Last modified by Artur on 2025/09/10 11:19

From version 1.11
edited by Helena
on 2025/06/16 13:08
Change comment: There is no comment for this version
To version 1.13
edited by Helena
on 2025/06/16 13:13
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -222,7 +222,7 @@
222 222  
223 223  With the Basic mapping, one SDMX observation^^27^^ generates one VTL data point.
224 224  
225 -**12.3.3.2 Pivot Mapping**
225 +==== 12.3.3.2 Pivot Mapping ====
226 226  
227 227  An alternative mapping method from SDMX to VTL is the **Pivot **mapping, which makes sense and is different from the Basic method only for the SDMX data structures that contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) and just one Measure. Through this method, these structures can be mapped to multimeasure VTL data structures. Besides that, a user may choose to use any Dimension acting as a list of Measures (e.g., a Dimension with indicators), either by considering the “Measure” role of a Dimension, or at will using any coded Dimension. Of course, in SDMX 3.0, this can only work when only one Measure is defined in the DSD.
228 228  
... ... @@ -253,7 +253,6 @@
253 253  |DataAttribute not depending on the MeasureDimension|Attribute
254 254  |DataAttribute depending on the MeasureDimension|(((
255 255  One Attribute for each Code of the
256 -
257 257  SDMX MeasureDimension
258 258  )))
259 259  
... ... @@ -266,13 +266,10 @@
266 266  
267 267  Identifiers, (time) Identifier and Attributes.
268 268  
269 -* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure
270 -
271 -Cj
272 -
268 +* The value of the Measure of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Measure Cj
273 273  * For the SDMX DataAttributes depending on the MeasureDimension, the value of the DataAttribute DA of the SDMX observation belonging to the set above and having MeasureDimension=Cj becomes the value of the VTL Attribute DA_Cj
274 274  
275 -**12.3.3.3 From SDMX DataAttributes to VTL Measures**
271 +==== 12.3.3.3 From SDMX DataAttributes to VTL Measures ====
276 276  
277 277  * In some cases, it may happen that the DataAttributes of the SDMX DataStructure need to be managed as Measures in VTL. Therefore, a variant of both the methods above consists in transforming all the SDMX DataAttributes in VTL Measures. When DataAttributes are converted to Measures, the two methods above are called Basic_A2M and Pivot_A2M (the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting VTL data structure is, in general, multi-measure and does not contain
278 278  
... ... @@ -282,11 +282,9 @@
282 282  
283 283  Proper VTL features allow changing the role of specific attributes even after the SDMX to VTL mapping: they can be useful when only some of the DataAttributes need to be managed as VTL Measures.
284 284  
285 -1.
286 -11.
287 -111. Mapping from VTL to SDMX data structures
281 +=== 12.3.4 Mapping from VTL to SDMX data structures ===
288 288  
289 -**12.3.4.1 Basic Mapping**
283 +==== 12.3.4.1 Basic Mapping ====
290 290  
291 291  The main mapping method **from VTL to SDMX** is called **Basic **mapping as well.
292 292  
... ... @@ -310,7 +310,7 @@
310 310  
311 311  As said, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
312 312  
313 -**12.3.4.2 Unpivot Mapping**
307 +==== 12.3.4.2 Unpivot Mapping ====
314 314  
315 315  An alternative mapping method from VTL to SDMX is the **Unpivot **mapping.
316 316  
... ... @@ -346,7 +346,7 @@
346 346  
347 347  In any case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the possible Codes of the SDMX MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency and version; moreover, the SDMX DSD must have the AttributeRelationship for the DataAttributes, which does not exist in VTL.
348 348  
349 -**12.3.4.3 From VTL Measures to SDMX Data Attributes**
343 +==== 12.3.4.3 From VTL Measures to SDMX Data Attributes ====
350 350  
351 351  More than all for the multi-measure VTL structures (having more than one Measure Component), it may happen that the Measures of the VTL Data Structure need to be managed as DataAttributes in SDMX. Therefore, a third mapping method consists in transforming some VTL measures in a corresponding SDMX Measures and all the other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to DataAttributes”).
352 352  
... ... @@ -363,9 +363,7 @@
363 363  
364 364  Even in this case, the resulting SDMX definitions must be compliant with the SDMX consistency rules. For example, the SDMX DSD must have the attributeRelationship for the DataAttributes, which does not exist in VTL.
365 365  
366 -1.
367 -11.
368 -111. Declaration of the mapping methods between data structures
360 +=== 12.3.5 Declaration of the mapping methods between data structures ===
369 369  
370 370  In order to define and understand properly VTL Transformations, the applied mapping methods must be specified in the SDMX structural metadata. If the default mapping method (Basic) is applied, no specification is needed.
371 371  
... ... @@ -375,14 +375,10 @@
375 375  
376 376  The VtlMappingScheme is a container for zero or more VtlDataflowMapping (it may contain also mappings towards artefacts other than dataflows).
377 377  
378 -1.
379 -11.
380 -111. Mapping dataflow subsets to distinct VTL Data Sets
370 +=== 12.3.6 Mapping dataflow subsets to distinct VTL Data Sets ===
381 381  
382 -Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations
372 +Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and vice-versa. This mapping one-to-one is not mandatory according to VTL because a VTL Data Set is meant to be a set of observations (data points) on a logical plane, having the same logical data structure and the same general meaning, independently of the possible physical representation or storage (see VTL 2.0 User Manual page 24), therefore a SDMX Dataflow can be seen either as a unique set of data observations (corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
383 383  
384 -(corresponding to one VTL Data Set) or as the union of many sets of data observations (each one corresponding to a distinct VTL Data Set).
385 -
386 386  As a matter of fact, in some cases it can be useful to define VTL operations involving definite parts of a SDMX Dataflow instead than the whole.{{footnote}}A typical example of this kind is the validation, and more in general the manipulation, of individual time series belonging to the same Dataflow, identifiable through the DimensionComponents of the Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.{{/footnote}}
387 387  
388 388  Therefore, in order to make the coding of VTL operations simpler when applied on parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow to distinct VTL Data Sets according to the following rules and conventions. This kind of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better explained below.{{footnote}}Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations; in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL operators (e.g. “sub”, “filter”, “calc”, “union” …), maintaining a mapping one-to-one between SDMX Dataflows and VTL Data Sets.{{/footnote}}
... ... @@ -475,13 +475,10 @@
475 475  Some examples follow, for some specific values of INDICATOR and COUNTRY:
476 476  
477 477  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12;
478 -
479 479  … … …
480 480  
481 481  ‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21;
482 -
483 483  ‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22;
484 -
485 485  … … …
486 486  
487 487  As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, with the following values respectively:
... ... @@ -488,13 +488,9 @@
488 488  
489 489  VTL dataset   INDICATOR value COUNTRY value
490 490  
491 -
492 492  ‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA
493 -
494 494  ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA … … …
495 -
496 496  ‘DF2(1.0.0)/POPGROWTH.USA’  POPGROWTH USA
497 -
498 498  ‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA
499 499  
500 500  … … …
... ... @@ -502,25 +502,15 @@
502 502  It should be noted that the application of this many-to-one mapping from VTL to SDMX is equivalent to an appropriate sequence of VTL Transformations. These use the VTL operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and COUNTRY) and to assign to them the proper values and the operator “union” in order to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped oneto-one to the homonymous SDMX Dataflow. Following the same example, these VTL Transformations would be:
503 503  
504 504  DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ [calc identifier INDICATOR := ”GDPPERCAPITA”, identifier COUNTRY := ”USA”];
505 -
506 506  DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ [calc identifier INDICATOR:=”GDPPERCAPITA”, identifier COUNTRY:=”CANADA”]; … … …
507 -
508 508  DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’
509 -
510 510  [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”USA”];
511 -
512 512  DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ [calc identifier INDICATOR := ”POPGROWTH”, identifier COUNTRY := ”CANADA”]; … … …
513 -
514 514  DF2(1.0) <- UNION  (DF2bis_GDPPERCAPITA_USA’,
515 -
516 516  DF2bis_GDPPERCAPITA_CANADA’,
517 -
518 518  … ,
519 -
520 520  DF2bis_POPGROWTH_USA’,
521 -
522 522  DF2bis_POPGROWTH_CANADA’
523 -
524 524  …);
525 525  
526 526  In other words, starting from the datasets explicitly calculated through VTL (in the example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in calculating other (non-persistent) VTL datasets (in the example DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and COUNTRY with the desired values (//INDICATORvalue// and //COUNTRYvalue)//. Finally, all these non-persistent Data Sets are united and give the final result DF2(1.0){{footnote}}The result is persistent in this example but it can be also non persistent if needed.{{/footnote}}, which can be mapped one-to-one to the homonymous SDMX Dataflow having the dimension components TIME_PERIOD, INDICATOR and COUNTRY.
... ... @@ -529,9 +529,7 @@
529 529  
530 530  It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the value for every Dimension on which the mapping is based (in other word, in the name of the calculated VTL dataset is not possible to omit the value of some of the Dimensions).
531 531  
532 -1.
533 -11.
534 -111. Mapping variables and value domains between VTL and SDMX
503 +=== 12.3.7 Mapping variables and value domains between VTL and SDMX ===
535 535  
536 536  With reference to the VTL “model for Variables and Value domains”, the following additional mappings have to be considered:
537 537  
... ... @@ -540,7 +540,6 @@
540 540  |**Represented Variable**|**Concept** with a definite Representation
541 541  |**Value Domain**|(((
542 542  **Representation** (see the Structure
543 -
544 544  Pattern in the Base Package)
545 545  )))
546 546  |**Enumerated Value Domain / Code List**|**Codelist**
... ... @@ -547,7 +547,6 @@
547 547  |**Code**|**Code** (for enumerated DimensionComponent, Measure, DataAttribute)
548 548  |**Described Value Domain**|(((
549 549  non-enumerated** Representation**
550 -
551 551  (having Facets / ExtendedFacets, see the Structure Pattern in the Base Package)
552 552  )))
553 553  |**Value**|Although this abstraction exists in SDMX, it does not have an explicit definition and correspond to a **Code** of a Codelist (for enumerated Representations) or
... ... @@ -571,9 +571,8 @@
571 571  
572 572  It remains up to the SDMX-VTL definer also the assurance of the consistency between a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables (i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISOalpha-3 for country). If the Ruleset is applied to SDMX Components that have the same name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for country), the Ruleset cannot work properly.
573 573  
574 -1.
575 -11. Mapping between SDMX and VTL Data Types
576 -111. VTL Data types
541 +== 12.4 Mapping between SDMX and VTL Data Types ==
542 +=== 12.4.1 VTL Data types ===
577 577  
578 578  According to the VTL User Guide the possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied but text strings cannot. In the VTL Transformations, the compliance between the operators and the data types of their operands is statically checked, i.e., violations result in compile-time errors.
579 579  
... ... @@ -581,17 +581,15 @@
581 581  
582 582  [[image:1750067055028-964.png]]
583 583  
584 -==== Figure 22 – VTL Data Types ====
550 +**Figure 22 – VTL Data Types**
585 585  
586 586  The VTL scalar types are in turn subdivided in basic scalar types, which are elementary (not defined in term of other data types) and Value Domain and Set scalar types, which are defined in terms of the basic scalar types.
587 587  
588 588  The VTL basic scalar types are listed below and follow a hierarchical structure in terms of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types):
589 589  
590 -==== Figure 23 – VTL Basic Scalar Types ====
556 +**Figure 23 – VTL Basic Scalar Types**
591 591  
592 -1.
593 -11.
594 -111. VTL basic scalar types and SDMX data types
558 +=== 12.4.2 VTL basic scalar types and SDMX data types ===
595 595  
596 596  The VTL assumes that a basic scalar type has a unique internal representation and can have more external representations.
597 597  
... ... @@ -609,9 +609,7 @@
609 609  
610 610  The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). The values of the VTL result must be converted into the desired (SDMX) external representations (data types) of the SDMX artefact.
611 611  
612 -1.
613 -11.
614 -111. Mapping SDMX data types to VTL basic scalar types
576 +=== 12.4.3 Mapping SDMX data types to VTL basic scalar types ===
615 615  
616 616  The following table describes the default mapping for converting from the SDMX data types to the VTL basic scalar types.
617 617  
... ... @@ -618,7 +618,6 @@
618 618  |SDMX data type (BasicComponentDataType)|Default VTL basic scalar type
619 619  |(((
620 620  String
621 -
622 622  (string allowing any character)
623 623  )))|string
624 624  |(((
... ... @@ -628,7 +628,6 @@
628 628  )))|string
629 629  |(((
630 630  AlphaNumeric
631 -
632 632  (string which only allows A-z and 0-9)
633 633  )))|string
634 634  |(((
... ... @@ -638,89 +638,70 @@
638 638  )))|string
639 639  |(((
640 640  BigInteger
641 -
642 642  (corresponds to XML Schema xs:integer datatype; infinite set of integer values)
643 643  )))|integer
644 644  |(((
645 645  Integer
646 -
647 647  (corresponds to XML Schema xs:int datatype; between -2147483648 and +2147483647
648 -
649 649  (inclusive))
650 650  )))|integer
651 651  |(((
652 652  Long
653 -
654 654  (corresponds to XML Schema xs:long datatype; between -9223372036854775808 and
655 -
656 656  +9223372036854775807 (inclusive))
657 657  )))|integer
658 658  |(((
659 659  Short
660 -
661 661  (corresponds to XML Schema xs:short datatype; between -32768 and -32767 (inclusive))
662 662  )))|integer
663 663  |Decimal (corresponds to XML Schema xs:decimal datatype; subset of real numbers that can be represented as decimals)|number
664 664  |(((
665 665  Float
666 -
667 667  (corresponds to XML Schema xs:float datatype; patterned after the IEEE single-precision 32-bit floating point type)
668 668  )))|number
669 669  |(((
670 670  Double
671 -
672 672  (corresponds to XML Schema xs:double datatype; patterned after the IEEE double-precision 64-bit floating point type)
673 673  )))|number
674 674  |(((
675 675  Boolean
676 -
677 677  (corresponds to the XML Schema xs:boolean datatype; support the mathematical concept of
678 -
679 679  binary-valued logic: {true, false})
680 680  )))|boolean
681 681  |(((
682 682  URI
683 -
684 684  (corresponds to the XML Schema xs:anyURI; absolute or relative Uniform Resource Identifier Reference)
685 685  )))|string
686 686  |(((
687 687  Count
688 -
689 689  (an integer following a sequential pattern, increasing by 1 for each occurrence)
690 690  )))|integer
691 691  |(((
692 692  InclusiveValueRange
693 -
694 694  (decimal number within a closed interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
695 695  )))|number
696 696  |(((
697 697  ExclusiveValueRange
698 -
699 699  (decimal number within an open interval, whose bounds are specified in the SDMX representation by the facets minValue and maxValue)
700 700  )))|number
701 701  |(((
702 702  Incremental
703 -
704 704  (decimal number the increased by a specific interval (defined by the interval facet), which is typically enforced outside of the XML validation)
705 705  )))|number
706 706  |(((
707 707  ObservationalTimePeriod
708 -
709 709  (superset of StandardTimePeriod and TimeRange)
710 710  )))|time
711 711  |(((
712 712  StandardTimePeriod
713 -
714 714  (superset of BasicTimePeriod and ReportingTimePeriod)
715 715  )))|time
716 716  |(((
717 717  BasicTimePeriod
718 -
719 719  (superset of GregorianTimePeriod and DateTime)
720 720  )))|date
721 721  |(((
722 722  GregorianTimePeriod
723 -
724 724  (superset of GregorianYear, GregorianYearMonth, and GregorianDay)
725 725  )))|date
726 726  |GregorianYear (YYYY)|date
... ... @@ -728,32 +728,26 @@
728 728  |GregorianDay (YYYY-MM-DD)|date
729 729  |(((
730 730  ReportingTimePeriod
731 -
732 732  (superset of RepostingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, ReportingMonth, ReportingWeek, ReportingDay)
733 733  )))|time_period
734 734  |(((
735 735  ReportingYear
736 -
737 737  (YYYY-A1 – 1 year period)
738 738  )))|time_period
739 739  |(((
740 740  ReportingSemester
741 -
742 742  (YYYY-Ss – 6 month period)
743 743  )))|time_period
744 744  |(((
745 745  ReportingTrimester
746 -
747 747  (YYYY-Tt – 4 month period)
748 748  )))|time_period
749 749  |(((
750 750  ReportingQuarter
751 -
752 752  (YYYY-Qq – 3 month period)
753 753  )))|time_period
754 754  |(((
755 755  ReportingMonth
756 -
757 757  (YYYY-Mmm – 1 month period)
758 758  )))|time_period
759 759  |ReportingWeek|time_period
... ... @@ -760,42 +760,34 @@
760 760  | (YYYY-Www – 7 day period; following ISO 8601 definition of a week in a year)|
761 761  |(((
762 762  ReportingDay
763 -
764 764  (YYYY-Dddd – 1 day period)
765 765  )))|time_period
766 766  |(((
767 767  DateTime
768 -
769 769  (YYYY-MM-DDThh:mm:ss)
770 770  )))|date
771 771  |(((
772 772  TimeRange
773 -
774 774  (YYYY-MM-DD(Thh:mm:ss)?/<duration>)
775 775  )))|time
776 776  |(((
777 777  Month
778 -
779 779  (~-~-MM; speicifies a month independent of a year; e.g. February is black history month in the United States)
780 780  )))|string
781 781  |(((
782 782  MonthDay
783 -
784 784  (~-~-MM-DD; specifies a day within a month independent of a year; e.g. Christmas is December 25^^th^^; used to specify reporting year start day)
785 785  )))|string
786 786  |(((
787 787  Day
788 -
789 789  (~-~--DD; specifies a day independent of a month or year; e.g. the 15^^th^^ is payday)
790 790  )))|string
791 791  |(((
792 792  Time
793 -
794 794  (hh:mm:ss; time independent of a date; e.g. coffee break is at 10:00 AM)
795 795  )))|string
796 796  |(((
797 797  Duration
798 -
799 799  (corresponds to XML Schema xs:duration datatype)
800 800  )))|duration
801 801  |XHTML|Metadata type – not applicable