 UNIT_MEASURE=_Z
109 COMP_ORG=21
Helena 10.7 110 )))|(% style="width:329px" %)XM:A:N
111 |(% style="width:240px" %)SERIES_CODE=XMAN_Z_34|(% style="width:246px" %)(((
Helena 2.1 112 Dimensions
113 INDICATOR=XM
114 FREQ=A
115 ADJUSTMENT=N
116 Attributes
117 UNIT_MEASURE=_Z
118 COMP_ORG=34
Helena 10.7 119 )))|(% style="width:329px" %)XM:A:N
Helena 2.1 120
121 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
122
123 == 13.5 Representation maps ==
124
125 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
126
127 The source and target of a Representation Map can reference any of the following:
128
129 1. Codelist
130 1. Free Text (restricted by type, e.g String, Integer, Boolean)
131 1. Valuelist
132
133 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
134
135 |CL_ISO_ALPHA2|CL_ISO_ALPHA3
136 |AF|AFG
137 |AL|ALB
138 |DZ|DZA
139 |AS|ASM
140 |AD|AND
Helena 10.2 141 |etc…|
Helena 2.1 142
143 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
144
145 |Text|CL_ISO_ALPHA2
146 |"Germany"|DE
147 |"France"|FR
148 |"United Kingdom"|GB
149 |"Great Britain"|GB
150 |"Ireland"|IE
151 |"Eire"|IE
Helena 10.2 152 |etc…|
Helena 2.1 153
154 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
155
156 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
157
158 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
159
160 |Value|Locale|Name
161 |$|en|United States Dollar
162 |%|En|Percentage
Helena 10.2 163 | |fr|Pourcentage
Helena 2.1 164
165 Other characteristics of Representation Maps:
166
167 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
168 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
169 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
170
171 == 13.6 Regular expression and substring rules ==
172
173 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
174
175 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
176
177 //If starts with 'XU' map to 'Y'//
178
179 These rules are described using either regular expressions, or substrings for simpler use cases.
180
181 === 13.6.1 Regular expressions ===
182
183 Regular expression mapping rules are defined in the Representation Map.
184
185 Below is an example set of regular expression rules for a particular component.
186
187 |Regex|Description|Output
188 |A|Rule match if input = 'A'|OUT_A
189 |^[A-G]|Rule match if the input starts with letters A to G|OUT_B
190 |A~|B|Rule match if input is either 'A' or 'B'|OUT_C
191
192 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
193
194 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
195
196 |Regex|Target output|Example Input|Example Output
197 |(((
198 ([0-9]{4})[0-
199
200 9]([0-9]{1})
201 )))|\1-Q\2|200933|2009-Q3
202
203 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
204
205 The following example shows this:
206
207 |Priority|Regex|Description|Output
208 |1|A|Rule match if input = 'A'|OUT_A
209 |2|B|Rule match if input = 'B'|OUT_B
210 |3|[A-Z]|Any character A-Z|OUT_C
211
212 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
213
214 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
215
216 === 13.6.2 Substrings ===
217
218 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
219
220 For instance:
221
222 |Input String|Start|Length|Output
223 |ABC_DEF_XYZ|5|3|DEF
224 |XULADS|1|2|XU
225
226 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
227
228 |Start|Length|Source|Target
229 |1|2|XU|Y
230
231 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
232
233 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
234
235 Two types of time input are defined:
236
237 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
238
239 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
240
241 |Frequency|Format|Example
242 |A|YYYY|2010
243 |D|YYYY-MM-DD|2010-01-01
244 |I|YYYY-MM-DDThh:mm:ss|2010-01T20:22:00
245 |M|YYYY-MM|2010-01
246 |Q|YYYY-Qn|2010-Q1
247 |S|YYYY-Sn|2010-S1
248 |T|YYYY-Tn|2010-T1
249 |W|YYYY-Wn|YYYY-W53
250
251 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
252
253 There are two important points to note:
254
255 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
256 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
257
258 === 13.7.1 Pattern based dates ===
259
260 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
261
Helena 10.3 262 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^44^^>>path:#sdfootnote44sym||name="sdfootnote44anc"]](%%)^^. An indicative list of examples is presented in the following table:
Helena 2.1 263
264 |English (en)|Australia (AU)|en-AU
265 |English (en)|Canada (CA)|en-CA
266 |English (en)|United Kingdom (GB)|en-GB
267 |English (en)|United States (US)|en-US
268 |Estonian (et)|Estonia (EE)|et-EE
269 |Finnish (fi)|Finland (FI)|fi-FI
270 |French (fr)|Belgium (BE)|fr-BE
271 |French (fr)|Canada (CA)|fr-CA
272 |French (fr)|France (FR)|fr-FR
273 |French (fr)|Luxembourg (LU)|fr-LU
274 |French (fr)|Switzerland (CH)|fr-CH
275 |German (de)|Austria (AT)|de-AT
276 |German (de)|Germany (DE)|de-DE
277
278 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape8" height="1" width="192"]]
279
280 |German (de)|Luxembourg (LU)|de-LU
281 |German (de)|Switzerland (CH)|de-CH
282 |Greek (el)|Cyprus (CY)|el-CY[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
283 |Greek (el)|Greece (GR)|el-GR
284 |Hebrew (iw)|Israel (IL)|iw-IL
285 |Hindi (hi)|India (IN)|hi-IN
286 |Hungarian (hu)|Hungary (HU)|hu-HU
287 |Icelandic (is)|Iceland (IS)|is-IS
288 |Indonesian (in)|Indonesia (ID)|in-ID[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
289 |Irish (ga)|Ireland (IE)|ga-IE[[__(*)__>>url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]][[url:https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]]
290 |Italian (it)|Italy (IT)|it-IT
291
292 Examples
293
294 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
295
296 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
297
298 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
299
300 22 Jul 1981 would be described as dd MMM YYYY
301
302 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
303
304 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
305
306 |Letter|Date or Time Component|Presentation|Examples
307 |G|Era designator|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|AD
Helena 10.3 308 |yy|Year short (upper case is Year of Week^^[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)^^45^^>>path:#sdfootnote45sym||name="sdfootnote45anc"]](%%)^^)|[[Year>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year]]|96
Helena 2.1 309 |yyyy|Year Full (upper case is Year of Week)|Year|1996
310 |MM|Month number in year starting with 1|Month|07
311 |MMM|Month name short|Month|Jul
312 |MMMM|Month name full|Month|July
313 |ww|Week in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|27
314 |W|Week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
315 |DD|Day in year|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|189
316 |dd|Day in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|10
317 |F|Day of week in month|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|2
318 |E|Day name in week|[[Text>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text]]|Tuesday; Tue
319
320 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_59eee18f.gif||alt="Shape9" height="1" width="192"]]
321
322 |U|Day number of week (1 = Monday, ..., 7 = Sunday)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|1
323 |HH|Hour in day (0-23)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
324 |kk|Hour in day (1-24)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|24
325 |KK|Hour in am/pm (0-11)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|0
326 |hh|Hour in am/pm (1-12)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
327 |mm|Minute in hour|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|30
328 |ss|Second in minute|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|55
329 |S|Millisecond|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|978
330 |n|Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|[[Number>>url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]][[url:https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number]]|12
331
332 The model is illustrated below:
333
334 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
335
336 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
337
338 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
339
340 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
341
342 === 13.7.2 Numerical based datetime ===
343
344 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
345
346 * day
347 * second
348 * millisecond
349 * microsecond
350 * nanosecond
351
352 |Numerical datetime systems|Base|Period
353 |(((
354 Epoch Time (UNIX)
355
356 Milliseconds since 01 Jan 1970
357 )))|1970|millisecond
358 |(((
359 Windows System Time
360
361 Milliseconds since 01 Jan 1601
362 )))|1601|millisecond
363
364 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
365
366 The model is illustrated below:
367
368 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
369
370 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
371
372 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
373
374 === 13.7.3 Mapping more complex time inputs ===
375
376 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
377
378 == 13.8 Using TIME_PERIOD in mapping rules ==
379
380 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
381
382 The main use case is setting the value of Observation Attributes in the target dataset.
383
384 |Rule|Source|Target
385 |1|(((
386 If
387
388 INDICATOR=XULADS; and TIME_PERIOD=2007.
389 )))|(((
390 Set
391
392 OBS_CONF=F
393 )))
394 |2|(((
395 If
396
397 INDICATOR=XULADS; and TIME_PERIOD=2008.
398 )))|(((
399 Set
400
401 OBS_CONF=F
402 )))
403 |3|(((
404 If
405
406 INDICATOR=XULADS; and TIME_PERIOD=2009.
407 )))|(((
408 Set
409
410 OBS_CONF=F
411 )))
412 |4|(((
413 If
414
415 INDICATOR=XULADS; and TIME_PERIOD=2010.
416 )))|(((
417 Set
418
419 OBS_CONF=**C**
420 )))
421
422 In the example above, OBS_CONF is an Observation Attribute.
423
424 == 13.9 Time span mapping rules using validity periods ==
425
426 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
427
428 Instead, an optional validity period can be set for each mapping.
429
430 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
431
432 |Rule|Source|Target
433 |1|(((
434 If
435
436 INDICATOR=XULADS.
437
438 Validity Period start period=2007 end period=2009
439 )))|(((
440 Set
441
442 OBS_CONF=F
443 )))
444 |2|(((
445 If
446
447 INDICATOR=XULADS.
448
449 Validity Period start period=2010
450 )))|(((
451 Set
452
453 OBS_CONF=F** **
454 )))
455
456 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
457
458 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
459
460 == 13.10 Mapping examples ==
461
462 === 13.10.1 Many to one mapping (N-1) ===
463
464 |Source|Map To
465 |(((
466 **FREQ**="A"
467
468 ADJUSTMENT="N"
469
470 **REF_AREA**="PL"
471
472 **COUNTERPART_AREA**="W0"
473
474 REF_SECTOR="S1"
475
476 COUNTERPART_SECTOR="S1" ACCOUNTING_ENTRY="B"
477
478 STO="B5G"
479 )))|(((
480 FREQ="A"
481
482 REF_AREA="PL"
483
484 COUNTERPART_AREA="W0"
485
486 INDICATOR="IND_ABC"
487 )))
488
489 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
490
491 FREQ => FREQ
492
493 REF_AREA=> REF_AREA
494
495 COUNTERPART_AREA=> COUNTERPART _AREA
496
497 No Representation Mapping is required. The source value simply copies across unmodified.
498
499 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
500
501 N:S1:S1:B:B5G => IND_ABC
502
503 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
504
505 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
506
507 === 13.10.2 Mapping other data types to Code Id ===
508
509 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
510
511 The following representation mapping can be used to explicitly map each age to an output code.
512
Helena 10.2 513 :
Helena 2.1 514
515 (((
516 |Source Input Free Text|Desired Output Code Id
517 |0|A
518 |1|A
519 |2|A
520 |3|B
521 |4|B
522 )))
523
524 If this mapping takes advantage of regular expressions it can be expressed in two 3464 rules:
525
526 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_8c1afe2b.gif||alt="Shape10" height="1" width="302"]]
527
528 __Regular Expression __Desired Output
529
Helena 10.2 530 :
Helena 2.1 531
532 (((
533 |[0-2]|A
534 |[3-4]|B
535 )))
536
537 === 13.10.3 Observation Attributes for Time Period ===
538
539 This use case is where a specific observation for a specific time period has an attribute 3468 value.
540
Helena 10.2 541 :
Helena 2.1 542
543 (((
544 |Input INDICATOR|Input TIME_PERIOD|Output OBS_CONF
545 |XULADS|2008|C
546 |XULADS|2009|C
547 |XULADS|2010|C
548 )))
549
550 __Or using a validity period on the Representation Mapping__:
551
552 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_6dbf7f.gif||alt="Shape11" height="36" width="555"]] Input INDICATOR Valid From/ Valid To Output OBS_CONF
553
554 XULADS 2008/2010 C
555
556 === 13.10.4 Time mapping ===
557
558 This use case is to create a time period from an input that does not respect SDMXTime Formats.
559
560 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
561
Helena 10.2 562 :
Helena 2.1 563
564 (((
565 |Source Value|Source Mapping|Target Frequency|Output
566 |18/07/1981|dd/MM/yyyy|A|1981
567 )))
568
569 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
570
571 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_dbe68698.gif||alt="Shape12" height="1" width="273"]]
572
Helena 10.2 573 :
574 ::
Helena 2.1 575
576 (((
577 |Source Value|Source Mapping|Target Frequency Output Dimension
578
Helena 10.2 579 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
Helena 2.1 580 |(% rowspan="2" %)(((
581 __When the source is a numerical form__at
582
583 Source Value Start Period Interv
Helena 10.2 584 )))| | |
Helena 2.1 585 |al|(((
586 Target
587
588 FREQ
589 )))|Output
590 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
591 )))
592
593 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
594
595 Source Value Source Mapping Target Frequency Output
596
597 Dimension
598
599 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_4ec4bb31.gif||alt="Shape13" height="173" width="555"]] 1981 yyyy D – End of Period 1981-12-31
600
601 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
602
603 Source Value Source Mapping Target Frequency Output
604
605 Dimension
606
607 1981 yyyy D – End of Period 1982-03-31
Helena 10.3 608
609 {{putFootnotes/}}