Wiki source code of 13 Structure Mapping

Version 11.2 by Helena on 2025/05/16 12:43

Hide last authors
Helena 10.2 1 {{box title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
Helena 2.1 4
5 == 13.1 Introduction ==
6
7 The purpose of SDMX structure mapping is to transform datasets from one dimensionality to another. In practice, this means that the input and output datasets conform to different Data Structure Definition.
8
9 Structure mapping does not alter the observation values and is not intended to perform any aggregations or calculations.
10
11 An input series maps to:
12
13 1. Exactly one output series; or
14 1. Multiple output series with different Series Keys, but the same observation values; or
15 1. Zero output series where no source rule matches the input Component values.
16
17 Typical use cases include:
18
19 * Transforming received data into a common internal structure;
20 * Transforming reported data into the data collector's preferred structure;
Helena 10.3 21 * Transforming unidimensional datasets{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}} to multi-dimensional; and
Helena 2.1 22 * Transforming internal datasets with a complex structure to a simpler structure with fewer dimensions suitable for dissemination.
23
24 == 13.2 1-1 structure maps ==
25
26 1-1 (pronounced 'one to one') mappings support the simple use case where the value of a Component in the source structure is translated to a different value in the target, usually where different classification schemes are used for the same Concept.
27
28 In the example below, ISO 2-character country codes are mapped to their ISO 3character equivalent.
29
Helena 10.3 30 (% style="width:666.294px" %)
31 |(% style="width:217px" %)**Country**|(% style="width:251px" %)**Alpha-2 code**|(% style="width:195px" %)**Alpha-3 code**
32 |(% style="width:217px" %)Afghanistan|(% style="width:251px" %)AF|(% style="width:195px" %)AFG
33 |(% style="width:217px" %)Albania|(% style="width:251px" %)AL|(% style="width:195px" %)ALB
34 |(% style="width:217px" %)Algeria|(% style="width:251px" %)DZ|(% style="width:195px" %)DZA
35 |(% style="width:217px" %)American Samoa|(% style="width:251px" %)AS|(% style="width:195px" %)ASM
36 |(% style="width:217px" %)Andorra|(% style="width:251px" %)AD|(% style="width:195px" %)AND
37 |(% style="width:217px" %)etc…|(% style="width:251px" %) |(% style="width:195px" %)
Helena 2.1 38
39 Different source values can also map to the same target value, for example when deriving regions from country codes.
40
Helena 10.4 41 (% style="width:674.294px" %)
Helena 11.2 42 |(% style="width:284px" %)**Source Component:
43 REF_AREA**|(% style="width:387px" %)**Target Component:
44 REGION**
Helena 10.4 45 |(% style="width:284px" %)FR|(% style="width:387px" %)EUR
46 |(% style="width:284px" %)DE|(% style="width:387px" %)EUR
47 |(% style="width:284px" %)IT|(% style="width:387px" %)EUR
48 |(% style="width:284px" %)ES|(% style="width:387px" %)EUR
49 |(% style="width:284px" %)BE|(% style="width:387px" %)EUR
Helena 2.1 50
51 == 13.3 N-n structure maps ==
52
53 N-n (pronounced 'N to N') mappings describe rules where a specified combination of values in multiple source Components map to specified values in one or more target Components. For example, when mapping a partial Series Key from a highly multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in a target Data Structure.
54
55 Example:
56
Helena 10.5 57 (% style="width:760.294px" %)
58 |(% style="width:58px" %)**Rule**|(% style="width:384px" %)**Source**|(% style="width:313px" %)**Target**
59 |(% style="width:58px" %)1|(% style="width:384px" %)(((
Helena 2.1 60 If
61 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
Helena 10.5 62 )))|(% style="width:313px" %)(((
Helena 2.1 63 Set
64 INDICATOR=A_N_L
65 )))
Helena 10.5 66 |(% style="width:58px" %)2|(% style="width:384px" %)(((
Helena 2.1 67 If
68 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
Helena 10.5 69 )))|(% style="width:313px" %)(((
Helena 2.1 70 Set
71 INDICATOR=MON_SAX_12
72 )))
73
74 N-n rules can also set values for multiple source Components.
75
Helena 10.5 76 (% style="width:757.294px" %)
77 |(% style="width:62px" %)**Rule**|(% style="width:378px" %)**Source**|(% style="width:312px" %)**Target**
78 |(% style="width:62px" %)1|(% style="width:378px" %)(((
Helena 2.1 79 If
80 FREQUENCY=A; and ADJUSTMENT=N; and MATURITY=L.
Helena 10.5 81 )))|(% style="width:312px" %)(((
Helena 2.1 82 Set
Helena 10.6 83 INDICATOR=A_N_L,
84 STATUS=QXR15,
85 NOTE="Unadjusted".
Helena 2.1 86 )))
Helena 10.5 87 |(% style="width:62px" %)2|(% style="width:378px" %)(((
Helena 2.1 88 If
89 FREQUENCY=M; and ADJUSTMENT=S_A1; and MATURITY=TY12.
Helena 10.5 90 )))|(% style="width:312px" %)(((
Helena 2.1 91 Set
Helena 10.6 92 INDICATOR=MON_SAX_12, STATUS=MPM12,
93 NOTE="Seasonally Adjusted"
Helena 2.1 94 )))
95
96 == 13.4 Ambiguous mapping rules ==
97
98 A structure map is ambiguous if the rules result in a dataset containing multiple series with the same Series Key.
99
100 A simple example mapping a source dataset with a single dimension to one with multiple dimensions is shown below:
101
Helena 10.7 102 (% style="width:819.294px" %)
103 |(% style="width:240px" %)**Source**|(% style="width:246px" %)**Target**|(% style="width:329px" %)**Output Series Key**
104 |(% style="width:240px" %)SERIES_CODE=XMAN_Z_21|(% style="width:246px" %)(((
Helena 2.1 105 Dimensions
106 INDICATOR=XM
107 FREQ=A
108 ADJUSTMENT=N
109 Attributes
110 UNIT_MEASURE=_Z
111 COMP_ORG=21
Helena 10.7 112 )))|(% style="width:329px" %)XM:A:N
113 |(% style="width:240px" %)SERIES_CODE=XMAN_Z_34|(% style="width:246px" %)(((
Helena 2.1 114 Dimensions
115 INDICATOR=XM
116 FREQ=A
117 ADJUSTMENT=N
118 Attributes
119 UNIT_MEASURE=_Z
120 COMP_ORG=34
Helena 10.7 121 )))|(% style="width:329px" %)XM:A:N
Helena 2.1 122
123 The above behaviour can be okay if the series XMAN_Z_21 contains observations for different periods of time then the series XMAN_Z_34. If however both series contain observations for the same point in time, the output for this mapping will be two observations with the same series key, for the same period in time.
124
125 == 13.5 Representation maps ==
126
127 Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe explicit mappings between source and target Component values.
128
129 The source and target of a Representation Map can reference any of the following:
130
131 1. Codelist
132 1. Free Text (restricted by type, e.g String, Integer, Boolean)
133 1. Valuelist
134
135 A Representation Map mapping ISO 2-character to ISO 3-character Codelists would take the following form:
136
Helena 10.9 137 (% style="width:763.294px" %)
138 |(% style="width:252px" %)**CL_ISO_ALPHA2**|(% style="width:508px" %)**CL_ISO_ALPHA3**
139 |(% style="width:252px" %)AF|(% style="width:508px" %)AFG
140 |(% style="width:252px" %)AL|(% style="width:508px" %)ALB
141 |(% style="width:252px" %)DZ|(% style="width:508px" %)DZA
142 |(% style="width:252px" %)AS|(% style="width:508px" %)ASM
143 |(% style="width:252px" %)AD|(% style="width:508px" %)AND
144 |(% style="width:252px" %)etc…|(% style="width:508px" %)
Helena 2.1 145
146 A Representation Map mapping free text country names to an ISO 2-character Codelist could be similarly described:
147
Helena 10.9 148 (% style="width:770.294px" %)
149 |(% style="width:247px" %)**Text**|(% style="width:520px" %)**CL_ISO_ALPHA2**
150 |(% style="width:247px" %)"Germany"|(% style="width:520px" %)DE
151 |(% style="width:247px" %)"France"|(% style="width:520px" %)FR
152 |(% style="width:247px" %)"United Kingdom"|(% style="width:520px" %)GB
153 |(% style="width:247px" %)"Great Britain"|(% style="width:520px" %)GB
154 |(% style="width:247px" %)"Ireland"|(% style="width:520px" %)IE
155 |(% style="width:247px" %)"Eire"|(% style="width:520px" %)IE
156 |(% style="width:247px" %)etc…|(% style="width:520px" %)
Helena 2.1 157
158 Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to IDType, but as a consequence are not Identifiable.
159
160 When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX identifiers.
161
162 In common with Codelists, each item in a Valuelist has a multilingual name giving it a human-readable label and an optional description. For example:
163
Helena 10.9 164 (% style="width:780.294px" %)
165 |(% style="width:126px" %)**Value**|(% style="width:153px" %)**Locale**|(% style="width:498px" %)**Name**
166 |(% style="width:126px" %)$|(% style="width:153px" %)en|(% style="width:498px" %)United States Dollar
167 |(% style="width:126px" %)%|(% style="width:153px" %)En|(% style="width:498px" %)Percentage
168 |(% style="width:126px" %) |(% style="width:153px" %)fr|(% style="width:498px" %)Pourcentage
Helena 2.1 169
170 Other characteristics of Representation Maps:
171
172 * Support the mapping of multiple source Component values to multiple Target Component values as described in section 13.3 on n-to-n mappings; this covers also the case of mapping an Attribute with an array representation to map combinations of values to a single target value;
173 * Allow source or target mappings for an Item to be optional allowing rules such as 'A maps to nothing' or 'nothing maps to A'; and
174 * Support for mapping rules where regular expressions or substrings are used to match source Component values. Refer to section 13.6 for more on this topic.
175
176 == 13.6 Regular expression and substring rules ==
177
178 It is common for classifications to contain meanings within the identifier, for example the code Id 'XULADS' may refer to a particular seasonality because it starts with the letters XU.
179
180 With SDMX 2.1 each code that starts with XU had to be individually mapped to the same seasonality, and additional mappings added when new Codes were added to the Codelists. This led to many hundreds or thousands of mappings which can be more efficiently summarised in a single conceptual rule:
181
182 //If starts with 'XU' map to 'Y'//
183
184 These rules are described using either regular expressions, or substrings for simpler use cases.
185
186 === 13.6.1 Regular expressions ===
187
188 Regular expression mapping rules are defined in the Representation Map.
189
190 Below is an example set of regular expression rules for a particular component.
191
Helena 10.10 192 (% style="width:708.294px" %)
193 |(% style="width:133px" %)**Regex**|(% style="width:377px" %)**Description**|(% style="width:194px" %)**Output**
194 |(% style="width:133px" %)A|(% style="width:377px" %)Rule match if input = 'A'|(% style="width:194px" %)OUT_A
195 |(% style="width:133px" %)^[A-G]|(% style="width:377px" %)Rule match if the input starts with letters A to G|(% style="width:194px" %)OUT_B
196 |(% style="width:133px" %)A~|B|(% style="width:377px" %)Rule match if input is either 'A' or 'B'|(% style="width:194px" %)OUT_C
Helena 2.1 197
198 Like all mapping rules, the output is either a Code, a Value or free text depending on the representation of the Component in the target Data Structure Definition.
199
200 If the regular expression contains capture groups, these can be used in the definition of the output value, by specifying \//**n** //as an output value where //**n**// is the number of the capture group starting from 1. For example
201
Helena 10.10 202 (% style="width:720.294px" %)
203 |(% style="width:199px" %)**Regex**|(% style="width:126px" %)**Target output**|(% style="width:192px" %)**Example Input**|(% style="width:200px" %)**Example Output**
204 |(% style="width:199px" %)(((
205 ([0-9]{4})[0-9]([0-9]{1})
206 )))|(% style="width:126px" %)\1-Q\2|(% style="width:192px" %)200933|(% style="width:200px" %)2009-Q3
Helena 2.1 207
208 As regular expression rules can be used as a general catch-all if nothing else matches, the ordering of the rules is important. Rules should be tested starting with the highest priority, moving down the list until a match is found.
209
210 The following example shows this:
211
Helena 10.10 212 (% style="width:725.294px" %)
213 |(% style="width:198px" %)**Priority**|(% style="width:148px" %)**Regex**|(% style="width:212px" %)**Description**|(% style="width:164px" %)**Output**
214 |(% style="width:198px" %)1|(% style="width:148px" %)A|(% style="width:212px" %)Rule match if input = 'A'|(% style="width:164px" %)OUT_A
215 |(% style="width:198px" %)2|(% style="width:148px" %)B|(% style="width:212px" %)Rule match if input = 'B'|(% style="width:164px" %)OUT_B
216 |(% style="width:198px" %)3|(% style="width:148px" %)[A-Z]|(% style="width:212px" %)Any character A-Z|(% style="width:164px" %)OUT_C
Helena 2.1 217
218 The input 'A' matches both the first and the last rule, but the first takes precedence having the higher priority. The output is OUT_A.
219
220 The input 'G' matches on the last rule which is used as a catch-all or default in this example.
221
222 === 13.6.2 Substrings ===
223
224 Substrings provide an alternative to regular expressions where the required section of an input value can be described using the number of the starting character, and the length of the substring in characters. The first character is at position 1.
225
226 For instance:
227
Helena 10.10 228 (% style="width:742.294px" %)
229 |(% style="width:191px" %)**Input String**|(% style="width:154px" %)**Start**|(% style="width:211px" %)**Length**|(% style="width:182px" %)**Output**
230 |(% style="width:191px" %)ABC_DEF_XYZ|(% style="width:154px" %)5|(% style="width:211px" %)3|(% style="width:182px" %)DEF
231 |(% style="width:191px" %)XULADS|(% style="width:154px" %)1|(% style="width:211px" %)2|(% style="width:182px" %)XU
Helena 2.1 232
233 Sub-strings can therefore be used for the conceptual rule //If starts with 'XU' map to Y// as shown in the following example:
234
Helena 10.11 235 (% style="width:740.294px" %)
236 |(% style="width:194px" %)**Start**|(% style="width:151px" %)**Length**|(% style="width:208px" %)**Source**|(% style="width:183px" %)**Target**
237 |(% style="width:194px" %)1|(% style="width:151px" %)2|(% style="width:208px" %)XU|(% style="width:183px" %)Y
Helena 2.1 238
239 == 13.7 Mapping non-SDMX time formats to SDMX formats ==
240
241 Structure mapping allows non-SDMX compliant time values in source datasets to be mapped to an SDMX compliant time format.
242
243 Two types of time input are defined:
244
245 a. **Pattern based dates** – a string which can be described using a notation like dd/mm/yyyy or is represented as the number of periods since a point in time, for example: 2010M001 (first month in 2010), or 2014D123 (123^^rd^^ day in 2014); and b. **Numerical based datetime** – a number specifying the elapsed periods since a fixed point in time, for example Unix Time is measured by the number of milliseconds since 1970.
246
247 The output of a time-based mapping is derived from the output Frequency, which is either explicitly stated in the mapping or defined as the value output by a specific Dimension or Attribute in the output mapping. If the output frequency is unknown or if the SDMX format is not desired, then additional rules can be provided to specify the output date format for the given frequency Id. The default rules are:
248
Helena 10.11 249 (% style="width:771.294px" %)
250 |(% style="width:187px" %)**Frequency**|(% style="width:159px" %)**Format**|(% style="width:422px" %)**Example**
251 |(% style="width:187px" %)A|(% style="width:159px" %)YYYY|(% style="width:422px" %)2010
252 |(% style="width:187px" %)D|(% style="width:159px" %)YYYY-MM-DD|(% style="width:422px" %)2010-01-01
253 |(% style="width:187px" %)I|(% style="width:159px" %)YYYY-MM-DDThh:mm:ss|(% style="width:422px" %)2010-01T20:22:00
254 |(% style="width:187px" %)M|(% style="width:159px" %)YYYY-MM|(% style="width:422px" %)2010-01
255 |(% style="width:187px" %)Q|(% style="width:159px" %)YYYY-Qn|(% style="width:422px" %)2010-Q1
256 |(% style="width:187px" %)S|(% style="width:159px" %)YYYY-Sn|(% style="width:422px" %)2010-S1
257 |(% style="width:187px" %)T|(% style="width:159px" %)YYYY-Tn|(% style="width:422px" %)2010-T1
258 |(% style="width:187px" %)W|(% style="width:159px" %)YYYY-Wn|(% style="width:422px" %)YYYY-W53
Helena 2.1 259
260 In the case where the input frequency is lower than the output frequency, the mapping defaults to end of period, but can be explicitly set to start, end or mid-period.
261
262 There are two important points to note:
263
264 1. The output frequency determines the output date format, but the default output can be redefined using a Frequency Format mapping to force explicit rules on how the output time period is formatted.
265 1. To support the use case of changing frequency the structure map can optionally provide a start of year attribute, which defines the year start date in MM-DD format. For example: YearStart=04-01.
266
267 === 13.7.1 Pattern based dates ===
268
269 Date and time formats are specified by date and time pattern strings based on Java's Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not interpreted; they're simply copied into the output string during formatting or matched against the input string during parsing.
270
Helena 10.11 271 Due to the fact that dates may differ per locale, an optional property, defining the locale of the pattern, is provided. This would assist processing of source dates, according to the given locale{{footnote}}Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.{{/footnote}}. An indicative list of examples is presented in the following table:
Helena 2.1 272
Helena 10.11 273 (% style="width:772.294px" %)
274 |(% style="width:190px" %)English (en)|(% style="width:230px" %)Australia (AU)|(% style="width:348px" %)en-AU
275 |(% style="width:190px" %)English (en)|(% style="width:230px" %)Canada (CA)|(% style="width:348px" %)en-CA
276 |(% style="width:190px" %)English (en)|(% style="width:230px" %)United Kingdom (GB)|(% style="width:348px" %)en-GB
277 |(% style="width:190px" %)English (en)|(% style="width:230px" %)United States (US)|(% style="width:348px" %)en-US
278 |(% style="width:190px" %)Estonian (et)|(% style="width:230px" %)Estonia (EE)|(% style="width:348px" %)et-EE
279 |(% style="width:190px" %)Finnish (fi)|(% style="width:230px" %)Finland (FI)|(% style="width:348px" %)fi-FI
280 |(% style="width:190px" %)French (fr)|(% style="width:230px" %)Belgium (BE)|(% style="width:348px" %)fr-BE
281 |(% style="width:190px" %)French (fr)|(% style="width:230px" %)Canada (CA)|(% style="width:348px" %)fr-CA
282 |(% style="width:190px" %)French (fr)|(% style="width:230px" %)France (FR)|(% style="width:348px" %)fr-FR
283 |(% style="width:190px" %)French (fr)|(% style="width:230px" %)Luxembourg (LU)|(% style="width:348px" %)fr-LU
284 |(% style="width:190px" %)French (fr)|(% style="width:230px" %)Switzerland (CH)|(% style="width:348px" %)fr-CH
285 |(% style="width:190px" %)German (de)|(% style="width:230px" %)Austria (AT)|(% style="width:348px" %)de-AT
286 |(% style="width:190px" %)German (de)|(% style="width:230px" %)Germany (DE)|(% style="width:348px" %)de-DE
Helena 2.1 287
Helena 10.12 288 (% style="width:773.294px" %)
289 |(% style="width:190px" %)German (de)|(% style="width:234px" %)Luxembourg (LU)|(% style="width:345px" %)de-LU
290 |(% style="width:190px" %)German (de)|(% style="width:234px" %)Switzerland (CH)|(% style="width:345px" %)de-CH
291 |(% style="width:190px" %)Greek (el)|(% style="width:234px" %)Cyprus (CY)|(% style="width:345px" %)el-CY__([[*>>https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]])__
292 |(% style="width:190px" %)Greek (el)|(% style="width:234px" %)Greece (GR)|(% style="width:345px" %)el-GR
293 |(% style="width:190px" %)Hebrew (iw)|(% style="width:234px" %)Israel (IL)|(% style="width:345px" %)iw-IL
294 |(% style="width:190px" %)Hindi (hi)|(% style="width:234px" %)India (IN)|(% style="width:345px" %)hi-IN
295 |(% style="width:190px" %)Hungarian (hu)|(% style="width:234px" %)Hungary (HU)|(% style="width:345px" %)hu-HU
296 |(% style="width:190px" %)Icelandic (is)|(% style="width:234px" %)Iceland (IS)|(% style="width:345px" %)is-IS
297 |(% style="width:190px" %)Indonesian (in)|(% style="width:234px" %)Indonesia (ID)|(% style="width:345px" %)in-ID__([[*>>https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]])__
298 |(% style="width:190px" %)Irish (ga)|(% style="width:234px" %)Ireland (IE)|(% style="width:345px" %)ga-IE__([[*>>https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale]])__
299 |(% style="width:190px" %)Italian (it)|(% style="width:234px" %)Italy (IT)|(% style="width:345px" %)it-IT
Helena 2.1 300
301 Examples
302
303 22/06/1981 would be described as dd/MM/YYYY, with locale en-GB
304
305 2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR
306
307 22 July 1981 would be described as dd MMMM YYYY, with locale en-US
308
309 22 Jul 1981 would be described as dd MMM YYYY
310
311 2010 D62 would be described as YYYYDnn (day 62 of the year 2010)
312
313 The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):
314
Helena 10.12 315 (% style="width:896.294px" %)
Helena 10.13 316 |(% style="width:133px" %)**Letter**|(% style="width:414px" %)**Date or Time Component**|(% style="width:157px" %)**Presentation**|(% style="width:172px" %)**Examples**
317 |(% style="width:133px" %)G|(% style="width:414px" %)Era designator|(% style="width:157px" %)Text|(% style="width:172px" %)AD
318 |(% style="width:133px" %)yy|(% style="width:414px" %)Year short (upper case is Year of Week{{footnote}}yyyy represents the calendar year while YYYY represents the year of the week, which is only relevant for 53 week years{{/footnote}})|(% style="width:157px" %)Year|(% style="width:172px" %)96
319 |(% style="width:133px" %)yyyy|(% style="width:414px" %)Year Full (upper case is Year of Week)|(% style="width:157px" %)Year|(% style="width:172px" %)1996
320 |(% style="width:133px" %)MM|(% style="width:414px" %)Month number in year starting with 1|(% style="width:157px" %)Month|(% style="width:172px" %)07
321 |(% style="width:133px" %)MMM|(% style="width:414px" %)Month name short|(% style="width:157px" %)Month|(% style="width:172px" %)Jul
322 |(% style="width:133px" %)MMMM|(% style="width:414px" %)Month name full|(% style="width:157px" %)Month|(% style="width:172px" %)July
323 |(% style="width:133px" %)ww|(% style="width:414px" %)Week in year|(% style="width:157px" %)Number|(% style="width:172px" %)27
324 |(% style="width:133px" %)W|(% style="width:414px" %)Week in month|(% style="width:157px" %)Number|(% style="width:172px" %)2
325 |(% style="width:133px" %)DD|(% style="width:414px" %)Day in year|(% style="width:157px" %)Number|(% style="width:172px" %)189
326 |(% style="width:133px" %)dd|(% style="width:414px" %)Day in month|(% style="width:157px" %)Number|(% style="width:172px" %)10
327 |(% style="width:133px" %)F|(% style="width:414px" %)Day of week in month|(% style="width:157px" %)Number|(% style="width:172px" %)2
328 |(% style="width:133px" %)E|(% style="width:414px" %)Day name in week|(% style="width:157px" %)Text|(% style="width:172px" %)Tuesday; Tue
329 |(% style="width:132px" %)U|(% style="width:414px" %)Day number of week (1 = Monday, ..., 7 = Sunday)|(% style="width:157px" %)Number|(% style="width:217px" %)1
330 |(% style="width:132px" %)HH|(% style="width:414px" %)Hour in day (0-23)|(% style="width:157px" %)Number|(% style="width:217px" %)0
331 |(% style="width:132px" %)kk|(% style="width:414px" %)Hour in day (1-24)|(% style="width:157px" %)Number|(% style="width:217px" %)24
332 |(% style="width:132px" %)KK|(% style="width:414px" %)Hour in am/pm (0-11)|(% style="width:157px" %)Number|(% style="width:217px" %)0
333 |(% style="width:132px" %)hh|(% style="width:414px" %)Hour in am/pm (1-12)|(% style="width:157px" %)Number|(% style="width:217px" %)12
334 |(% style="width:132px" %)mm|(% style="width:414px" %)Minute in hour|(% style="width:157px" %)Number|(% style="width:217px" %)30
335 |(% style="width:132px" %)ss|(% style="width:414px" %)Second in minute|(% style="width:157px" %)Number|(% style="width:217px" %)55
336 |(% style="width:132px" %)S|(% style="width:414px" %)Millisecond|(% style="width:157px" %)Number|(% style="width:217px" %)978
337 |(% style="width:132px" %)n|(% style="width:414px" %)Number of periods, used after a SDMX Frequency Identifier such as M, Q, D (month, quarter, day)|(% style="width:157px" %)Number|(% style="width:217px" %)12
Helena 2.1 338
339 The model is illustrated below:
340
341 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_295af259.jpg||height="265" width="477"]]
342
343 ==== Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the TIME_PERIOD dimension with the additional information on the component map to describe the time format ====
344
345 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_a3215c79.jpg||height="265" width="480"]]
346
347 ==== Figure 25 showing an input date format, whose output frequency is derived from the output value of the FREQ Dimension ====
348
349 === 13.7.2 Numerical based datetime ===
350
351 Where the source datetime input is purely numerical, the mapping rules are defined by the **Base** as a valid SDMX Time Period, and the **Period** which must take one of the following enumerated values:
352
353 * day
354 * second
355 * millisecond
356 * microsecond
357 * nanosecond
358
Helena 10.14 359 (% style="width:573.294px" %)
360 |(% style="width:276px" %)**Numerical datetime systems**|(% style="width:117px" %)**Base**|(% style="width:177px" %)**Period**
361 |(% style="width:276px" %)(((
Helena 2.1 362 Epoch Time (UNIX)
363 Milliseconds since 01 Jan 1970
Helena 10.14 364 )))|(% style="width:117px" %)1970|(% style="width:177px" %)millisecond
365 |(% style="width:276px" %)(((
Helena 2.1 366 Windows System Time
367 Milliseconds since 01 Jan 1601
Helena 10.14 368 )))|(% style="width:117px" %)1601|(% style="width:177px" %)millisecond
Helena 2.1 369
370 The example above illustrates numerical based datetime mapping rules for two commonly used time standards.
371
372 The model is illustrated below:
373
374 [[image:SDMX 3-0-0 SECTION 6 FINAL-1.0_en_ab51b44a.jpg||height="113" width="485"]]
375
376 **Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the**
377
378 ==== TIME_PERIOD Dimension with the additional information on the component map to describe the numerical datetime system in use ====
379
380 === 13.7.3 Mapping more complex time inputs ===
381
382 VTL should be used for more complex time inputs that cannot be interpreted using the pattern based on numerical methods.
383
384 == 13.8 Using TIME_PERIOD in mapping rules ==
385
386 The source TIME_PERIOD Dimension can be used in conjunction with other input Dimensions to create discrete mapping rules where the output is conditional on the time period value.
387
388 The main use case is setting the value of Observation Attributes in the target dataset.
389
Helena 10.14 390 (% style="width:786.294px" %)
391 |(% style="width:92px" %)**Rule**|(% style="width:377px" %)**Source**|(% style="width:315px" %)**Target**
392 |(% style="width:92px" %)1|(% style="width:377px" %)(((
Helena 2.1 393 If
394 INDICATOR=XULADS; and TIME_PERIOD=2007.
Helena 10.14 395 )))|(% style="width:315px" %)(((
Helena 2.1 396 Set
397 OBS_CONF=F
398 )))
Helena 10.14 399 |(% style="width:92px" %)2|(% style="width:377px" %)(((
Helena 2.1 400 If
401 INDICATOR=XULADS; and TIME_PERIOD=2008.
Helena 10.14 402 )))|(% style="width:315px" %)(((
Helena 2.1 403 Set
404 OBS_CONF=F
405 )))
Helena 10.14 406 |(% style="width:92px" %)3|(% style="width:377px" %)(((
Helena 2.1 407 If
408 INDICATOR=XULADS; and TIME_PERIOD=2009.
Helena 10.14 409 )))|(% style="width:315px" %)(((
Helena 2.1 410 Set
411 OBS_CONF=F
412 )))
Helena 10.14 413 |(% style="width:92px" %)4|(% style="width:377px" %)(((
Helena 2.1 414 If
415 INDICATOR=XULADS; and TIME_PERIOD=2010.
Helena 10.14 416 )))|(% style="width:315px" %)(((
Helena 2.1 417 Set
418 OBS_CONF=**C**
419 )))
420
421 In the example above, OBS_CONF is an Observation Attribute.
422
423 == 13.9 Time span mapping rules using validity periods ==
424
425 Creating discrete mapping rules for each TIME_PERIOD is impractical where rules need to cover a specific span of time regardless of frequency, and for high-frequency data.
426
427 Instead, an optional validity period can be set for each mapping.
428
429 By specifying validity periods, the example from Section 13.8 can be re-written using two rules as follows:
430
Helena 10.15 431 (% style="width:808.294px" %)
432 |(% style="width:93px" %)**Rule**|(% style="width:385px" %)**Source**|(% style="width:328px" %)**Target**
433 |(% style="width:93px" %)1|(% style="width:385px" %)(((
Helena 2.1 434 If
435 INDICATOR=XULADS.
436 Validity Period start period=2007 end period=2009
Helena 10.15 437 )))|(% style="width:328px" %)(((
Helena 2.1 438 Set
439 OBS_CONF=F
440 )))
Helena 10.15 441 |(% style="width:93px" %)2|(% style="width:385px" %)(((
Helena 2.1 442 If
443 INDICATOR=XULADS.
444 Validity Period start period=2010
Helena 10.15 445 )))|(% style="width:328px" %)(((
Helena 2.1 446 Set
447 OBS_CONF=F** **
448 )))
449
450 In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule will hold true regardless of the input data frequency. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of F.
451
452 In Rule 2, no end period is specified so remains in effect from the start of the period (2010-01-01T00:00:00) until the end of time. Any observations reporting data for the Indicator XULADS that fall into that time range will have an OBS_CONF value of C.
453
454 == 13.10 Mapping examples ==
455
456 === 13.10.1 Many to one mapping (N-1) ===
457
Helena 10.18 458 [[image:1747377208446-496.png]]
Helena 2.1 459
460 The bold Dimensions map from source to target verbatim. The mapping simply specifies:
461
462 FREQ => FREQ
463
464 REF_AREA=> REF_AREA
465
466 COUNTERPART_AREA=> COUNTERPART _AREA
467
468 No Representation Mapping is required. The source value simply copies across unmodified.
469
470 The remaining Dimensions all map to the Indicator Dimension. This is an example of many Dimensions mapping to one Dimension. In this case a Representation Mapping is required, and the mapping first describes the input 'partial key' and how this maps to the target indicator:
471
472 N:S1:S1:B:B5G => IND_ABC
473
474 Where the key sequence is based on the order specified in the mapping (i.e ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from ADJUSTMENT as this was the first item in the source Dimension list.
475
476 **Note**: The key order is NOT based on the Dimension order of the DSD, as the mapping needs to be resilient to the DSD changing.
477
478 === 13.10.2 Mapping other data types to Code Id ===
479
480 In the case where the incoming data type is not a string and not a code identifier i.e. the source Dimension is of type Integer and the target is Codelist. This is supported by the RepresentationMap. The RepresentationMap source can reference a Codelist, Valuelist, or be free text, the free text can include regular expressions.
481
482 The following representation mapping can be used to explicitly map each age to an output code.
483
484 (((
Helena 10.16 485 (% style="width:669.294px" %)
486 |(% style="width:218px" %)**Source Input Free Text**|(% style="width:448px" %)**Desired Output Code Id**
487 |(% style="width:218px" %)0|(% style="width:448px" %)A
488 |(% style="width:218px" %)1|(% style="width:448px" %)A
489 |(% style="width:218px" %)2|(% style="width:448px" %)A
490 |(% style="width:218px" %)3|(% style="width:448px" %)B
491 |(% style="width:218px" %)4|(% style="width:448px" %)B
Helena 2.1 492 )))
493
Helena 10.19 494 If this mapping takes advantage of regular expressions it can be expressed in two rules:
Helena 2.1 495
496 (((
Helena 10.16 497 (% style="width:675.294px" %)
Helena 10.19 498 |(% style="width:219px" %)(((
499 **Regular Expression**
500 )))|(% style="width:453px" %)**Desired Output**
Helena 10.16 501 |(% style="width:219px" %)[0-2]|(% style="width:453px" %)A
502 |(% style="width:219px" %)[3-4]|(% style="width:453px" %)B
Helena 10.19 503
504 (% style="color:inherit; font-family:inherit; font-size:max(21px, min(23px, 17.4444px + 0.462963vw))" %)13.10.3 Observation Attributes for Time Period
Helena 2.1 505 )))
506
507 This use case is where a specific observation for a specific time period has an attribute 3468 value.
508
509 (((
Helena 10.16 510 (% style="width:689.294px" %)
511 |(% style="width:220px" %)**Input INDICATOR**|(% style="width:223px" %)**Input TIME_PERIOD**|(% style="width:243px" %)**Output OBS_CONF**
512 |(% style="width:220px" %)XULADS|(% style="width:223px" %)2008|(% style="width:243px" %)C
513 |(% style="width:220px" %)XULADS|(% style="width:223px" %)2009|(% style="width:243px" %)C
514 |(% style="width:220px" %)XULADS|(% style="width:223px" %)2010|(% style="width:243px" %)C
Helena 2.1 515 )))
516
517 __Or using a validity period on the Representation Mapping__:
518
Helena 10.16 519 Input INDICATOR Valid From/ Valid To Output OBS_CONF XULADS 2008/2010 C
Helena 2.1 520
521 === 13.10.4 Time mapping ===
522
523 This use case is to create a time period from an input that does not respect SDMXTime Formats.
524
525 The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time mapping with the following details:
526
527 (((
Helena 10.17 528 (% style="width:763.294px" %)
529 |(% style="width:163px" %)**Source Value**|(% style="width:219px" %)**Source Mapping**|(% style="width:198px" %)**Target Frequency**|(% style="width:180px" %)**Output**
530 |(% style="width:163px" %)18/07/1981|(% style="width:219px" %)dd/MM/yyyy|(% style="width:198px" %)A|(% style="width:180px" %)1981
Helena 2.1 531 )))
532
533 When the target frequency is based on another target Dimension value, in this example __the value of the FREQ Dimension in the tar__get DSD.
534
535
536 (((
537 |Source Value|Source Mapping|Target Frequency Output Dimension
538
Helena 10.2 539 |18/07/1981 dd/MM/yyyy|FREQ| |1981-07-18 (when FREQ=D)
Helena 2.1 540 |(% rowspan="2" %)(((
541 __When the source is a numerical form__at
542
543 Source Value Start Period Interv
Helena 10.2 544 )))| | |
Helena 2.1 545 |al|(((
546 Target
547
548 FREQ
549 )))|Output
550 |(% colspan="2" %)1589808220 1970 millisecond|M|2020-05
551 )))
552
553 When the source frequency is lower than the target frequency additional information 3485 can be provided for resolve to start of period, end of period, or mid period, as shown 3486 in the following example:
554
555 Source Value Source Mapping Target Frequency Output
556
557 Dimension
558
Helena 10.18 559 1981 yyyy D – End of Period 1981-12-31
Helena 2.1 560
561 When the start of year is April 1^^st^^ the Structure Map has YearStart=04-01:
562
563 Source Value Source Mapping Target Frequency Output
564
565 Dimension
566
567 1981 yyyy D – End of Period 1982-03-31
Helena 10.3 568
569 {{putFootnotes/}}